JPH1155338A - Digital demodulator - Google Patents

Digital demodulator

Info

Publication number
JPH1155338A
JPH1155338A JP21183997A JP21183997A JPH1155338A JP H1155338 A JPH1155338 A JP H1155338A JP 21183997 A JP21183997 A JP 21183997A JP 21183997 A JP21183997 A JP 21183997A JP H1155338 A JPH1155338 A JP H1155338A
Authority
JP
Japan
Prior art keywords
circuit
signal
phase
output
frequency error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21183997A
Other languages
Japanese (ja)
Other versions
JP3417534B2 (en
Inventor
Takeshi Kizawa
武 鬼沢
Sei Kobayashi
聖 小林
Masahiro Morikura
正博 守倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21183997A priority Critical patent/JP3417534B2/en
Publication of JPH1155338A publication Critical patent/JPH1155338A/en
Application granted granted Critical
Publication of JP3417534B2 publication Critical patent/JP3417534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently reduce a carrier wave frequency error, and to reduce an error rate in synchronization detection. SOLUTION: In this modulator, the orthogonal detection and phase conversion of a received DQPSK(differential quadrature phase shift keying) signal is operated, a phase at each symbol point is successively latched, carrier wave frequencies are corrected by a subtracting circuit 16, a phase error (a9) based on frequency deviation is detected from one symbol delay detection outputs of circuits 6 and 7 by a phase error detecting circuit 8, and an initial value a10 is obtained by an output circuit 9, and set in a circuit 13. Afterwards, a phase error a9 is inputted to a loop filter constituted of a gain circuit 11-adder circuit 12-initial value setting circuit 13-delay circuit 14-adder adder circuit 12, the filter output is integrated by a circuit 15, and supplied as frequency error components to the circuit 16. Then, a two symbol delay detection output is supplied to the phase error detecting circuit 8, and a three symbol delay detection output is supplied to the phase error detecting circuit 8 so that a carrier wave frequency error can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はディジタル無線通
信システムに用いられ、DQPSKのような差動符号化
n (nは1以上の整数)相位相変調信号の復調器に関
し、特に相手局から受信する信号の搬送波周波数誤差を
補正する自動周波数制御回路を含むディジタル復調器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demodulator for a differentially encoded 2 n (n is an integer equal to or greater than 1) phase modulation signal, such as DQPSK, used in a digital radio communication system. The present invention relates to a digital demodulator including an automatic frequency control circuit for correcting a carrier frequency error of a signal to be processed.

【0002】[0002]

【従来の技術】図3に従来のディジタル復調器の構成例
を示す。ここでは、π/4シフトDQPSK(Differen
tial Quadrature Phase Shift Keying) 変調信号に対応
した回路構成を示す(参考文献:鬼沢他、“位相情報を
用いる逐次処理型プリアンブルレス復調器−AFC及び
キャリア再生に関する検討−,”RCS96−149,
電子情報通信学会技術研究報告)。図において中間周波
数帯に変換された受信信号a1は、直交検波回路1で局
部発振回路2の出力信号により直交検波され複素ベース
バンド信号a2になり、さらに位相検出回路3によって
位相信号a3に変換される。クロック再生回路4は位相
信号a3から受信信号のクロック位相を検出し、シンボ
ル識別点に同期した再生クロックa4を出力する。ラッ
チ5は再生クロックa4によって与えられるシンボル識
別点で位相信号a3をサンプリングしクロック同期のと
れた位相信号a5を出力する。位相信号a5は第一の搬
送波周波数誤差補正手段である減算回路16で周波数変
換(周波数補正)された後、周波数変換信号a6を出力
し、これが減算回路7に入力されるとともに、1シンボ
ル遅延回路6により周波数変換信号a6が1シンボル区
間遅延されて遅延信号a7が出力される。減算回路7は
周波数変換信号a6と遅延信号a7の差(a6−a7)
なる遅延検波を行い、1シンボル区間の遅延検波信号a
8を出力する。
2. Description of the Related Art FIG. 3 shows a configuration example of a conventional digital demodulator. Here, π / 4 shift DQPSK (Differen
(Trial Quadrature Phase Shift Keying) Shows a circuit configuration corresponding to a modulated signal.
IEICE Technical Report). In the figure, a received signal a1 converted to an intermediate frequency band is quadrature-detected by an output signal of a local oscillation circuit 2 by a quadrature detection circuit 1 to become a complex baseband signal a2, and further converted to a phase signal a3 by a phase detection circuit 3. You. The clock recovery circuit 4 detects the clock phase of the received signal from the phase signal a3 and outputs a recovered clock a4 synchronized with the symbol identification point. The latch 5 samples the phase signal a3 at a symbol identification point given by the reproduced clock a4 and outputs a clock-synchronized phase signal a5. The phase signal a5 is subjected to frequency conversion (frequency correction) by a subtraction circuit 16 as first carrier frequency error correction means, and then outputs a frequency conversion signal a6, which is input to a subtraction circuit 7 and a one-symbol delay circuit 6 delays the frequency conversion signal a6 by one symbol period and outputs a delay signal a7. The subtraction circuit 7 calculates the difference between the frequency conversion signal a6 and the delay signal a7 (a6-a7).
And a differential detection signal a for one symbol section
8 is output.

