JPH11503908A - DNA sequencing by parallel oligonucleotide extension - Google Patents

DNA sequencing by parallel oligonucleotide extension

Info

Publication number
JPH11503908A
JPH11503908A JP8531848A JP53184896A JPH11503908A JP H11503908 A JPH11503908 A JP H11503908A JP 8531848 A JP8531848 A JP 8531848A JP 53184896 A JP53184896 A JP 53184896A JP H11503908 A JPH11503908 A JP H11503908A
Authority
JP
Japan
Prior art keywords
oligonucleotide
probe
duplex
starting
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8531848A
Other languages
Japanese (ja)
Other versions
JP4546582B2 (en
Inventor
シー. マセビクツ,スティーブン
Original Assignee
リンクス セラピューティクス,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23683421&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11503908(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by リンクス セラピューティクス,インコーポレイテッド filed Critical リンクス セラピューティクス,インコーポレイテッド
Publication of JPH11503908A publication Critical patent/JPH11503908A/en
Application granted granted Critical
Publication of JP4546582B2 publication Critical patent/JP4546582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

(57)【要約】 一本鎖テンプレートに沿った二重鎖伸長の繰り返しサイクルに基づいて核酸配列を分析するための方法および組成物が提供される。好ましくは、このような伸長は開始オリゴヌクレオチドとテンプレートとの間で形成される二重鎖から出発する。図面に示すように、開始オリゴヌクレオチドは、最初の伸長サイクルにおいて、オリゴヌクレオチドプローブをその末端に連結することにより伸長し、伸長した二重鎖を形成させる。次いで、伸長した二重鎖を、その後の連結サイクルによって繰り返し伸長する。各サイクルの間に、テンプレートにおける1つ以上のヌクレオチドの同一性を、首尾よく連結されたオリゴヌクレオチドプローブ上またはそれに会合した標識によって決定する。本発明は、同様なサイズのDNAフラグメントの電気泳動による分離を必要とせず、そしてゲルまたは同様の媒体中のDNAフラグメントの空間的に重なるバンドの検出および分析に関する困難をなくす、核酸の配列決定方法を提供する。本発明はまた、DNAポリメラーゼを用いて長い一本鎖テンプレートからDNAフラグメントを作製する必要もない。 (57) SUMMARY Methods and compositions are provided for analyzing nucleic acid sequences based on repeated cycles of duplex extension along a single-stranded template. Preferably, such extension starts with a duplex formed between the starting oligonucleotide and the template. As shown in the figure, the starting oligonucleotide is extended in the first extension cycle by ligating the oligonucleotide probe to its end to form an extended duplex. The extended duplex is then repeatedly extended by subsequent ligation cycles. During each cycle, the identity of one or more nucleotides in the template is determined by the label on or associated with the successfully linked oligonucleotide probe. The present invention provides a method for sequencing nucleic acids that does not require electrophoretic separation of similarly sized DNA fragments and eliminates difficulties in detecting and analyzing spatially overlapping bands of DNA fragments in a gel or similar medium. I will provide a. The present invention also does not require the use of DNA polymerase to generate DNA fragments from long single-stranded templates.

Description

【発明の詳細な説明】 平行オリゴヌクレオチド伸長によるDNA配列決定発明の分野 本発明は、一般にポリヌクレオチドのヌクレオチド配列を決定する方法に関し 、さらに詳しくは、オリゴヌクレオチドブロックの連続的な連結により1つ以上 のプライマーを段階的に伸長することによってテンプレートにおけるヌクレオチ ドを同定する方法に関する。背景技術 現在利用可能な技術でのポリヌクレオチドの分析は、試験ポリヌクレオチドが 標準または単離されたフラグメントと同一であるかまたは異なるかの確認から、 試験ポリヌクレオチドの各ヌクレオチドの明白な同定および順序付けまでの範囲 の情報を提供する。このような技術は、遺伝子の機能および制御を理解するのに 、および分子生物学の基本的技術の多くを適用するのに非常に重要であるだけで なく、これらはまた、ゲノム解析および非常に多くの非研究的適用(例えば、遺 伝的同定、法医学分析、遺伝学カウンセリング、医学診断など)における手段と してますます重要となった。これらの後者の適用において、部分的な配列情報を 提供する技術(例えば、フィンガープリント法および配列比較)および完全な配 列決定を提供する技術の両方が共に使用されてきた。例えば、Gibbsら,Proc.N atl.Acad.Sci.,86:1919-1923(1989);Gyllenstenら,Proc.Natl.Acad.Sc l.,85: 7652-7656(1988);Carranoら,Genomics,4:129-136(1989);Caetano-A nollesら,Mol.Gen.Genet.,235:157-165(1992); BrennerおよびLivak,Proc ,Natl.Acad.Scl.,86: 8902-8906(1989);Greenら,PCR Methods and Applic ations,1:77-90(1991);およびVersalovicら,Nucleic Acids Research,19:682 3-6831(1991)。 天然のDNAは2つの線状ポリマー、またはヌクレオチドのストランドよりなる 。各ストランドは、ホスホジエステル結合によって連結されたヌクレオシドの鎖 で ある。2つのストランドは、2つのストランドのヌクレオチドの相補的塩基の間 の水素結合によって逆平行向きにまとまっている:デオキシアデノシン(A)は チミジン(T)と対になり、そしてデオキシグアノシン(G)は、デオキシシチ ジン(C)と対になる。 現在、DNA配列決定に対する以下の2つの基本的アプローチがある:ジデキオ シチェーンターミネーション法(例えば、Sangerら,Proc.Natl.Acad.Sci.,7 4:5463-5467(1977));および化学的分解法(例えば、Maxamら,Proc.Natl.Acad .Sci.,74:560-564(1977))。チェーンターミネーション法はいくつかの方法で 改良されており、そして全ての現在利用可能な自動DNA配列決定機のための基礎 として供される。例えば、Sangerら,J.Mol.Biol.,143:161-178(1980);Schr eierら,J.Mol.Biol.,129:169-172(1979);Smithら,Nucleic Acids Researc h,13:2399-2412(1985);Smithら,Nature,321:674-679(1987);Proberら,Sci ence,238:336-341(1987);Section II,Meth.Enzymol.,155:51-334(1987);C hurchら,Science,240:185-188(1988);Hunkapillerら,Science,254:59-67(1 991);Bevanら,PCR Methods and Applications,1:222-228(1992)。 チェーンターミネーション法および化学的分解法は、両方とも、1組以上の標 識DNAフラグメントの生成を必要とし、そして各々は共通の起源を有し、各々は 既知の塩基で終結する。次いで、1組または複数組のフラグメントは、配列情報 を得るために、サイズにより分離されなければならない。両方法において、DNA フラグメントは高分解能ゲル電気泳動によって分離され、この電気泳動は、わず か1ヌクレオチドだけサイズが異なる非常に大きなフラグメントを区別する能力 を有しなければならない。残念ながら、この工程は一度に配列決定できるDNA鎖 のサイズを厳しく制限する。これらの技術を用いる配列決定は、約400〜450ヌク レオチドまでのDNA鎖に信頼性よく適応できる。Bankierら,Meth.Enzymol.,155 :51-93(1987);およびHawkinsら,Electrophoresis,13:552-559(1992)。 いくつかの著しい技術的問題が、例えば、500〜600ヌクレオチドを超える長い 標的ポリヌクレオチドの配列決定、または高容量の多くの標的ポリヌクレオチド の配列決定へのこのような技術の適用をひどく妨げてきた。このような問題とし ては、i)大きな労働力を要するゲル電気泳動分離工程は、自動化が困難であり、 そしてデータの解析に過剰の変動性(例えば、温度の影響によるバンドの広がり 、DNA配列決定フラグメントにおける二次構造による圧縮、分離ゲルにおける不 均一性など)を導入する;ii)その特性(例えば、進化性、忠実度、重合速度、 チェーンターミネーターの取り込み速度など)がしばしば配列依存性である核酸 ポリメラーゼ;iii)ゲル中で空間的に重なるバンドに典型的にはfmol量で存在す るDNA配列決定フラグメントの検出および分析;iv)標識部分が単一の均一相に濃 縮されずに数百の空間的に分離されたバンドに分布することによる低シグナル; およびv)単一レーン蛍光検出の場合、適切な発光特性および吸収特性、量子収率 、およびスペクトル分解性を持つ色素の利用可能性が挙げられる。例えば、Trai nor,Anal.Biochem.,62:418-426(1990);Connellら,Biotechniques,5:342-3 48(1987);Kargerら,Nucleic Acids Research,19:4955-4962(1991);Fungら, 米国特許第4,855,225号;およびNishikawaら,Electrophoresis,12:623-631(19 91)。 もう1つの問題が、診断的配列決定の領域における現在の技術には存在する。 常に拡大し続けている多数の障害、障害に対する感受性、疾患状態の予後などは 、1つ以上の遺伝子座における、特定のDNA配列の存在、またはDNA配列における 変化(または変異)の程度に関連付けられてきた。このような現象の例は、ヒト 白血球抗原(HLA)タイピング、膵嚢胞性線維症、腫瘍の進行および不均一性、p 53プロトオンコジーン変異、rasプロトオンコジーン変異などを含む。例えば、G yllenstenら,PCR Methods and Applications,1:91-98(1991);Santamariaら, 国際出願第PCT/US92/01675号;Tsuiら,国際出願第PCT/CA90/00267号など。診断 情報または予後情報を得るためのこのような病的状態に関連するDNA配列の決定 における困難は、複数の亜集団のDNA(例えば、対立遺伝子変異体、多重突然変 異体形態など)が頻繁に存在することにある。現在の配列決定技術を用いて複数 配列の存在および同一性を区別することは、異なる種類のDNAを単離し、そして 恐らくはそれをクローン化するさらなる労力なくしては、実質的に不可能である 。 DNA配列決定に、DNAフラグメントの高分解能電気泳動分離を要しないで、より 分析しやすいシグナルを生じ、そしてヘテロ接合遺伝子座由来のDNAを容易に分 析するための手段を提供する別のアプローチが利用可能になれば、配列決定技術 において主要な進歩がなされ得る。 本発明の目的は、現在利用可能なDNA配列決定技術に対してこのような別のア プローチを提供することである。発明の要旨 本発明は、一本鎖テンプレートに沿った二重鎖伸長の繰り返しサイクルに基づ く核酸配列分析方法を提供する。好ましくは、このような伸長は、開始オリゴヌ クレオチドとテンプレートとの間に形成される二重鎖から出発する。開始オリゴ ヌクレオチドを、最初の伸長サイクルにおいて、オリゴヌクレオチドプローブを その末端に連結することにより伸長し、伸長した二重鎖を形成させる。次いで、 伸長した二重鎖を、その後の連結サイクルによって繰り返し伸長させる。各サイ クルの間に、首尾よく連結されたオリゴヌクレオチドプローブ上、またはオリゴ ヌクレオチドプローブと会合した標識によって、テンプレート中の1つ以上ヌク レオチドの同一性を決定する。好ましくは、オリゴヌクレオチドプローブは、1 回のサイクルで伸長した二重鎖の伸長が1回だけ起こるように、末端の位置にブ ロッキング部分(例えば、鎖終結ヌクレオチド)を有する。二重鎖を、次のサイ クルでブロッキング部分を除去し、そして伸長可能な末端を再生することによっ てさらに伸長させる。 本発明の1つの局面において、複数の異なる開始オリゴヌクレオチドをテンプ レートの別々の試料に提供する。各開始オリゴヌクレオチドは、伸長を受けつつ ある末端が、複数の他のそれぞれの開始オリゴヌクレオチドと、1つ以上のヌク レオチドと合致しない(out of register)かまたは一致しないように、テンプ レートと二重鎖を形成する。言い換えれば、伸長のための出発ヌクレオチドは、 異なる開始オリゴヌクレオチドの各々につき、1つ以上のヌクレオチドにより異 なる。このようにして、同一の長さのオリゴヌクレオチドプローブを用いる各伸 長サイクルの後、同一の相対的相が異なるテンプレート上の開始オリゴヌクレオ チドの末端間に存在する。従って、例えば、i)開始オリゴヌクレオチドが1つの ヌクレオチドにより一致しない、ii)9マーのオリゴヌクレオチドプローブを伸 長工程で用いる、およびiii)9つの異なる開始オリゴヌクレオチドを使用する好 ましい実施態様においては、9つのテンプレートヌクレオチドが各伸長サイクル において同時に同定される。図面の簡単な説明 図1は、本発明による複数のテンプレートの平行伸長を模式的に示す。 図2は、酸不安定結合を使用する本発明の1つの実施態様を模式的に示す。 図3Aは、3'→5'伸長でRNase H不安定オリゴヌクレオチドを使用する本発明 の1つの実施態様を模式的に示す。 図3Bは、5'→3'伸長でRNase H不安定オリゴヌクレオチドを使用する本発明 の1つの実施態様を模式的に示す。 図4は、連結、その後のポリメラーゼ伸長および切断を使用する本発明の1つ の実施態様を模式的に示す。定義 ポリヌクレオチドに関して本明細書中で使用する「配列決定」、「ヌクレオチ ド配列の決定」、「配列決定」および同様の用語は、ポリヌクレオチドの部分配 列および全長配列の情報の決定を含む。すなわち、この用語は、配列比較、フィ ンガープリント法、標識ポリヌクレオチドについての同様のレベルの情報、およ び試験ポリヌクレオチドの各ヌクレオシドの明確な同定および順序付けを含む。 