【0003】ここで、搬送波周波数誤差が存在しない場
合には、遅延検波信号a8の第jサンプルの位相角θj
はIQ平面上で図4の○印で示したように式(1)を満
足する。 θj =qπ/2+π/4 (q=0,1,2,3) ………(1) 一方、搬送波周波数誤差Δfが存在する場合には、信号
点は図4の×印で示したように正規の位置から回転し、
雑音による符号誤りが発生しやすくなる。Δfと位相回
転Δθの関係は式(2)で与えられる。Tはシンボル周
期である。
Here, when there is no carrier frequency error, the phase angle θ j of the j-th sample of the differential detection signal a8
Satisfies the expression (1) on the IQ plane as indicated by a circle in FIG. θ j = qπ / 2 + π / 4 (q = 0,1,2,3) (1) On the other hand, when there is a carrier frequency error Δf, the signal points are indicated by the crosses in FIG. To rotate from the regular position
A code error due to noise is likely to occur. The relationship between Δf and phase rotation Δθ is given by equation (2). T is a symbol period.

【0004】 Δθ=2πΔfT ………(2) 位相誤差検出回路8は、この位相回転Δθの大きさを検
出するもので、遅延検波信号a8について式(3)に示
す演算を行い位相回転信号a9を出力する。 Δθj =φj −θj ………(3) ここでφj は第jサンプルの遅延検波信号、θj は式
(1)においてφj にもっとも近い値を取るようにqを
選んだ場合の位相角判定信号である。
Δθ = 2πΔfT (2) The phase error detection circuit 8 detects the magnitude of the phase rotation Δθ, performs an operation shown in Expression (3) on the delayed detection signal a8, and performs a phase rotation signal a9 Is output. Δθ j = φ j −θ j (3) where φ j is the delay detection signal of the j-th sample, and θ j is q when q is selected so as to take a value closest to φ j in equation (1). Is the phase angle determination signal.

【0005】周波数誤差検出回路9は、位相回転信号に
対して以下に示す処理を行い、搬送波周波数誤差検出を
行う。位相回転信号Δθj に対して、式(4)に示すよ
うに異なる固定値φP を加えるパスを複数用意し、u
(θ)で表現されるモジュロ演算の後に平均化を行い、
平均値SP を得る。 SP =(1/N)Σi=1 N u(Δθj +φP ), ………(4)そして、平均値SP は式(5)のように固
定値φP を減算された後、搬送波周波数誤差Δfに換算
される。
The frequency error detection circuit 9 performs the following processing on the phase rotation signal to detect a carrier frequency error. A plurality of paths for adding different fixed values φ P to the phase rotation signal Δθ j as shown in Expression (4) are prepared, and u
Averaging is performed after the modulo operation represented by (θ),
Obtain an average value S P. S P = (1 / N) Σ i = 1 N u (Δθ j + φ P), (4) Then, the average value S P is converted into a carrier frequency error Δf after subtracting the fixed value φ P as shown in Expression (5).