プローブおよび標的ポリヌクレオチドの突出ストランドに関して「完全にマッ チした二重鎖」とは、この突出ストランドが、二本鎖構造における各ヌクレオチ ドが反対のストランド上のヌクレオチドとワトソン−クリック塩基対合をするよ うに、他のものと二本鎖構造を形成することを意味する。この用語はまた、プロ ーブの縮重を減少させるために使用され得る、ヌクレオシドアナログ(デオキシ イノシン、2-アミノプリン塩基を有するヌクレオシドなど)の対合を包含する。 本明細書中で用いる「オリゴヌクレオチド」という用語は、デオキシリボヌク レオシド、リボヌクレオシドなどを含む、ヌクレオシドまたはそのアナログの線 状オリゴマーを含む。通常、オリゴヌクレオチドは、数個のモノマー単位(例え ば3〜4)から数百のモノマー単位までの範囲のサイズである。オリゴヌクレオ チドを「ATGCCTG」のような文字の配列によって表す場合は、常に、この ヌクレオチドは左から右に5'→3'の順序であり、そして特記しない限り、「A」 はデオキシアデノシンを示し、「C」はデオキシシチジンを示し、「G」はデオ キシグアノシンを示し、そして「T」はチミジンを示すことが理解される。 本明細書中で使用する「ヌクレオシド」とは、例えば、KornbergおよびBaker ,DNA Replication,第2版(Freeman,San Francisco,1992)に記載されるように 、2'-デオキシ形態および2'-ヒドロキシル形態を含む、天然のヌクレオシドを含 む。ヌクレオシドに関して「アナログ」とは、例えば、Scheit,Nucleotide Ana logs(John Wiley,New York,1980)によって一般的に記載されているように、修 飾された塩基部分および/または修飾された糖部分を有する合成ヌクレオシドを 含む。このようなアナログは、結合特性の増強、縮重の減少、特異性の増大など のために設計された合成ヌクレオシドを含む。 本明細書で使用される「連結」とは、テンプレート駆動反応において、2つ以 上の核酸(例えば、オリゴヌクレオチドおよび/またはポリヌクレオチド)の末 端間で共有結合または結合(linkage)を形成することを意味する。結合(bond )または結合(linkage)の性質は広範囲に変化し得るし、そして連結は酵素的 または化学的に行われ得る。発明の詳細な説明 本発明は、同様のサイズのDNAフラグメントの電気泳動による分離を不要とし 、そしてゲルまたは同様の媒体中のDNAフラグメントの空間的に重なるバンドの 検出および分析に関する困難をなくす核酸の配列決定方法を提供する。本発明は また、DNAポリメラーゼを用いて長い一本鎖テンプレートからDNAフラグメントを 作製する必要もない。 本発明の1つの局面の一般的なスキームを図1に模式的に示す。以下により十 分に記載するように、本発明は、この実施態様の特定の特徴によって限定される ことを意図しない。配列未知のポリヌクレオチド(50)および結合領域(40)を含む テンプレート(20)を固相支持体(10)に付着させる。好ましくは、Nマーのプロー ブを使用する実施態様では、テンプレートをN個のアリコートに分け、そして各 アリコートに、他の開始オリゴヌクレオチドの位置とは異なる結合領域(40)中の ある位置で完全にマッチした二重鎖を形成する異なる開始オリゴヌクレオチドik を提供する。すなわち、開始オリゴヌクレオチドi1〜iNは、未知配列に対し て近い側の二重鎖の末端が未知配列のはじまりから0〜N-1ヌクレオチドである ように、結合領域(40)においてテンプレートと二重鎖の組を形成する。従って、 Nマーのプローブを用いる連結の第1サイクルにおいて、図1中のi1に連結し たプローブ(30)の末端ヌクレオチド(16)は、結合領域(40)のN-1ヌクレオチドに 対して相補的である。同様に、図1中のi2に連結したプローブ(30)の末端ヌク レオチド(17)は、結合領域(40)のN-2ヌクレオチドに対して相補的であり;図1 中のi3に連結したプローブ(30)の末端ヌクレオチド(18)は、結合領域(40)のN-3 ヌクレオチドに対して相補的である。以下同様である。最後に、inに連結した プローブ(30)の末端ヌクレオチド(15)は、未知配列(50)の最初のヌクレオチドに 対して相補的である。連結の第2サイクルにおいて、プローブ(31)の末端ヌクレ オチド(19)は、開始オリゴヌクレオチドi1で出発する二重鎖における未知配列( 50)の2番目のヌクレオチド(19)に対して相補的である。同様に、開始オリゴヌ クレオチドi2、i3、i4などで出発する二重鎖に連結したプローブの末端ヌク レオチドは、未知配列(50)の3番目、4番目、および5番目のヌクレオチドに対 して相補的である。 上記の実施態様において、オリゴヌクレオチドプローブは、伸長した二重鎖に 隣接するヌクレオチドの同一性が標識から決定できるように標識される。 結合領域(40)は既知配列を有するが、長さおよび組成は大いに変化し得る。結 合領域は開始オリゴヌクレオチドのハイブリダイゼーションを適応させるために 十分に長くなければならない。異なる結合領域を同一かまたは異なるかのいずれ かの開始オリゴヌクレオチドとともに使用できるが、調製の便宜のためには、同 一の結合領域および異なる開始オリゴヌクレオチドを提供するのが好ましい。従 って、全てのテンプレートを同一に調製し、次いで、異なる開始オリゴヌクレオ チドでの使用のためにアリコートに分ける。好ましくは、結合領域は、異なる開 始オリゴヌクレオチドの組を適応させるのに十分な長さであるべきであって、各 々はテンプレートにハイブリダイズしてその後の連結のための異なる出発点を 生じる。最も好ましくは、結合領域は、約20〜50ヌクレオチドの間の長さである 。 開始オリゴヌクレオチドは、伸長サイクルのいずれの洗浄工程の間にも無傷の ままでいる結合領域との高度に安定な二重鎖を形成するように選択される。これ は、都合よく、開始オリゴヌクレオチドの長さが、オリゴヌクレオチドプローブ の長さよりもかなり長いように選択することによって、および/またはそれらが GCリッチとなるように選択することによって達成される。開始オリゴヌクレオチ ドはまた、種々の技術(例えば、Summertonら,米国特許第4,123,610号)によっ てテンプレートストランドに架橋することもでき;または、それらは、その天然 の対応物(例えば、ペプチド核酸)よりも安定性の大きな二重鎖を形成するヌク レオチドアナログよりなることもできる。Science,254:1497-1500(1991);Hanv eyら,Science,258:1481-1485(1992);およびPCT出願第PCT/EP92/01219号および 同第PCT/EP92/01220号。 好ましくは、開始オリゴヌクレオチドの長さは約20〜30ヌクレオチドであり、 そしてその組成は、使用されるオリゴヌクレオチドプローブの融解温度を約10〜 50℃だけ超える二重鎖融解温度を提供するために十分なパーセントのGおよびC を含む。より好ましくは、開始オリゴヌクレオチドの二重鎖融解温度は、オリゴ ヌクレオチドプローブの融解温度を約20〜50℃だけ超える。配列決定操作で使用 される異なる開始オリゴヌクレオチドの数Nは、各サイクルで1つのヌクレオチ ドが同定される場合の1から、実際的に使用できるオリゴヌクレオチドプローブ のサイズによってのみサイズが制限される多数まで変化し得る。オリゴヌクレオ チドプローブのサイズを制限する因子は、妥当な速度でハイブリダイゼーション 反応を駆動するために十分に高濃度の個々のプローブを有する混合物を調製する 際の困難、二次構造の形成に対するより長いプローブの感受性、1塩基ミスマッ チに対する感受性の低下などを含む。好ましくは、Nは1〜16の範囲であり;よ り好ましくは、Nは1〜12の範囲であり;そして最も好ましくは、Nは1〜8の 範囲である。 広範囲の種々のオリゴヌクレオチドプローブを本発明で使用することができる 。一般に、オリゴヌクレオチドプローブは、開始オリゴヌクレオチドまたは伸長 した二重鎖に連結して、次の伸長サイクルの伸長した二重鎖を生じることができ る べきである;連結は、プローブが連結の前にテンプレートと二重鎖を形成するべ きであるのでテンプレートに駆動されるべきである;プローブは、1回の伸長サ イクルにおいて同一のテンプレートに複数のプローブが連結するのを防ぐために ブロッキング部分を有すべきであり、プローブは連結後に伸長可能な末端を再生 するために処理または修飾され得るべきであり、そしてプローブは成功した連結 後にテンプレートに関連する配列情報の獲得を可能とするシグナリング部分を有 すべきである。以下でより十分に記載するように、実施態様に応じて、伸長した 二重鎖または開始オリゴヌクレオチドは、オリゴヌクレオチドプローブによって 、5'→3'方向または3'→5'方向のいずれかに伸長され得る。一般に、オリゴヌク レオチドプローブはテンプレートと完全にマッチした二重鎖を形成する必要はな いが、このような結合が通常は好ましい。テンプレート中の1つのヌクレオチド が各伸長サイクルで同定される好ましい実施態様において、完全な塩基対合は、 その特定のヌクレオチドを同定するために必要とされるに過ぎない。例えば、オ リゴヌクレオチドプローブを伸長した二重鎖に酵素的に連結する実施態様におい て、完全な塩基対合(すなわち、適切なワトソン−クリック塩基対合)が、連結 されるプローブの末端ヌクレオチドとテンプレート中のその相補物との間で必要 とされる。一般に、このような実施態様において、プローブの残りのヌクレオチ ドは、次の連結がテンプレートに沿って所定の部位または塩基数で起こることを 確実とする「スペーサー」として働く。すなわち、それらの対合、またはその欠 落は、さらなる配列情報を提供しない。同様に、塩基同定についてポリメラーゼ 伸長に頼る実施態様において、プローブは主としてスペーサーとして働き、従っ て、テンプレートに対する特異的ハイブリダイゼーションは、望ましいとはいえ 、重要ではない。 好ましくは、オリゴヌクレオチドプローブは、所定の長さの全ての可能な配列 のオリゴヌクレオチドを含む混合物としてテンプレートに適用される。このよう な混合物の複雑さは、例えば、Kong Thoo Linら,Nucleic Acids Research,20: 5149-5152;米国特許第5,002,867号;Nicholsら,Nature,369:492-493(1994)に よって教示されるデオキシイノシンなどのようないわゆる縮重低下アナログを用 いることを含む多数の方法によって;またはオリゴヌクレオチドプローブの多数 の混合物(例えば、一緒にすると所定の長さの全ての可能な配列を含むオリゴヌ クレオチド配列の4つのばらばらのサブセットを含む4つの混合物)を別々に適 用することによって低下させることができる。 本発明の開始オリゴヌクレオチドおよびオリゴヌクレオチドプローブは、都合 よく、自動DNA合成機(例えば、Applied Biosystems,Inc.(Foster City,Cali fornia)392型または394型のDNA/RNA合成機)で、例えば、以下の文献に開示され るホスホルアミダイト化学のような標準的な化学を用いて合成される:Beaucage およびIyer,Tetrahedron,48:2223-2311(1992); Molkoら,米国特許第4,980,46 0号;Kosterら,米国特許第4,725,677号;Caruthersら,米国特許第4,415,732号 ;同第4,458,066号;および同第4,973,679号など。例えば、ホスホロチオエート 、ホスホルアミデートなどのような非天然の骨格基が得られる別の化学を使用す ることもできる。但し、得られたオリゴヌクレオチドは特定の実施態様の連結お よび他の試薬に適合するものとする。オリゴヌクレオチドプローブの混合物は、 例えば、Teleniusら,Genomics,13:718-725(1992); Welshら,Nucleic Acids Re search,19:5275-5279(1991); Grothuesら,Nucleic Acids Research,21: 1321- 1322(1993); Hartley,欧州特許出願第90304496.4号などに開示されるような周知 の技術を用いて容易に合成される。一般に、これらの技術は、縮重を導入するこ とが望まれるカップリング工程の間の成長するオリゴヌクレオチドへの活性化モ ノマーの混合物の適用を必要とするだけである。 従来のリガーゼを本発明で使用する場合、以下でより十分に記載するように、 いくつかの実施態様ではプローブの5'末端をリン酸化し得る。5'モノホスフェー トを化学的または酵素的のいずれかでキナーゼを用いてオリゴヌクレオチドに結 合させることができる。例えば、Sambrookら,Molecular Cloning; A Laborator y Manual,第2版(Cold Spring Harbor Laboratory,New York,1989)。化学的リ ン酸化は、HornおよびUrdea,Tetrahedron Lett.,27:4705(1986)によって記載 されており、そして開示されたプロトコルを実施するための試薬は、例えば、Cl ontech Laboratories(Palo Alto,California)から5’Phosphate-ONTMとして市 販されている。好ましくは、必要な場合、オリゴヌクレオチドプローブは化学的 にリン酸化される。 本発明のプローブは、蛍光部分、発色部分などの直接的または間接的な結合を 含む種々の方法で標識され得る。DNAを標識し、そしてDNAプローブを構築するた めの方法論の多くの総合的な概説が、本発明のプローブを構築するために適用可 能な手引きを提供する。このような概説は、Matthewsら,Anal.Biochem.,第169 巻,1-25頁(1988); Haugland,Handbook of Fluorescent Probes and Research Chemicals(Molecular Probes,Inc.,Eugene,1992); KellerおよびManak,DNA Probes,第2版(Stockton Press,New York,1993);およびEckstein編,Oligonu cleotides and Analogues: A Practical Approach(IRL Press,Oxford,1991)な どを含む。本発明に適用できる多くのより詳細な方法は、以下の文献の見本に開 示される:Fungら,米国特許第4,757,141号;Hobbs,Jr.ら,米国特許第5,151,507 号;Cruickshank,米国特許第5,091,519号;(レポーター基の結合のための官能化 されたオリゴヌクレオチドの合成); Jablonskiら,Nucleic Acids Research, 14: 6115-6128(1986)(酵素−オリゴヌクレオチドコンジュゲート);およびUrdeaら ,米国特許第5,124,246号(分岐DNA)。 好ましくは、プローブは、例えば、Menchenら,米国特許第5,188,934号;Begot ら,PCT出願第PCT/US90/05565号によって開示されるような1つ以上の蛍光色素で 標識される。 テンプレートに対するオリゴヌクレオチドプローブの適用のためのハイブリダ イゼーション条件の選択における手引きは、多数の文献(例えば、Wetmur,Crit ical Reviews in Biochemistry and Molecular Biology,26:227-259(1991); Do veおよびDavidson,J.Mol.Biol.5:467-478(1962); Hutton,Nucleic Acids R esearch,10:3537-3555(1977); Breslauerら,Proc.Natl.Acad.Sci.83:3746- 3750(1986); Innisら編,PCR Protocols(Academic Press,New York,1990)など )に見い出すことができる。 一般に、オリゴヌクレオチドプローブを、伸長した二重鎖の末端に並列してテ ンプレートにアニールする場合、二重鎖とプローブとを連結する、すなわち、相 互の共有結合を生じさせる。連結は酵素的または化学的のいずれかで達成され得 る。化学的連結方法は当該分野で周知である。例えば、Ferrisら,Nucleosides & Nucleotides,8:407-414(1989); Shabarovaら,Nucleic Acids Research,19: 4247-4251(1991)など。好ましくは、酵素的連結は標準的プロトコルでリガーゼ を用いて実施される。多くのリガーゼが知られており、そして本発明で使用する のに適切である。例えば、Lehman,Science,186:790-797(1974); Englerら,DN A Ligases,3-30頁,Boyer編,The Enzymes,第15B巻(Academic Press,New Yor k,1982)など。好ましいリガーゼは、T4 DNAリガーゼ、T7 DNAリガーゼ、E.col i DNAリガーゼ、Taqリガーゼ、Pfuリガーゼ、およびTthリガーゼを含む。それら の使用についてのプロトコルは周知である。例えば、Sambrookら(上記); Barany ,PCR Methods and Applications,1:5-16(1991); Marshら,Strategies,5:73- 76(1992)など。