【0006】 Δf=(1/(2πT))(SP −φP ) ………(5) この検出された搬送波周波数誤差に基づいた位相回転信
号に応じて各パスの出力を選択あるいは合成することで
搬送波周波数誤差検出を行い、搬送波周波数誤差信号a
10を出力する。一方、利得出力回路10により与えら
れたループ利得を乗算回路11で乗算し、加算回路12
に入力する。初期値設定回路13には加算回路12の出
力とオープンループ構成部から得られた搬送波周波数誤
差信号a10が入力される。この初期値設定回路13は
ループの切り替え時に、つまり初期動作させ、例えばN
=32シンボル期間動作させた時に、初めて信号が出力
されるように設定される。その初期設定がなされると、
遅延回路14では初期値設定回路出力a11を遅延し、
上記加算回路12と遅延回路14で完全積分型のループ
フィルタを構成している。初期値設定回路出力である搬
送波周波数誤差信号a11は可変周波数発振手段として
用いられる積分回路15に入力され、入力信号の変化に
応じて周波数変換用参照信号a12を出力する。この閉
ループ構成で位相誤差検出回路8の出力がゼロに近づく
ように動作し、搬送波周波数誤差が補正される。
[0006] Δf = (1 / (2πT) ) (S P -φ P) ......... (5) to select or combine the outputs of each path according to the phase rotation signal based on the detected carrier frequency error The carrier frequency error signal is detected by the
10 is output. On the other hand, the multiplication circuit 11 multiplies the loop gain given by the gain output circuit 10
To enter. The output of the adder circuit 12 and the carrier frequency error signal a10 obtained from the open loop component are input to the initial value setting circuit 13. This initial value setting circuit 13 is operated at the time of loop switching, that is, at the time of initial operation.
It is set so that a signal is output for the first time when the operation is performed for = 32 symbol periods. Once the initial settings are made,
The delay circuit 14 delays the output a11 of the initial value setting circuit,
The addition circuit 12 and the delay circuit 14 constitute a complete integration type loop filter. The carrier frequency error signal a11, which is the output of the initial value setting circuit, is input to an integrating circuit 15 used as a variable frequency oscillating means, and outputs a frequency conversion reference signal a12 according to a change in the input signal. In this closed loop configuration, the output of the phase error detection circuit 8 operates so as to approach zero, and the carrier frequency error is corrected.

【0007】遅延回路17は位相信号a5を遅延させ遅
延位相信号a13を出力する。減算回路18は遅延位相
信号a13から周波数変換用参照信号a12を減算して
周波数変換を行い、搬送波周波数誤差補正信号a14を
出力する。搬送波再生回路19は搬送波位相信号a15
を検出する。その後、減算回路20において、搬送波周
波数誤差補正信号a14から搬送波位相信号a15を減
算し、同期検波が行われる。符号判定回路21は、同期
検波信号a16の符号判定を行って出力データ信号a1
7を出力する。
The delay circuit 17 delays the phase signal a5 and outputs a delayed phase signal a13. The subtraction circuit 18 performs frequency conversion by subtracting the frequency conversion reference signal a12 from the delayed phase signal a13, and outputs a carrier frequency error correction signal a14. The carrier recovery circuit 19 outputs the carrier phase signal a15
Is detected. Thereafter, in the subtraction circuit 20, the carrier phase signal a15 is subtracted from the carrier frequency error correction signal a14, and synchronous detection is performed. The sign determination circuit 21 determines the sign of the synchronous detection signal a16 and outputs the output data signal a1.
7 is output.

【0008】[0008]

【発明が解決しようとする課題】従来の構成では、図4
に示したように位相誤差検出に1シンボル遅延回路を用
いている。遅延検波の差分シンボル数M(M≧1:整
数)には、引き込み可能な搬送波周波数誤差の検出範囲
と誤差検出精度にはトレードオフの関係がある。引き込
み可能な搬送波周波数誤差検出範囲を式(6)に示す。
ただし、2n は送信信号の位相数、Tはシンボル周期を
示す。
In the conventional configuration, FIG.
As shown in (1), a one-symbol delay circuit is used for phase error detection. There is a trade-off relationship between the detection range of the carrier frequency error that can be pulled in and the error detection accuracy with respect to the number M of differential symbols for differential detection (M ≧ 1: an integer). Equation (6) shows the carrier frequency error detection range that can be pulled in.
Here, 2 n indicates the number of phases of the transmission signal, and T indicates the symbol period.

【0009】 |Δf|=(M2n T)-1 ………(6) このため、1シンボル遅延検波出力に基づいて位相誤差
検出を行う従来の構成では、誤差検出精度に限りがあ
り、高精度な周波数誤差検出を行うことができない。特
に高精度な誤差検出精度を要求される同期検波に用いる
ときに特性が劣化する。
| Δf | = (M2 n T) −1 (6) For this reason, in the conventional configuration in which the phase error detection is performed based on the one-symbol differential detection output, the error detection accuracy is limited and high. Accurate frequency error detection cannot be performed. In particular, the characteristics are deteriorated when used for synchronous detection requiring high accuracy of error detection.

【0010】この発明ではこの問題を解決し、搬送波周
波数誤差が大きいときにも高精度に搬送波周波数誤差を
補償することのできるディジタル復調器を提供すること
を目的とする。
An object of the present invention is to solve this problem and to provide a digital demodulator capable of compensating a carrier frequency error with high accuracy even when the carrier frequency error is large.

【0011】[0011]

【課題を解決するための手段】従来の構成では、1シン
ボル遅延回路出力に基づいて位相誤差検出を行っていた
ため高精度な搬送波周波数誤差検出ができないことが問
題であった。この発明では、ディジタル復調器における
オープンループとクローズドループの切替えタイミング
時に誤差検出に用いる遅延検波の差分シンボル数を増加
させる。図2AにMシンボル遅延回路を用いた誤差検出
回路を示す。マルチシンボル遅延検波では検波出力のS
/N比が改善するため、高精度な搬送波周波数誤差検出
が可能である。この発明ではオープンループの誤差検出
部で引き込んだ後、マルチシンボル遅延回路による誤差
検出回路を動作させるため搬送波周波数誤差が大きいと
きにも高精度に誤差検出が可能である。
In the conventional configuration, since the phase error is detected based on the output of the one-symbol delay circuit, there is a problem that the carrier frequency error cannot be detected with high accuracy. According to the present invention, the number of differential detection differential symbols used for error detection is increased at the timing of switching between open loop and closed loop in a digital demodulator. FIG. 2A shows an error detection circuit using an M symbol delay circuit. In multi-symbol differential detection, the detection output S
Since the / N ratio is improved, highly accurate carrier frequency error detection is possible. According to the present invention, since the error detection circuit based on the multi-symbol delay circuit is operated after the error is detected by the open loop error detection unit, the error can be detected with high accuracy even when the carrier frequency error is large.

【0012】[0012]