一般に、リガーゼは、隣接するストランドの3'ヒドロキシルへの 連結のために5'リン酸基が存在することを必要とする。標的ポリヌクレオチドの調製 好ましくは、標的ポリヌクレオチドを結合領域に連結してテンプレートを形成 し、そしてテンプレートを複雑かつ時間を消費する精製工程を伴わない試薬の連 続的適用を可能とする固相支持体(例えば、磁性粒子、ポリマーマイクロスフィ ア、フィルター物質など)に付着させる。標識ポリヌクレオチドの長さは広範囲 に変化し得る;しかし、調製の便宜のためには、従来の配列決定で使用される長 さが好ましい。例えば、数百塩基対(200〜300)から1〜2キロ塩基対までの範 囲の長さが好ましい。 標的ポリヌクレオチドは、種々の常法によって調製され得る。例えば、標的ポ リヌクレオチドは、従来のDNA配列決定で使用されるものを含む、従来の任意の クローニングベクターのインサートとして調製され得る。適切なクローニングベ クターの選択および使用のための広範な手引きがSambrookら,Molecular Clonin g: A Laboratory Manual,第2版(Cold Spring Harbor Laboratory,New York,19 89)、および同様の文献で見い出される。SambrookらおよびInnisら編,PCR Prot ocols(Academic Press,New York,1990)もまた、標的ポリヌクレオチドを調製 するためのポリメラーゼ連鎖反応の使用について手引きを提供する。好ましくは 、この方法で使用する他の試薬から標的ポリヌクレオチドを分離するのを容易に するために、磁性ビーズまたは他の固体支持体への付着を可能とするクローン 化標的ポリヌクレオチドまたはPCR増幅標的ポリヌクレオチドを調製する。この ような調製技術についてのプロトコルは、Wahlbergら,Electrophoresis,13:547 -551(1992); Tongら,Anal.Chem.,64;2672-2677(1992); Hultmanら,Nucleic Acids Research,17: 4937-4946(1989); Hultmanら,Biotechniques,10:84-93( 1991); Syvanenら,Nucleic Acids Research,16:11327-11338(1988); Dattagupt aら,米国特許第4,734,363号;Uhlen,PCT出願第PCT/GB89/00304号;および同様 の文献に十分に記載される。キットもまた、このような方法を実施するために、 例えば、Dynal AS.(Oslo,Norway)からDynabeadsTMテンプレート調製キットと して市販される。 一般に、本発明の方法で使用する微粒子またはビーズのサイズおよび形状は重 要ではない;しかし、直径数m(例えば、1〜2m)から直径数百m(例えば、200 〜1000m)の範囲のサイズの微粒子が好ましい。なぜなら、それらは、例えば蛍 光標識プローブからの容易に検出できるシグナルの生成を可能としつつ、試薬お よび試料の使用量を最小にするからである。伸長可能な末端の連結、キャップ形成、および再生についてのスキーム 1つの局面において、本発明は、オリゴヌクレオチドプローブの連結および同 定の繰り返し工程を必要とする。しかしながら、同一工程における同一の伸長し た二重鎖に対する複数プローブの連結は、通常は同定の問題を誘引するであろう から、多重伸長を防止しそして伸長可能な末端を再生するのに有用である。さら に、もし連結工程が100%効果的でなければ、それらがいずれのさらなる連結工 程にも参画しないように、連結を受けない伸長二重鎖にキャップ形成するのが望 ましいであろう。すなわち、キャップ形成工程は、好ましくは、ポリヌクレオチ ド合成のような他の合成化学プロセスから類推して、連結工程の後に起こる(例 えば、Andrusら、米国特許第4,816,571号)。これは、その後の同定工程で生じる シグナルから潜在的に有意なノイズの源を除去するであろう。 以下、本発明の連結、キャップ形成、再生および同定工程を実施するためのい くつかの例示的スキームを記載する。それらは、手引きの目的で提示するもので あって、限定することを意図しない。 開始オリゴヌクレオチドまたは3'→5'方向に伸長した二重鎖を伸長するための スキームは図2に示す。テンプレート(20)をその5'末端により、固相支持体(10) に付着させる。これは、常法技術を用い、ビオチンまたは同様の連結部分を介し て、丁度都合よく達成され得る。5'リン酸基を有する開始オリゴヌクレオチド(2 00)を、連結および同定の最初のサイクル前に、前記のようにテンプレート(20) にアニールする。以下の形態のオリゴヌクレオチドプローブ(202)を使用する: HO-(3')BBB...BBB(5')-OP(=O)(O-)NH-Bt * ここで、BBB...BBBはオリゴヌクレオチドプローブ(202)のヌクレオチドの配列を 表し、Bt *はホスホルアミデート基、または光切断結合のような、他の不安定結 合を介してオリゴヌクレオチドの5'炭素に連結した標識された鎖終結部分である 。Bt *の性質は広く変化し得る。それは連続的連結を防止する限り、標識された ヌクレオシド(例えば、5'P3'Nホスホルアミデートを介してカップリングした もの)または他の部分であり得る。それは、AgrawalおよびTang、国際出願第PCT /US91/08347号に記載されるように、単にリンカーによって結合された標識であ り得る。オリゴヌクレオチドプローブの重要な特徴は、アニーリングおよび連結 (204)の後に、標識を除去でき、例えば、Letsingerら、J.Am.Chem.Soc.,94: 292-293(1971); Letsingerら、Biochem.,15:2810-2816(1976); Gryaznovら,Nu cleic Acid Research,20:3403-3409(1992);および同様の文献によって教示され るように、ホスホルアミデート結合を酸で処理することによって、伸長可能な末 端を再生できることである。例えば、ホスホルアミデートの加水分解は、室温に おける40分間のジクロロメタン中の0.8%トリフルオロ酢酸での処理によって達 成され得る。このようにして、Bt *上の標識を介して連結したプローブをアニー リングし、連結し、そして同定した後、酸加水分解(206)により鎖終結部分を切 断し、それによりリン結合を破壊し、連結したオリゴヌクレオチド上に5'モノホ スフェートを残しておく。この工程は連続的サイクルで繰り返され得る(208)。 この実施態様の1つの局面において、単一の開始オリゴヌクレオチドを、1つの ヌクレオチドのみが各配列決定サイクルで同定されるように使用し得る。このよ うな実施態様では、このプローブは好ましくは以下の形態を有する: HO-(3')B(5')-OP(=O)(O-)NHBB...BBB-Bt *。 このようにして、各連結および酸切断工程の後、二重鎖は1ヌクレオチドだけ伸 長される。 加水分解の前に、キャップ形成工程が導入され得る。例えば、プローブ(202) は以下の形態を有する: HO-(3')BB...Bp^B...BB(5')-OP(=O)(O-)NH-Bt * ここで、「p^」はホスホロチオエート、メチルホスホネートなどのようなエキソ ヌクレアーゼ耐性結合である。このような実施態様において、キャップ形成は、 未連結伸長二重鎖を切断してエキソヌクレアーゼ耐性結合に戻すλエキソヌクレ アーゼのようなエキソヌクレアーゼで伸長二重鎖を処理することによって達成さ れ得る。次いで、伸長二重鎖の5'末端におけるこの結合の存在は、その後の連結 にそれが関与することから防止する。明らかに、多くの他のキャップ形成方法、 例えばアシル化、不活性オリゴヌクレオチドの連結などを使用し得る。遊離3'ヒ ドロキシルが関与する場合、キャップ形成は、鎖終結ヌクレオシド三リン酸、例 えばジデオキシヌクレオシド三リン酸などの存在下で、DNAポリメラーゼで二重 鎖を伸長させることによって達成され得る。 前記したホスホルアミデート結合は、本明細書中では「化学的に切断可能なヌ クレオシド間結合」と呼ばれるヌクレオシド間結合の一般的クラスの例である。 これらは、酸化性環境、還元性環境、特徴的波長の光(光不安定性結合用)など のような特徴的な化学的または物理的条件でそれらを処理することによって切断 され得るヌクレオシド間結合である。本発明に従い使用され得る化学的に切断可 能なヌクレオシド間結合の他の例は、Urdea第5,380,833号;Gryaznovら、Nucleic Acids Research,21:1403-1408(1993)(ジスルフィド);Gryaznovら、Nucleic Acids Research,22:2366-2369(1994)(ブロモアセチル);Urdeaら、国際出 願PCT/US91/05287(光不安定性);および同様の文献に記載されている。 本発明で使用され得るさらなる化学的に切断可能な結合は、伸長可能なヌクレ オシドに化学的に変換され得る鎖終結ヌクレオチドを含む。このような化合物の 例は以下の文献に記載されている:Canardら、国際出願PCT/FR94/00345;Ansorg e,独国特許出願第DE 4141178 A1号;Metzkerら、Nucleic Acids Research,22:4 259-4267(1994); Cheeseman、米国特許第5,302,509号; Rossら,国際出願第PCT/ US90/06178号など。 開始オリゴヌクレオチドまたは伸長した二重鎖を5'→3'方向に伸長させるため のスキームが図3Aに示される。テンプレート(20)は、その3'末端によって固相 支持体(10)に結合させる。前記のように、これは、常法技術を用い、ビオチンま たは同様の連結部分を介して、丁度都合よく達成され得る。3'ヒドロキシル基を 有する開始オリゴヌクレオチド(300)は、連結および同定の最初のサイクル前に 、前記のようにテンプレート(20)にアニールされる。以下の形態のオリゴヌクレ オチドプローブ(302)を使用する: OP(=O)(O-)O-(5')BBB...BBBRRRRBt * ここで、BBB...BBBRRRRはオリゴヌクレオチドプローブ(302)の2'-デオキシヌク レオチドの配列を表し、「RRRR」はプローブ(302)の4つのリボヌクレオチドの 配列を表し、そしてBt *は前記のように標識された鎖終結部分である。このよう な混合されたRNA-DNAオリゴヌクレオチドは通常の自動DNA合成機を用いて容易に 合成される(例えば、Duckら、米国特許第5,011,769号)。RNase Hは、4つのリボ ヌクレオチドセグメントの中心において特異的にプローブを切断し(Hogrefeら 、J.Biol.Chem.,265:5561-5566(1990))、伸長した二重鎖上に3'ヒドロキシ ル(312)を残し、これはその後の連結工程に参加し得る。このようにして、本実 施態様におけるサイクルは、テンプレート(20)にプローブ(302)をアニールされ そして、連結(304)させて、伸長した二重鎖(306)を形成することにより進行する 。Bt *を介する同定の後、伸長した二重鎖は、標識を切断し、伸長可能な末端を 再生するために、RNase Hで処理される。次いで、サイクルが繰り返される(31 4)。キャップ形成(310)は、RNase H処理の前に、4つのジデオキシヌクレオシド 三リン酸、ddATP、ddCTP、ddGTPおよびddTTPの存在下、DNAポリメラーゼで未連 結末端を伸長させることによって実施され得る。 図3Bで説明したように、同様のスキームが3'5'伸長のために使用され得る。 このような実施例において、開始オリゴヌクレオチドまたは伸長した二重鎖(330 )は、5'一リン酸を有し、オリゴヌクレオチドプローブ(332)は以下の形態を有す る: HO-(3')BBB...BBBRRRRB..BBt *。 前記のように、アニーリング、連結(334)、および同定(338)の後、伸長した二 重鎖(336)は、この場合は伸長した二重鎖の末端で5'一リン酸(342)を残すRNase Hにより、切断される。再生した伸長可能な末端を用いて、サイクルは繰り返さ れ得る(344)。キャップ形成工程は、RNase H加水分解前に、未標識非RNA含有プ ローブを連結することにより、またはホスファターゼでの処理による任意の残存 する5'モノホスフェートを除去することのいずれかによって含まれ得る。 ヌクレオチドの同定は、連結後のポリメラーゼ伸長により達成され得る。図4 に例示するように、この実施態様については、テンプレート(20)を前記のように 固相支持体(10)に結合させ、3'ヒドロキシルを有する開始オリゴヌクレオチド(4 00)を最初のサイクル前にテンプレートにアニールさせる。以下の形態を有する オリゴヌクレオチドプローブ(402): OP(=O)(O-)O-(5')BBB...BBBRRRRB...B(3')OP(=O)(O-)O がテンプレート(20)にアニールされ、そして連結(404)され、伸長した二重鎖(40 6)が形成される。同一サイクルにおいてプローブの連続的連結を防ぐ3'一リン酸 がホスファターゼ(408)で除去され、遊離の3'ヒドロキシル(410)が露出される。 明らかに、別のブロッキングアプローチも使用され得る。伸長した二重鎖(406) は、標識したジデオキシヌクレオシド三リン酸(412)の存在下で、核酸ポリメラ ーゼによってさらに伸長し、それにより、取り込まれたジデオキシヌクレオシド の標識によってテンプレート(20)のヌクレオチドの同定が可能となる。次いで、 標識されたジデオキシヌクレオチドおよびプローブ(402)の一部は、伸長した二 重鎖(406)上に伸長可能な末端を再生するために、例えば、RNase H処理によって 切断される(414)。次いで、サイクルが繰り返される(416)。 実施しなければならない別々のアニーリング反応の数を減少させるために、オ リゴヌクレオチドプローブは、その相補的配列と完全にマッチした二重鎖が、同 様の安定性または結合の自由エネルギーを有するプローブの混合物またはサブセ ットにグループ分けされ得る。同様の二重鎖安定性を有するオリゴヌクレオチド プローブのこのようなサブセットは、本明細書中ではオリゴヌクレオチドプロー ブの「ストリンジェンシークラス」といわれる。次いで、オリゴヌクレオチドプ ローブの混合物またはストリンジェンシークラスは、実質的に標的ポリヌクレオ チドに相補的なオリゴヌクレオチドプローブのみが二重鎖を形成するような条件 下で、標的ポリヌクレオチドと別々に混ぜ合わされる。すなわち、ハイブリダイ ゼーション反応のストリンジェンシーは、実質的に完全に相補的なオリゴヌクレ オチドプローブのみが二重鎖を形成するように選択される。次いでこれらの完全 にマッチした二重鎖が、連結され、伸長した二重鎖が形成される。所与のオリゴ ヌクレオチドプローブ長さにつき、各ストリンジェンシークラス内のオリゴヌク レオチドプローブの数は、広く変化し得る。オリゴヌクレオチドプローブの長さ およびストリンジェンシークラスサイズの選択は、標識配列の長さ、およびそれ がどのように調製されるか、ハイブリダイゼーション反応が自動化され得る程度 、ハイブリダイゼーション反応のストリンジェンシーが制御され得る程度、相補 的配列を有するオリゴヌクレオチドプローブの存在または不存在などのようない くつかの因子に依存する。特定の実施態様のためのストリンジェンシークラスの 適切なサイズを選択する手引きは、核酸ハイブリダイゼーションおよびポリメラ ーゼ連鎖反応法についての一般的文献中に見い出され得る(例えば、Gotoh,Adv .Biophys.16:1-52(1983); Wetmer,Critical Reviews in Biochemistry and M olecular Biology 26:227-259(1991); Breslauerら,Proc.Natl.Acad.Sci.8 3:3746-3750(1986); Wolfら、Nucleic Acids Research,15:2911-2926(1987); Innisら編,PCR Protocols(Academic Press,New York,1990);McGrawら、Bio techniques,8: 674-678(1990)など)。ストリンジェンシーは、温度、塩濃度、 ホルムアミドのような特定の有機溶媒の濃度などを含むいくつかの変化するパラ メーターによって制御され得る。好ましくは、用いられる種々のポリメラーゼま たはリガーゼの活性が、塩濃度または有機溶媒濃度がオリゴヌクレオチドプロー ブの特異的アニーリングを保証するために変えられ得る程度を制限するために、 温度がストリンジェンシークラスを規定するために用いられる。 一般に、ストリンジェンシークラスが大きければ大きいほど、ハイブリダイズ する混合物の複雑性が大きくなり、そして混合物におけるいずれかの特定のオリ ゴヌクレオチドプローブの濃度が低下する。標的ポリヌクレオチド上に相補的部 位を有する、より低濃度のオリゴヌクレオチドプローブはハイブリダイズし連結 されるオリゴヌクレオチドプローブの相対的公算(relative likelihood)を低下 させる。これは、今度は、感受性の低下を導く。また、ストリンジェンシークラ スが大きければ大きいほど、オリゴヌクレオチドプローブと相補的配列との間に 形成される二重鎖の安定性に大きな変動を有する。他方、ストリンジェンシーク ラスが小さければ小さいほど、1セットの全てのオリゴヌクレオチドプローブが 標的ポリヌクレオチドにハイブリダイズすることを保証するために、より多数の ハイブリダイゼーション反応を必要とする。 例えば、8マーのオリゴヌクレオチドプローブが使用される場合、ストリンジ ェンシークラスは、各々約50から約500の間のオリゴヌクレオチドプローブを含 み得る。このようにして、数百〜数千のハイブリダイゼーション/連結反応が必 要とされる。より大きなサイズのオリゴヌクレオチドプローブについては、より 大きなストリンジェンシークラスが、ハイブリダイゼーション/伸長反応の数を 実際的なもの(例えば、104〜105またはそれ以上)とするために必要とされる。 同一ストリンジェンシークラスのオリゴヌクレオチドプローブは、十分にラン ダムなオリゴヌクレオチドプローブが合成されるのと類似した様式で(例えば、T eleniusら、Genomics,13:718-725(1992); Welshら、No.cleic Acids Research, 19:5275-5279(1991); Grothuesら、Nucleic Acuds Research,21:1321-1322(19 93); Hartley,欧州特許出願90304496.4などに開示されているように)、同時 に合成され得る。差異は、各サイクルにおいて、モノマーの異なる混合物を、増 殖するオリゴヌクレオチドプローブ鎖に適用することであり、ここで、混合物中 の各モノマーの割合は、ストリンジェンシークラスにおけるオリゴヌクレオチド プローブの位置における各ヌクレオシドの割合によって指示される。ストリンジ ェンシークラスは、利用可能なアルゴリズム(例えば、Breslauerら、Proc.Natl . Acad.Sci.,83:3746-3750(1986); Loweら、Nucleic Acids Research,18:175 7-1761(1990)など)により二重鎖形成の自由エネルギーを計算することによって 容易に形成される。オリゴヌクレオチドプローブは、標準的な反応条件下(例え ば、標準的なバブルソート、Base,Computer Algorithms(Addison-Wesley,Menl o Park,1978))でのそれらの相補体への結合の自由エネルギーにより順序付けら れる。例えば、以下のものは標準的なハイブリダイゼーション条件下での二重鎖 形成の自由エネルギーによる最大安定性(頂部から底部にかけて)を有する、お よび二重鎖形成の自由エネルギーの最低安定性を持つ10の6マーのリストである (自由エネルギーはBreslauerら(前出)により計算される)。 このように、もしストリンジェンシークラスが最初の10個の6マーからなるの であれば、最初の(最も3'側の)位置についての混合物モノマーは、0:4:6:0(A :C:G:T)となるであろうし、第2の位置については、それは0:6:4:0となるであ ろう(以下、同様)。もしストリンジェンシークラスが最後の10個の6マーからな るならば、最初の位置についてのモノマーの混合物は1:0:4:5となるであろうし 、第2の位置については、それは5:0:0:5であろう(以下、同様)。次いで、得ら れた混合物は、加熱溶出によって所望のストリンジェンシークラスの配列につき さらに富化され得る(例えば、Miyazawaら、J.Mol.Biol.,11:223-237(1965))。 より便宜的には、数百〜数千のオリゴヌクレオチドを含むストリンジェンシー クラスは、種々の平行合成アプローチによって直接的に合成され得る(例えば、F rankら、米国特許第4,689,405号;Matsonら、Anal.Biochem.,224;110-116(199 5);Fodorら、国際出願第PCT/US93/04145号;Peaseら、Proc.Natl.Acad.Sci. 、91:5022-5026(1994); Southernら、J.Biotechnology,35:217-227(1994),Br ennan、国際出願第PCT/US94/05896号など)。 いくつかの場合において、オリゴヌクレオチドプローブ−ダイマーを形成する のに感受性のサブセットまたはオリゴヌクレオチドプローブにおいて、他のオリ ゴヌクレオチドプローブに対する相補的配列を有する別々のサブセットのオリゴ ヌクレオチドプローブに配置することによって、オリゴヌクレオチドプローブの さらなるストリンジェンシークラスを形成することが所望され得る。 明らかに、当業者は、先に明示的に記載されていないが、本発明のなおさらな る実施態様を設計するために、前記の実施態様の特徴を組み合わせることができ る。 また、本発明は、本発明の方法を自動的に実施するためのシステムおよび装置 を含む。このようなシステムおよび装置は、i)標的ポリヌクレオチドをつなぎ止 めるために使用される固相支持体の性質、ii)所望の平行操作の程度、iii)使用 される検出スキーム;iv)試薬を再使用するか捨てるかなどを含めたいくつかの 設計製薬に依存して種々の形態をとり得る。一般に、装置は一連の試薬貯蔵器、 好ましくは固相支持体(例えば、磁気ビーズ)に付着させた標的ポリヌクレオチド を含有する1つ以上の反応容器、1つ以上の検出ステーション、および試薬貯蔵 器から反応容器および検出ステーションへ、予め決定した様式で試薬を移すため のコンピューター制御手段を含む。試薬を移し、温度を制御するためのコンピュ ーター制御手段は、Harrisonら、Biotechniques,14:88-97(1993); Fujitaら、B iotechniques,9:584-591(1990); Wadaら、Rev.Sci.Instrum,54:1569-1572(1 983)などに開示されているもののような、種々の一般目的の実験室ロボットによ って実行され得る。このような実験室ロボットはまた市販されている(例えば、A pplied Biosystemsモデル800Catalyst(Foster City,CA))。 本発明の異なる実施態様を実施するために種々のキットが提供され得る。一般 に、本発明のキットは、オリゴヌクレオチドプローブ、開始オリゴヌクレオチド 、および検出システムを含む。キットはさらに、連結試薬および本発明の特別の 実施態様を実施するための指示を含む。タンパク質リガーゼ、RNase H、核酸ポ リメラーゼ、または他の酵素を使用する実施態様においては、それらの各緩衝液 が含ませれ得る。いくつかの場合においては、これらの緩衝液は同一であり得る 。好ましくは、キットはまた、テンプレートをつなぎ止めるための固相支持体( 例えば、磁気ビーズ)を含む。1つの好ましいキットにおいて、標的ポリヌクレ オチドの異なる末端ヌクレオチドに対応するプローブが、明瞭なスペクトル的に 分 解できる蛍光色素を保持するように、蛍光的に標識されたオリゴヌクレオチドプ ローブが提供される。本明細書で用られる「スペクトル的に分解可能な」とは、 その色素が、操作条件下で、それらのスペクトル特性、特に蛍光放射波長に基づ いて区別され得ることを意味する。このようにして、1つまたはそれ以上の末端 ヌクレオチドの同一性は異なる色彩、またはおそらくは異なる波長における強度 の比率に相関する。より好ましくは、4つのこのようなプローブは、標的ポリヌ クレオチド上の4つのスペクトル的に分解可能な蛍光色素と4つの可能な末端ヌ クレオチドの各々の間の一対一の対応を可能とするように提供される。スペクト ル的に分解可能な色素のセットは、米国特許第4,855,225号および第5,188,934号 :国際出願第PCT/US90/05565号;およびLeeら、Nucleic Acids Research,20:24 71-2483(1992)に開示されている。 実施例1 4つの開始オリゴヌクレオチドを用いてpUC19から増幅された 標的ポリヌクレオチドの配列決定 本実施例においては、結合領域およびpUC19プラスミドの一部を含むテンプレ ートをPCRによって増幅し、そして磁気ビーズに付着させる。4つの開始オリゴ ヌクレオチドを、下記のように別々の反応で使用する。以下の式に示すように、 4つの中央リボヌクレオチドならびに、両5'および3'一リン酸を有する8マーの オリゴヌクレオチドプローブを使用する: OP(=O)(O-)O-(5')BBRRRRBB(3')-OP(=O)(O-)O。 アニーリングの後、プローブを開始オリゴヌクレオチドに酵素的に連結し、磁気 ビーズ支持体を洗浄する。連結したプローブの3'リン酸をホスファターゼで除去 し、その後、4つの標識したジデオキシヌクレオシド三リン酸鎖終結剤の存在下 で、プローブをDNAポリメラーゼで伸長させる。伸長したヌクレオチドの洗浄お よび同定の後、連結されたプローブをRNase Hでリボヌクレオチド部分で切断し て標識を除去し、そして伸長可能な末端を再生する。 36マーの結合領域を含む以下の二本鎖のフラグメントをSacI/XmaI消化したpUC 19に連結する: 単離および増幅の後、改変されたpUC19の402塩基対フラグメントを、テンプレ ートとして使用するために、PCRによって増幅する。該フラグメントは、41位か らポリリンカー領域中のSacI部位に隣接して挿入された結合領域(未改変pUC19 の413位)のpUC19の領域にわたる(Yanisch-Perronら、Gene,33:103-119(1985) )。配列5'-CCCTCTCCCCTCTCCCTCx-3'および5'-GCAGCTCCCGGAGACGGT-3'(ここで 「x」は製造業者のプロトコル付きの市販されている試薬(例えば、3'ビオチン- ON CPG(Clonetech Laboratories,Palo Alto,California))を用い、合成の間に 付着される3'ビオチン部分である)を有する2つの18マーのオリゴヌクレオチド プローブを使用する。増幅されたテンプレートを単離し、M280−ストレプトアビ ジン(Dynal,Inc.,Great Neck,New York)とともに、製造業者のプロトコル(Dy nabeads Template Preparation Kit)を用い、ストレプトアビジン被覆磁気ビー ズ(Dynabeads)に付着させる。約300gのDynabeads M280−ストレプトアビジン をロードするために十分な量のビオチニル化313塩基対フラグメントを提供する 。 開始オリゴヌクレオチドとで形成される二重鎖が、二重鎖安定性を増強させる ために、約66%GCの組成を有するように、結合領域配列を選択する。また、二次 構造形成および結合領域内の1以上の位置への開始オリゴヌクレオチドの偶発的 ハイブリダイゼーションを防ぐように配列を選択する。結合領域内の所与の開始 オリゴヌクレオチドの位置のあらゆるシフティングも、有意数のミスマッチ塩基 を生じる。 ローディングの後、テンプレートの非ビオチニル化ストランドを加熱変性によ って除去し、その後、磁気ビーズを洗浄し、そして4つのアリコートに分ける。 磁気ビーズに付着させたテンプレートは以下の配列を有する: 以下の4つのオリゴヌクレオチドを、テンプレートの別々のアリコートの各々 における開始オリゴヌクレオチドとして使用する: 以下の反応および洗浄は、一般に、特記しない限り、使用する酵素のための50 L容量の製造業者(New England Biolabs)の推奨する緩衝液中で実施する。また、 標準的な緩衝液はSambrookら、Molecular Cloning,第2版(Cold Spring Harbor Laboratory Press,1989)に記載されている。 4つのアリコートの各々用の8マーのプローブ全てを一緒に含む、96ストリン ジェンシークラスの684または682オリゴヌクレオチドプローブ各々(48の異なる アニーリング温度の各々のための2のサブセット)を形成する。96のクラスの各 々のプローブを、同一成分を有する反応混合物中の標的オリゴヌクレオチドに別 々にアニールするが、37℃未満の温度でSequenaseおよびT4 DNAリガーゼで行っ た伸長および連結、およびTaq Stoffelフラグメントおよび他の熱安定性リガー ゼで行った伸長および連結は例外である。 48のストリンジェンシー条件は、同一温度のサブセットの各グループが、次の 最高および次の最低ストリンジェンシークラスを含むサブセットグループのそれ と1℃だけアニーリング温度が異なるように、22℃〜70℃の範囲のアニーリング 温度によって規定される。アニーリング温度の範囲(22〜70℃)は、各々、最も不 安定なおよび最も安定な8マーが、標準的なPCR緩衝溶液中で、約50パーセント最 大アニーリングを有することが予想される温度より5〜10℃低いの温度によって お およそ境界を決める。 80℃における5〜10分間のインキュベーションの後、反応混合物を20〜30分間 にかけて、それらの各アニーリング温度にもってゆく。連結、洗浄、およびホス ファターゼでの処理の後、2単位のポリメラーゼおよび標識ジデオキシヌクレオ チド三リン酸(0.08mM最終反応濃度、およびTAMRA(テトラメチルローダミン) 、FAM(フルオレセイン)、ROX(ローダミンX)、およびJOE(2',7'-ジメトキ シ-4',5'-ジクロロフルオレセイン)で標識)を添加する。15分後、ビーズをH2O で洗浄し、そして各反応混合物を標準的な波長(例えば、Users Manual,モデル37 3DNAシーケンサー(Applied Biosystems,Foster City,CA))を用いて照射するこ とにより伸長したヌクレオチドの同一性を決定する。 同定後、反応混合物を製造業者の推奨のプロトコルを用いRNase Hで処理し、 そして洗浄する。RNase H処理した伸長二重鎖は、再生された3'ヒドロキシルを 有し、次の連結/伸長/切断のサイクルの準備ができている。試験配列の全ての ヌクレオチドが同定されるまでサイクルを実施する。 実施例2 ある開始オリゴヌクレオチドを用いるpUC19から増幅された 標的ポリヌクレオチドの配列決定 この実施例において伸長は5'→3'方向であるので、ビオチン部分を結合領域の CTリッチストランドにハイブリダイズするプライマーの5'末端に付着させる以外 は、本実施例では、実施例1に従ってテンプレートを調製する。このようにして 、本実施例では、一本鎖テンプレートの結合領域はGAリッチなセグメントである (本質的には、実施例1の結合領域の相補体)。配列5'-xGAGGGAGAGGGGAGAGGG-3' および5'-ACCGTCTCCGGGAGCTGC-3'(ここで「x」は製造業者のプロトコル付きの 市販されている試薬(例えば、Aminolinkアミノアルキルホスホルアミダイト連結 剤(Applied Biosystems,Foster City,California)およびClontech Laborato ries(Palo Alto,California)から入手可能なビオチン-X-NHSエステル)を用い 、合成の間に付着される5'ビオチン部分である)を有する2つの18マーのオリゴ ヌクレオチドプローブを使用する。 以下の配列を有する単一の12マーの開始オリゴヌクレオチドを使用する: 5'-OP(=O)(O-)O-CCTCTCCCTTCCCTCTCCTCC-3'。 以下の式に示される、プローブの最も3'側と3'側から2番目のヌクレオシドとの 間に酸不安定ホスホルアミデート結合を有する6マーのオリゴヌクレオチドプロ ーブを使用する: HO-(3')B(5')-OP(=O)(O-)NH-(3')BBBBBt * ここで、標識は最も3'側の同一性に対応するように(従って、16の異なる標識ジ デオキシヌクレオシドをプローブの合成に使用する)、Bt *はJOE-、FAM-、TAMR A-、またはROX-標識ジデオキシヌクレオシドである。 前記のように、6マーのプローブを、各々42または43プローブを含む、96スト リンジェンシークラス(48の異なるアニーリング温度の各々につき2つのサブセ ット)に調製する。ハイブリダイゼーションおよび連結は、前記のように行う。 連結および洗浄の後、オリゴヌクレオチドプローブの蛍光シグナルによって標的 ポリヌクレオチド中のヌクレオシドを同定する。次いで、室温にてジクロロメタ ン中の0.8%トリフルオロ酢酸で、伸長した二重鎖を40分間処理することによっ て、酸切断を行い、伸長した二重鎖上で伸長可能な末端を再生する。標的ポリヌ クレオチドの配列が決定されるまで該プロセスを継続する。 