【発明の実施の形態】図1はこの発明のディジタル復調
器の実施形態を示す。この実施形態は搬送波再生法に同
期検波を適用したものであり、図3と対応する部分に同
一符号を付けてある。この実施例では、第一の搬送波周
波数誤差補正手段である減算回路16からの周波数変換
された周波数変換信号a6は複数の遅延回路に入力され
る。ここでは一例として3つの遅延回路を用いる場合に
ついて示す。まず、従来と同様に周波数変換信号a6は
減算回路7に入力されると共に、1シンボル遅延回路6
により1シンボル区間遅延され遅延信号a7となる。減
算回路7では差(a6−a7)なる演算が行われ、1シ
ンボル遅延検波信号a8が出力される。この実施例では
さらに周波数変換信号a6は減算回路30に入力される
と共に、2シンボル遅延回路31にも入力される。2シ
ンボル遅延回路31からは2シンボル区間の遅延信号a
26が出力される。減算回路30では差(a6−a2
6)なる演算が行われ、2シンボル遅延検波信号a27
が出力される。同様に、周波数変換信号a6は減算回路
32に入力されると共に、3シンボル遅延回路33にも
入力される。3シンボル遅延回路33からは3シンボル
区間の遅延信号a28が出力される。減算回路32では
差(a6−a28)なる演算が行われ、3シンボル遅延
検波信号a29が出力される。切替回路34では、ルー
プの切替え時に一回目の切替えが行われ、切替回路34
の出力である切替回路34の出力信号a30が1シンボ
ル遅延検波信号a8から2シンボル遅延検波信号a27
に切り替わる。また、2シンボル遅延検波信号a27か
ら3シンボル遅延検波信号a29への切替えは、ループ
利得などの各種パラメータを考慮して任意の時間で切替
えを行うことができるようにすることができる。
FIG. 1 shows an embodiment of a digital demodulator according to the present invention. In this embodiment, synchronous detection is applied to the carrier recovery method, and portions corresponding to those in FIG. 3 are denoted by the same reference numerals. In this embodiment, the frequency-converted signal a6 subjected to frequency conversion from the subtraction circuit 16, which is the first carrier frequency error correction means, is input to a plurality of delay circuits. Here, a case where three delay circuits are used is shown as an example. First, the frequency conversion signal a6 is input to the subtraction circuit 7 and the one-symbol delay circuit 6
The signal is delayed by one symbol section to become a delayed signal a7. The subtraction circuit 7 performs an operation of the difference (a6-a7), and outputs a one-symbol differential detection signal a8. In this embodiment, the frequency conversion signal a6 is further input to the subtraction circuit 30 and also to the two-symbol delay circuit 31. The two-symbol delay circuit 31 outputs a delayed signal a for two symbol periods.
26 is output. In the subtraction circuit 30, the difference (a6-a2)
6) is performed, and the two-symbol differential detection signal a27
Is output. Similarly, the frequency conversion signal a6 is input to the subtraction circuit 32 and also to the three-symbol delay circuit 33. The three-symbol delay circuit 33 outputs a delay signal a28 for three symbol periods. The subtraction circuit 32 performs an operation of the difference (a6-a28), and outputs a three-symbol differential detection signal a29. In the switching circuit 34, the first switching is performed when the loop is switched, and the switching circuit 34
The output signal a30 of the switching circuit 34, which is the output of the first circuit, is changed from the one-symbol delayed detection signal a8 to the two-symbol delayed detection signal a27
Switch to Switching from the two-symbol differential detection signal a27 to the three-symbol differential detection signal a29 can be performed at an arbitrary time in consideration of various parameters such as a loop gain.

【0013】この減算回路30から、切替回路34まで
の構成が、この発明のディジタル復調器の特徴とすると
ころであり、それぞれMシンボル遅延検波手段及びM可
変手段に対応する。シンボル判定回路35では、切替回
路34の出力信号a30に基づいて正規の判定角に最も
近いように位相角判定信号を出力する。減算回路36で
は、シンボル判定回路35の出力である位相角判定信号
a31に基づき位相回転信号a9が出力される。つま
り、シンボル判定回路35と減算回路36は図4中の位
相誤差検出回路8を構成している。周波数誤差検出回路
9では、位相回転信号a30に対して平均化処理等を行
うことにより、搬送波周波数誤差検出を行い、搬送波周
波数誤差信号a10を出力する。
The configuration from the subtraction circuit 30 to the switching circuit 34 is a feature of the digital demodulator of the present invention, and corresponds to the M symbol differential detection means and the M variable means, respectively. The symbol determination circuit 35 outputs a phase angle determination signal based on the output signal a30 of the switching circuit 34 so as to be closest to the normal determination angle. The subtraction circuit 36 outputs a phase rotation signal a9 based on the phase angle determination signal a31 output from the symbol determination circuit 35. That is, the symbol determination circuit 35 and the subtraction circuit 36 constitute the phase error detection circuit 8 in FIG. The frequency error detection circuit 9 performs carrier frequency error detection by performing averaging processing or the like on the phase rotation signal a30, and outputs a carrier frequency error signal a10.