DETAILED DESCRIPTION OF THE INVENTION                DNA sequencing by parallel oligonucleotide extensionField of the invention   The present invention generally relates to a method for determining the nucleotide sequence of a polynucleotide. More specifically, one or more Nucleotide in the template by stepwise extension of primers A method for identifying a code.Background art   Analysis of polynucleotides with currently available techniques requires that test polynucleotides be From confirmation that they are identical or different from the standard or isolated fragment, Range to unambiguous identification and ordering of each nucleotide in the test polynucleotide Provide information. Such techniques are important for understanding gene function and regulation. Is only very important in applying many of the basic techniques of molecular biology, and Rather, they also provide genomic analysis and numerous non-research applications (eg, Genetic identification, forensic analysis, genetic counseling, medical diagnosis, etc.) It became increasingly important. In these latter applications, partial sequence information is Technology (eg, fingerprinting and sequence comparison) and complete Both techniques that provide column resolution have been used together. See, eg, Gibbs et al., Proc. N atl. Acad. Sci., 86: 1919-1923 (1989); Gyllensten et al., Proc. Natl. Acad. Sc l., 85: 7652-7656 (1988); Carrano et al., Genomics, 4: 129-136 (1989); Caetano-A. nolles et al., Mol. Gen. Genet., 235: 157-165 (1992); Brenner and Livak, Proc. Natl. Acad. Scl., 86: 8902-8906 (1989); Green et al., PCR Methods and Applic. ations, 1: 77-90 (1991); and Versalovic et al., Nucleic Acids Research, 19: 682. 3-6831 (1991).   Natural DNA consists of two linear polymers, or strands of nucleotides . Each strand is a chain of nucleosides linked by phosphodiester bonds so is there. The two strands are between the complementary bases of the nucleotides of the two strands Are grouped in antiparallel orientation by hydrogen bonds of: deoxyadenosine (A) Paired with thymidine (T) and deoxyguanosine (G) Pair with Gin (C).   Currently, there are two basic approaches to DNA sequencing: didequio The chain termination method (eg, Sanger et al., Proc. Natl. Acad. Sci., 7 4: 5463-5467 (1977)); and chemical degradation methods (eg, Maxam et al., Proc. Natl. Acad. . Sci., 74: 560-564 (1977)). The chain termination method is Improved and the basis for all currently available automated DNA sequencers Served as See, for example, Sanger et al. Mol. Biol., 143: 161-178 (1980); Schr eier et al. Mol. Biol., 129: 169-172 (1979); Smith et al., Nucleic Acids Researc. h, 13: 2399-2412 (1985); Smith et al., Nature, 321: 674-679 (1987); Prober et al., Sci. ence, 238: 336-341 (1987); Section II, Meth. Enzymol., 155: 51-334 (1987); C Hurch et al., Science, 240: 185-188 (1988); Hunkapiller et al., Science, 254: 59-67 (1). 991); Bevan et al., PCR Methods and Applications, 1: 222-228 (1992).   Both chain termination and chemical digestion methods involve one or more sets of standards. Requires the production of DNA fragments, and each has a common origin, Terminates at a known base. One or more sets of fragments are then sequence information Must be separated by size in order to obtain In both methods, DNA The fragments are separated by high-resolution gel electrophoresis, which Ability to distinguish very large fragments that differ in size by only one nucleotide Must have. Unfortunately, this process involves a single strand of DNA that can be sequenced Strictly limit the size of Sequencing using these techniques requires approximately 400-450 nuclei. Reliable adaptation to DNA strands up to leotide. Bankier et al., Meth. Enzymol., 155 : 51-93 (1987); and Hawkins et al., Electrophoresis, 13: 552-559 (1992).   Some significant technical issues are long, e.g., over 500-600 nucleotides. Sequencing of target polynucleotides, or high volume of many target polynucleotides This has severely hindered the application of such techniques to sequencing. Such a problem Therefore, i) the gel electrophoresis separation step requiring a large labor is difficult to automate, The analysis of the data may require excessive variability (eg, band broadening due to temperature effects). Compression due to secondary structure in DNA sequencing fragments, Ii) its properties (eg, evolution, fidelity, rate of polymerization, Nucleic acids whose sequence terminator is often sequence dependent) Polymerase; iii) present in fmoles typically in bands that overlap spatially in the gel Iv) detection and analysis of DNA sequencing fragments; Low signal due to distribution in hundreds of spatially separated bands without shrinking; And v) For single lane fluorescence detection, appropriate emission and absorption properties, quantum yield And the availability of dyes with spectral resolution. For example, Trai nor, Anal. Biochem., 62: 418-426 (1990); Connell et al., Biotechniques, 5: 342-3. 48 (1987); Karger et al., Nucleic Acids Research, 19: 4955-4962 (1991); Fung et al. U.S. Pat. No. 4,855,225; and Nishikawa et al., Electrophoresis, 12: 623-631 (19 91).   Another problem exists with the current technology in the area of diagnostic sequencing. Many disorders that are constantly expanding, susceptibility to disorders, prognosis of disease states, etc. The presence of a particular DNA sequence at one or more loci, or in a DNA sequence It has been associated with the degree of change (or mutation). An example of such a phenomenon is the human Leukocyte antigen (HLA) typing, cystic fibrosis of the pancreas, tumor progression and heterogeneity, p Includes 53 proto-oncogene mutations, ras proto-oncogene mutation, etc. For example, G yllensten et al., PCR Methods and Applications, 1: 91-98 (1991); Santamaria et al., International Application No. PCT / US92 / 01675; Tsui et al., International Application No. PCT / CA90 / 00267 and the like. Diagnosis Determination of the DNA sequence associated with such pathological conditions to obtain information or prognostic information Difficulties in multiple subpopulations of DNA (eg, allelic variants, multiple mutations) Morphological forms). Multiple using current sequencing technology Distinguishing the presence and identity of the sequence can isolate different types of DNA, and Possibly practically impossible without further effort to clone it .   DNA sequencing does not require high resolution electrophoretic separation of DNA fragments, Produces an easy-to-analyze signal and easily separates DNA from heterozygous loci As alternative approaches to providing tools for analysis become available, sequencing techniques Major progress can be made in   It is an object of the present invention to address such alternatives to currently available DNA sequencing technologies. To provide a approach.Summary of the Invention   The present invention is based on repeated cycles of duplex extension along a single-stranded template. And a method for analyzing a nucleic acid sequence. Preferably, such extension is carried out by the initiation oligonucleotide. Starting from the duplex formed between the nucleotide and the template. Starting oligo Nucleotides are used in the first extension cycle to It is extended by ligation to its end, forming an extended duplex. Then The extended duplex is repeatedly extended by subsequent ligation cycles. Each rhino Between oligonucleotides on a successfully linked oligonucleotide probe or The label associated with the nucleotide probe may cause one or more nucleotides in the template to be lost. Determine the identity of the leotide. Preferably, the oligonucleotide probe comprises 1 The end position should be such that only one extension of the extended duplex occurs in one cycle. It has a locking portion (eg, a chain terminating nucleotide). Double stranded By removing the blocking moiety with a cycle and regenerating the extendable end. To further extend.   In one aspect of the invention, a plurality of different starting oligonucleotides are templated. Rate to separate samples. Each starting oligonucleotide undergoes elongation A terminus may have more than one other start oligonucleotide and one or more nucleotides. Make sure that the template is out of register or does not match leotide. Form a duplex with the rate. In other words, the starting nucleotide for extension is It differs by one or more nucleotides for each different starting oligonucleotide. Become. In this way, each extension using oligonucleotide probes of the same length After a long cycle, starting oligonucleotides on the same relative phase but on different templates Located between the ends of the tide. Thus, for example, i) if the starting oligonucleotide is one Ii) extending the 9-mer oligonucleotide probe Preferred for use in long steps and iii) using nine different starting oligonucleotides. In a preferred embodiment, the nine template nucleotides are in each extension cycle At the same time.BRIEF DESCRIPTION OF THE FIGURES   FIG. 1 schematically shows the parallel extension of a plurality of templates according to the invention.   FIG. 2 schematically illustrates one embodiment of the present invention using an acid labile bond.   FIG. 3A shows the present invention using RNase H labile oligonucleotide in 3 ′ → 5 ′ extension. 1 is schematically shown.   FIG. 3B shows the present invention using RNase H labile oligonucleotide in 5 ′ → 3 ′ extension. 1 is schematically shown.   FIG. 4 shows one of the inventions using ligation followed by polymerase extension and cleavage. Is schematically shown.Definition   As used herein, "sequencing", "nucleotide" Sequencing "," sequencing "and similar terms refer to partial distribution of a polynucleotide. Includes determining sequence and full length sequence information. That is, this term is used for sequence comparisons, Fingerprinting, similar levels of information on labeled polynucleotides, and And the unambiguous identification and ordering of each nucleoside of the test polynucleotide.   `` Completely mapped for protruding strands of probe and target polynucleotide The term “double-stranded chain” means that each overhanging strand is composed of each nucleotide in the double-stranded structure. Will Watson-Crick base pair with the nucleotide on the opposite strand. Thus, it means forming a double-stranded structure with others. This term also refers to professional Nucleoside analogs (deoxy-deoxy) that can be used to reduce Inosine, nucleosides having a 2-aminopurine base, etc.).   The term "oligonucleotide" as used herein refers to deoxyribonucleic acid. Nucleosides or analogs thereof, including leosides, ribonucleosides, etc. Oligomers. Typically, oligonucleotides are made up of several monomer units (eg, For example, sizes ranging from 3-4) to hundreds of monomer units. Oligonucleo Whenever a tide is represented by an array of characters such as "ATGCCCTG" Nucleotides are in 5 'to 3' order from left to right, and unless otherwise specified, "A" Indicates deoxyadenosine, “C” indicates deoxycytidine, and “G” indicates deoxyadenosine. It is understood that "X" indicates xyguanosine and "T" indicates thymidine.   As used herein, "nucleoside" includes, for example, Kornberg and Baker , DNA Replication, 2nd Edition (Freeman, San Francisco, 1992) Natural nucleosides, including 2'-deoxy and 2'-hydroxyl forms No. “Analog” with respect to nucleosides includes, for example, Scheit, Nucleotide Ana as generally described by logs (John Wiley, New York, 1980). Synthetic nucleosides having a decorated base moiety and / or a modified sugar moiety Including. Such analogs have enhanced binding properties, reduced degeneracy, increased specificity, etc. Includes synthetic nucleosides designed for   As used herein, “link” refers to two or more in a template driven reaction. End of the above nucleic acids (eg, oligonucleotides and / or polynucleotides) It means forming a covalent bond or linkage between the ends. Bond ) Or the nature of the linkage can vary widely, and ligation can be enzymatic Or it can be done chemically.Detailed description of the invention   The present invention eliminates the need for electrophoretic separation of similarly sized DNA fragments. , And of spatially overlapping bands of DNA fragments in a gel or similar medium. Methods for sequencing nucleic acids that eliminate the difficulties associated with detection and analysis are provided. The present invention In addition, DNA fragments can be converted from long single-stranded templates using DNA polymerase. There is no need to make it.   The general scheme of one aspect of the present invention is shown schematically in FIG. Less than As noted, the invention is limited by certain features of this embodiment. Not intended. Includes polynucleotide (50) of unknown sequence and binding region (40) The template (20) is attached to the solid support (10). Preferably, the N-mer probe In an embodiment using a template, the template is divided into N aliquots and Aliquots in the binding region (40) differ from the position of the other starting oligonucleotides. Different starting oligonucleotides i that form a perfectly matched duplex at one positionk I will provide a. That is, the starting oligonucleotide i1~ INFor unknown sequences The end of the closest double-stranded chain is 0 to N-1 nucleotides from the beginning of the unknown sequence Thus, a duplex pair is formed with the template in the binding region (40). Therefore, In the first cycle of ligation using the N-mer probe, i in FIG.1Connected to The terminal nucleotide (16) of the probe (30) was changed to the N-1 nucleotide of the binding region (40). Complementary to Similarly, i in FIG.TwoTerminal nucleotide of probe (30) linked to Reotide (17) is complementary to the N-2 nucleotide of the binding region (40); FIG. I inThreeThe terminal nucleotide (18) of the probe (30) linked to the N-3 of the binding region (40) Complementary to the nucleotide. The same applies hereinafter. Finally, inConnected to The terminal nucleotide (15) of the probe (30) is the first nucleotide of the unknown sequence (50). Complementary to In the second cycle of ligation, the terminal nucleic acid of probe (31) is Otide (19) is the starting oligonucleotide i1Unknown sequence in the duplex starting at ( 50) is complementary to the second nucleotide (19). Similarly, the starting oligonucleotide Creotide iTwo, IThree, IFourThe terminal nucleotide of the probe linked to the double strand starting with Leotide binds to the third, fourth and fifth nucleotides of the unknown sequence (50). And are complementary.   In the above embodiment, the oligonucleotide probe is attached to the extended duplex. Labeling is such that the identity of adjacent nucleotides can be determined from the label.   The binding region (40) has a known sequence, but can vary widely in length and composition. Conclusion The joining region is used to accommodate the hybridization of the starting oligonucleotide. Must be long enough. Different binding regions are either the same or different Can be used with the starting oligonucleotide, but for convenience of preparation, It is preferred to provide one binding region and a different starting oligonucleotide. Obedience Thus, all templates were prepared identically and then different starting oligonucleotides Divide into aliquots for use on the tide. Preferably, the binding regions are of different openings. It should be long enough to accommodate the set of starting oligonucleotides, Hybridize to the template and provide different starting points for subsequent ligation Occurs. Most preferably, the binding region is between about 20-50 nucleotides in length .   