【0014】一方、従来と同様に利得出力回路10によ
り得られた利得を乗算回路11で乗算し、加算回路12
に入力する。初期値設定回路13には加算回路出力とオ
ープンループ構成部から得られた搬送波周波数誤差信号
a10が入力される。この初期値設定回路13は図4の
場合と同様に、ループの切り替え時に初めて信号が出力
されるように設定される。遅延回路14では初期値設定
回路出力a11を遅延する。加算回路12と遅延回路1
4で完全積分型のループフィルタを構成している。初期
値設定回路出力である搬送波周波数誤差信号a11は可
変周波数発振手段として用いられる積分回路15に入力
され、入力信号の変化に応じて周波数変換用参照信号a
12を出力する。初期動作時には、減算回路7の出力を
位相誤差検出回路8へ供給し、例えばN=32シンボル
程度の期間後に、周波数誤差検出回路9の出力a10を
初期値設定回路13に設定すると共に、初期値設定回路
13の出力a11を遅延回路14,加算回路12を通じ
てループを構成し、さらにN=64シンボル程度の後、
減算回路30の出力を位相誤差検出回路8へ供給し、そ
の後N=96シンボル程度経過すると、減算回路32の
出力を位相誤差検出回路8へ供給するように切替回路3
4を切り替える。
On the other hand, the gain obtained by the gain output circuit 10 is multiplied by the multiplication circuit 11 and the addition circuit 12
To enter. The initial value setting circuit 13 receives the output of the adder circuit and the carrier frequency error signal a10 obtained from the open loop component. The initial value setting circuit 13 is set so that a signal is output for the first time when the loop is switched, as in the case of FIG. The delay circuit 14 delays the output a11 of the initial value setting circuit. Adder circuit 12 and delay circuit 1
4 constitutes a complete integration type loop filter. The carrier frequency error signal a11, which is the output of the initial value setting circuit, is input to the integration circuit 15 used as a variable frequency oscillating means, and the frequency conversion reference signal a11 is changed according to the change of the input signal.
12 is output. In the initial operation, the output of the subtraction circuit 7 is supplied to the phase error detection circuit 8, and after a period of, for example, about N = 32 symbols, the output a10 of the frequency error detection circuit 9 is set in the initial value setting circuit 13 and the initial value is set. A loop is formed from the output a11 of the setting circuit 13 through the delay circuit 14 and the addition circuit 12, and after about N = 64 symbols,
The output of the subtraction circuit 30 is supplied to the phase error detection circuit 8, and after about N = 96 symbols, the switching circuit 3 supplies the output of the subtraction circuit 32 to the phase error detection circuit 8.
Switch 4.

【0015】このように順次切り替えることにより、搬
送波周波数の補正精度を徐々に向上させる。遅延回路1
7以後の処理は図4の場合と同一である。図2Bに図1
で示した復調器のシミュレーションによる周波数誤差に
対するフレーム誤り率特性を示す。シミュレーションで
は、変調方式にπ/4シフトDQPSK,検波法は同期
検波を用いている。AWGN(Additive White Gaussia
n Noise)環境下でEb /N0=8dB,(ビット当たりの
信号エネルギー対熱雑音電力スペクトル密度比)シンボ
ルレートは192kHz,積分には32シンボルを用いたと
きの結果である。○印はこの発明の実施例であって、M
=1,2,3,4を順次切り替えて搬送波周波数誤差を
小とした場合である。これより従来構成の搬送波周波数
誤差検出を用いた復調器では1シンボル遅延回路を用い
ているために搬送波周波数誤差の影響を十分に抑えるこ
とができない。これに対し、図1に示した復調器では高
精度に搬送波周波数誤差の影響を抑えている。これはク
ローズドループ部でマルチシンボル遅延回路を用いて高
精度に搬送波周波数誤差検出を行っているためである。
By sequentially switching in this manner, the correction accuracy of the carrier frequency is gradually improved. Delay circuit 1
The processes after 7 are the same as those in FIG. FIG.
3 shows a frame error rate characteristic with respect to a frequency error by a simulation of the demodulator shown by. In the simulation, π / 4 shift DQPSK is used for the modulation method, and synchronous detection is used for the detection method. AWGN (Additive White Gaussia)
n Noise) environment, E b / N 0 = 8 dB, (signal energy per bit to thermal noise power spectral density ratio) The symbol rate is 192 kHz, and the result is obtained when 32 symbols are used for integration. A circle indicates an embodiment of the present invention, and M
= 1, 2, 3, 4 in order to reduce the carrier frequency error. Thus, in the demodulator using the carrier frequency error detection of the conventional configuration, since the one symbol delay circuit is used, the influence of the carrier frequency error cannot be sufficiently suppressed. On the other hand, in the demodulator shown in FIG. 1, the influence of the carrier frequency error is suppressed with high accuracy. This is because carrier frequency error detection is performed with high accuracy using a multi-symbol delay circuit in the closed loop unit.

【0016】[0016]

【発明の効果】以上述べたとおり、この発明によるディ
ジタル復調器は従来技術と比較して回路規模の著しい増
加がないにも関わらず、搬送波周波数誤差が大きいとき
にも高精度に搬送波周波数誤差検出が可能である。この
発明は同期検波に適用しても誤り率を改善することがで
きる。
As described above, the digital demodulator according to the present invention can detect a carrier frequency error with high accuracy even when the carrier frequency error is large even though the circuit scale is not significantly increased as compared with the prior art. Is possible. The present invention can improve the error rate even when applied to synchronous detection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載の発明の実施の形態の構成を示
すブロック図。
FIG. 1 is a block diagram showing a configuration of an embodiment of the invention described in claim 1;

【図2】Aはこの発明の構成の特徴となるマルチシンボ
ル周波数誤差検出回路の説明図、Bは従来の構成と図1
に記載の実施例構成の各符号誤り率特性のシミュレーシ
ョン結果を示す図である。
FIG. 2A is an explanatory diagram of a multi-symbol frequency error detection circuit which is a feature of the configuration of the present invention, and FIG.
FIG. 10 is a diagram showing simulation results of each bit error rate characteristic of the configuration of the embodiment described in FIG.

【図3】従来の復調器構成を示すブロック図。FIG. 3 is a block diagram showing a configuration of a conventional demodulator.

【図4】1シンボル遅延検波後の搬送波周波数誤差によ
る位相回転を示す説明図。
FIG. 4 is an explanatory diagram showing a phase rotation due to a carrier frequency error after 1-symbol differential detection.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 受信信号を第1周波数誤差補正手段で周
波数補正し、 その周波数補正された信号を、Mシンボル周期(Mは正
整数)遅延検波手段で遅延検波し、 その遅延検波出力の位相回転量を位相誤差検出手段で検
出し、 その検出位相回転量から上記受信信号の搬送波周波数誤
差を周波数誤差検出手段で検出し、 その検出した搬送波周波数誤差をループフィルタ手段で
平滑し、 上記ループフィルタ手段に初期値設定手段により、上記
周波数誤差検出手段の出力で初期設定し、 上記ループフィルタ手段の出力に応じた周波数の信号を
可変周波数発振手段より上記第1周波数誤差補正手段に
与え、 上記受信信号を遅延手段で遅延し、 その遅延された受信信号に対し、上記可変周波数発振手
段の出力により第2周波数誤差補正手段で周波数補正
し、 その周波数補正された信号を同期検波するディジタル復
調器において、 上記遅延検波手段におけるMの値(正の実数)を可変す
る手段が設けられていることを特徴とするディジタル復
調器。
The frequency of a received signal is corrected by first frequency error correction means, the frequency-corrected signal is delay-detected by an M symbol period (M is a positive integer) delay detection means, and the phase of the delay detection output is detected. The amount of rotation is detected by the phase error detection means, the carrier frequency error of the received signal is detected by the frequency error detection means from the detected phase rotation amount, and the detected carrier frequency error is smoothed by the loop filter means. Means is initialized by the output of the frequency error detecting means by the initial value setting means, and a signal having a frequency corresponding to the output of the loop filter means is supplied from the variable frequency oscillating means to the first frequency error correcting means; The signal is delayed by the delay means, and the delayed received signal is frequency-compensated by the second frequency error correction means by the output of the variable frequency oscillation means. Digital demodulator, and the digital demodulator its frequency corrected signal synchronous detection, wherein the variable to means provided the value of M (a positive real number) in the differential detection circuit.
JP21183997A 1997-08-06 1997-08-06 Digital demodulator Expired - Fee Related JP3417534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21183997A JP3417534B2 (en) 1997-08-06 1997-08-06 Digital demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21183997A JP3417534B2 (en) 1997-08-06 1997-08-06 Digital demodulator