The starting oligonucleotide is intact during any wash step of the extension cycle. It is selected to form a highly stable duplex with the binding region remaining. this Is conveniently the length of the starting oligonucleotide By choosing to be significantly longer than the length of Achieved by choosing to be GC rich. Starting oligonucleotide Can also use various techniques (eg, Summerton et al., US Pat. No. 4,123,610). Can also be cross-linked to the template strand; or That form a duplex with greater stability than their counterparts (eg, peptide nucleic acids) It can also consist of leotide analogs. Science, 254: 1497-1500 (1991); Hanv ey et al., Science, 258: 1481-1485 (1992); and PCT Application No. PCT / EP92 / 01219 and No. PCT / EP92 / 01220.   Preferably, the length of the starting oligonucleotide is about 20-30 nucleotides, And the composition, the melting temperature of the oligonucleotide probe used is about 10 ~ Enough G and C to provide a duplex melting temperature above 50 ° C. including. More preferably, the duplex melting temperature of the starting oligonucleotide is Exceed the melting temperature of the nucleotide probe by about 20-50 ° C. Used in sequencing operations The number N of different starting oligonucleotides to be used is one nucleotide per cycle. Oligonucleotide probes that can be used practically Can vary up to a number limited in size only by the size of the Oligonucleo Factors that limit the size of the pseudoprobe can be hybridized at a reasonable rate. Prepare mixtures with individual probes in sufficient concentration to drive the reaction Difficulties, sensitivity of longer probes to secondary structure formation, single base mismatches. Including reduced susceptibility to histamine. Preferably, N ranges from 1 to 16; More preferably, N ranges from 1 to 12; and most preferably, N is from 1 to 8. Range.   A wide variety of oligonucleotide probes can be used in the present invention . Generally, an oligonucleotide probe is a starting oligonucleotide or extension. To the extended duplex, resulting in an extended duplex for the next extension cycle. To Ligation should be such that the probe forms a duplex with the template prior to ligation. Should be driven by the template; the probe should be To prevent multiple probes from linking to the same template in a cycle Should have a blocking moiety and probe will regenerate extendable ends after ligation Should be able to be treated or modified to It has a signaling part that allows acquisition of sequence information related to the template later. Should. As described more fully below, depending on the embodiment, the extended The duplex or starting oligonucleotide is , 5 ′ → 3 ′ or 3 ′ → 5 ′ direction. Generally, oligonucleotide Reotide probes need not form a perfectly matched duplex with the template. However, such bonding is usually preferred. One nucleotide in the template In a preferred embodiment where is identified at each extension cycle, perfect base pairing is It is only needed to identify that particular nucleotide. For example, In an embodiment in which the oligonucleotide probe is enzymatically linked to the extended duplex Thus, complete base pairing (ie, proper Watson-Crick base pairing) is Required between the terminal nucleotide of the probe being probed and its complement in the template It is said. Generally, in such embodiments, the remaining nucleotides of the probe Rules indicate that the next ligation will take place at a given site or number of bases along the template. Acts as a "spacer" to ensure. That is, their pairing or their lack Drops do not provide further sequence information. Similarly, for base identification In embodiments that rely on extension, the probe acts primarily as a spacer and Thus, although specific hybridization to the template is desirable, ,It does not matter.   Preferably, the oligonucleotide probe comprises all possible sequences of a given length. Applied to the template as a mixture containing the oligonucleotides. like this Complex mixtures are described in, for example, Kong Thoo Lin et al., Nucleic Acids Research, 20: 5149-5152; U.S. Patent No. 5,002,867; Nichols et al., Nature, 369: 492-493 (1994). So use so-called degenerate-decreasing analogs such as deoxyinosine taught By a number of methods, including; or a number of oligonucleotide probes Mixtures (eg, oligonucleotides containing all possible sequences of a given length when taken together) Four mixtures containing four disjoint subsets of nucleotide sequences) Can be reduced.   The starting oligonucleotides and oligonucleotide probes of the present invention are conveniently Often, automated DNA synthesizers (eg, Applied Biosystems, Inc. (Foster City, California) fornia) 392 or 394 DNA / RNA synthesizer), for example, as disclosed in the following documents: Synthesized using standard chemistries such as phosphoramidite chemistry: Beaucage And Iyer, Tetrahedron, 48: 2223-2311 (1992); Molko et al., US Pat. No. 4,980,46. No. 0; Koster et al., US Pat. No. 4,725,677; Caruthers et al., US Pat. No. 4,415,732. No. 4,458,066; and No. 4,973,679. For example, phosphorothioate Use alternative chemistry that results in non-natural backbone groups such as phosphoramidates You can also. However, the resulting oligonucleotides may be ligated or linked according to certain embodiments. And other reagents. The mixture of oligonucleotide probes is For example, Telenius et al., Genomics, 13: 718-725 (1992); Welsh et al., Nucleic Acids Re. search, 19: 5275-5279 (1991); Grothues et al., Nucleic Acids Research, 21: 1321- 1322 (1993); Hartley, well-known as disclosed in European Patent Application No. 90304496.4, etc. It is easily synthesized using the technique described in In general, these techniques do not introduce degeneracy. Activation of the growing oligonucleotide during the coupling step is desired. It only requires the application of a mixture of nomers.   When using conventional ligases in the present invention, as described more fully below, In some embodiments, the 5 'end of the probe may be phosphorylated. 5 'monophosphate The oligonucleotide to the oligonucleotide using a kinase, either chemically or enzymatically. Can be combined. See, for example, Sambrook et al., Molecular Cloning; A Laborator. y Manual, 2nd edition (Cold Spring Harbor Laboratory, New York, 1989). Chemical Oxidation is described by Horn and Urdea, Tetrahedron Lett., 27: 4705 (1986). And reagents for performing the disclosed protocols include, for example, Cl 5 'Phosphate-ON from ontech Laboratories (Palo Alto, California)TMAs the city Sold. Preferably, if necessary, the oligonucleotide probe is chemically Phosphorylated.   The probe of the present invention binds directly or indirectly to a fluorescent moiety, a coloring moiety, etc. It can be labeled in a variety of ways, including. Label DNA and construct DNA probes Many comprehensive overviews of the methodology are applicable for constructing the probes of the present invention. Provide effective guidance. Such a review is provided by Matthews et al., Anal. Biochem., No. 169 Volume, 1-25 (1988); Haugland, Handbook of Fluorescent Probes and Research Chemicals (Molecular Probes, Inc., Eugene, 1992); Keller and Manak, DNA Probes, 2nd Edition (Stockton Press, New York, 1993); and Eckstein, Ed., Oligonu cleotides and Analogues: A Practical Approach (IRL Press, Oxford, 1991) Including Many more detailed methods applicable to the present invention can be found in the following literature samples. Shown: Fung et al., US Patent No. 4,757,141; Hobbs, Jr. et al., US Patent No. 5,151,507. Cruickshank, U.S. Pat. No. 5,091,519; (Functionalization for Attachment of Reporter Group Synthesis of Oligonucleotides); Jablonski et al., Nucleic Acids Research, 14: 6115-6128 (1986) (enzyme-oligonucleotide conjugate); and Urdea et al. No. 5,124,246 (branched DNA).   Preferably, the probe is, for example, Menchen et al., US Pat. No. 5,188,934; Begot Et al., With one or more fluorescent dyes as disclosed by PCT Application No. PCT / US90 / 05565. Be labeled.   Hybridizer for application of oligonucleotide probes to templates Guidance on the selection of the conditions of immobilization can be found in many literatures (eg, Wetmur, Crit). ical Reviews in Biochemistry and Molecular Biology, 26: 227-259 (1991); Do ve and Davidson, J. et al. Mol. Biol. 5: 467-478 (1962); Hutton, Nucleic Acids R esearch, 10: 3537-3555 (1977); Breslauer et al., Proc. Natl. Acad. Sci. 83: 3746- 3750 (1986); edited by Innis et al., PCR Protocols (Academic Press, New York, 1990), etc. ) Can be found.   Generally, oligonucleotide probes are placed side-by-side with the ends of the extended duplex. When annealing to a template, the duplex is linked to the probe, i.e., Produce mutual covalent bonds. Ligation can be achieved either enzymatically or chemically. You. Chemical ligation methods are well known in the art. For example, Ferris et al., Nucleosides &  Nucleotides, 8: 407-414 (1989); Shabarova et al., Nucleic Acids Research, 19: 4247-4251 (1991). Preferably, the enzymatic ligation is performed by ligase using standard protocols. It is implemented using. Many ligases are known and used in the present invention Suitable for See, for example, Lehman, Science, 186: 790-797 (1974); Engler et al., DN. A Ligases, pp. 3-30, Boyer, The Enzymes, Vol. 15B (Academic Press, New Yor k, 1982). Preferred ligases are T4 DNA ligase, T7 DNA ligase, E. coli. col i Including DNA ligase, Taq ligase, Pfu ligase, and Tth ligase. Those Protocols for the use of are well known. For example, Sambrook et al. (Supra); Barany , PCR Methods and Applications, 1: 5-16 (1991); Marsh et al., Strategies, 5: 73-. 76 (1992) and so on. In general, ligases bind to the 3 'hydroxyl of an adjacent strand. Requires the presence of a 5 'phosphate group for ligation.Preparation of target polynucleotide   Preferably, the target polynucleotide is linked to the binding region to form a template And a template sequence with no complex and time-consuming purification steps Solid supports (eg, magnetic particles, polymer microspheres) A, filter substance). Wide range of labeled polynucleotide lengths But for convenience of preparation, the lengths used in conventional sequencing Is preferred. For example, in the range from a few hundred base pairs (200-300) to 1-2 kilobase pairs. The length of the enclosure is preferred.   The target polynucleotide can be prepared by various conventional methods. For example, target port The oligonucleotides can be of any conventional type, including those used in conventional DNA sequencing. It can be prepared as an insert in a cloning vector. Proper cloning vector Extensive guidance for the selection and use of biosensors is available in Sambrook et al., Molecular Clonin. g: A Laboratory Manual, 2nd edition (Cold Spring Harbor Laboratory, New York, 19 89), and similar documents. Ed. Sambrook et al. And Innis et al., PCR Prot ocols (Academic Press, New York, 1990) also prepared target polynucleotides Provides guidance on using the polymerase chain reaction to perform Preferably Facilitates the separation of target polynucleotides from other reagents used in this method Clones that allow attachment to magnetic beads or other solid supports An amplified target polynucleotide or a PCR amplified target polynucleotide is prepared. this Protocols for such preparation techniques are described in Wahlberg et al., Electrophoresis, 13: 547. -551 (1992); Tong et al., Anal. Chem., 64; 2672-2677 (1992); Hultman et al., Nucleic. Acids Research, 17: 4937-4946 (1989); Hultman et al., Biotechniques, 10: 84-93 ( 1991); Syvanen et al., Nucleic Acids Research, 16: 11327-11338 (1988); Dattagupt Uhlen, PCT Application No. PCT / GB89 / 00304; and similar. US Pat. No. 4,734,363; In the literature. Kits can also be used to perform such a method. For example, Dynal AS. (Oslo, Norway) to DynabeadsTMTemplate preparation kit and Commercially available.   Generally, the size and shape of the microparticles or beads used in the method of the invention are heavy. It is not necessary; however, several meters in diameter (e.g., 1-2 m) to several hundred m in diameter (e.g., 200 m Fine particles having a size in the range of ~ 1000 m) are preferred. Because they are, for example, fireflies Enables the generation of easily detectable signals from optically labeled probes while retaining reagents and And the amount of sample used is minimized.Scheme for ligation of extensible ends, capping, and regeneration   In one aspect, the invention relates to ligation and ligation of oligonucleotide probes. Requires certain repetitive steps. However, the same extension in the same process Ligation of multiple probes to an open duplex will usually pose identification problems Is useful for preventing multiple extensions and regenerating extendable ends. Further If the connection process is not 100% effective, It is desirable to cap the unlinked extended duplex so that it does not participate too much. Would be better. That is, the cap formation step is preferably performed by polynucleotide. Occurs after the ligation step by analogy with other synthetic chemistry processes such as For example, Andrus et al., U.S. Pat. No. 4,816,571). This occurs in a subsequent identification step It will remove potentially significant sources of noise from the signal.   Hereinafter, a method for performing the ligation, cap formation, regeneration and identification steps of the present invention will be described. Some exemplary schemes are described. They are presented for guidance purposes only It is not intended to be limiting.   For extending a starting oligonucleotide or a duplex extended in the 3 ′ → 5 ′ direction The scheme is shown in FIG. The template (20) is supported on its 5 ′ end by a solid support (10). Adhere to This is accomplished via biotin or similar linking moieties using standard techniques. And can be achieved just conveniently. A starting oligonucleotide having a 5 ′ phosphate group (2 00) prior to the first cycle of ligation and identification, the template (20) Annealing. Use the following forms of oligonucleotide probes (202):                   HO- (3 ') BBB ... BBB (5')-OP (= O) (O-) NH-Bt * Here, BBB ... BBB is the nucleotide sequence of the oligonucleotide probe (202). Represents, Bt *Is a phosphoramidate group or other labile bond such as a photocleavable bond. Is a labeled chain terminator linked to the 5 'carbon of the oligonucleotide via a bond . Bt *Can vary widely. As long as it prevents continuous ligation Nucleosides (e.g., coupled via 5'P3'N phosphoramidate ) Or other parts. It is Agrawal and Tang, International Application No. PCT / Simply as a label attached by a linker, as described in US 91/08347. Can get. An important feature of oligonucleotide probes is annealing and ligation (204), the label can be removed, see, for example, Letsinger et al. Am. Chem. Soc., 94: 292-293 (1971); Letsinger et al., Biochem., 15: 2810-2816 (1976); Gryaznov et al., Nu. cleic Acid Research, 20: 3403-3409 (1992); and similar literature. As described above, by treating the phosphoramidate linkage with an acid, the The ability to reproduce the edges. For example, the hydrolysis of phosphoramidate Achieved