Publications (2)

Publication Number Publication Date
JPH1155338A true JPH1155338A (en) 1999-02-26
JP3417534B2 JP3417534B2 (en) 2003-06-16

Family

ID=16612448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21183997A Expired - Fee Related JP3417534B2 (en) 1997-08-06 1997-08-06 Digital demodulator

Country Status (1)

Country Link
JP (1) JP3417534B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001008368A1 (en) * 1999-07-28 2001-02-01 Matsushita Electric Industrial Co., Ltd. Apparatus for detecting frequency offset
JP2002077288A (en) * 2000-06-20 2002-03-15 Comspace Corp Closed loop frequency control
US6891908B2 (en) 2000-04-19 2005-05-10 Nec Corporation Portable radio system and portable radio equipment to be used in the same and frequency error prediction method used therefor
JP2008147736A (en) * 2006-12-06 2008-06-26 Netindex Inc Signal control device and signal control method
US9401765B2 (en) 2013-11-28 2016-07-26 Fujitsu Limited Frequency offset estimation circuit and frequency offset estimation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001008368A1 (en) * 1999-07-28 2001-02-01 Matsushita Electric Industrial Co., Ltd. Apparatus for detecting frequency offset
US6965654B1 (en) 1999-07-28 2005-11-15 Matsushita Electric Industrial Co, Ltd. Frequency offset quantity detecting apparatus
US6891908B2 (en) 2000-04-19 2005-05-10 Nec Corporation Portable radio system and portable radio equipment to be used in the same and frequency error prediction method used therefor
JP2002077288A (en) * 2000-06-20 2002-03-15 Comspace Corp Closed loop frequency control
JP2008147736A (en) * 2006-12-06 2008-06-26 Netindex Inc Signal control device and signal control method
US9401765B2 (en) 2013-11-28 2016-07-26 Fujitsu Limited Frequency offset estimation circuit and frequency offset estimation method

Also Published As

Publication number Publication date
JP3417534B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP2643792B2 (en) Demodulator
US7688918B2 (en) Recursive phase estimation for a phase-shift-keying receiver
JPH03274844A (en) Circuit for detecting delay of psk modulation signal
JP2001217889A (en) Timing error detection circuit and demodulation circuit and its method
US4054838A (en) QAM phase jitter and frequency offset correction system
JPH0951296A (en) Method and device for inter-cross polarization compensation
US20050164639A1 (en) Frequency offset compensation in a digital frequency shift keying receiver
JP3575883B2 (en) Digital demodulator
JP3417534B2 (en) Digital demodulator
EP1130866B1 (en) Correction of quadrature and gain errors in homodyne receivers
JP3120136B2 (en) TDMA data receiver
JP3489493B2 (en) Symbol synchronizer and frequency hopping receiver
JPH06152676A (en) Quasi-synchronization detection demodulation circuit
JP3006382B2 (en) Frequency offset correction device
KR100310294B1 (en) Recovery apparatus of decision-directed darrier
JP2986261B2 (en) Adaptive maximum likelihood sequence estimator
JP3496860B2 (en) Digital demodulation circuit
JPH06209341A (en) Presumable system of carrier wave frequency of psk figure signal and circuit
JP5213769B2 (en) Receiving machine
JPH09200280A (en) Frequency offset compensator
JPH08102771A (en) Ofdm synchronization demodulator
JP4438581B2 (en) Demodulator and demodulation method
JPH1041991A (en) Digital demodulation circuit
JP4438204B2 (en) Digital demodulator
JP3088892B2 (en) Data receiving device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees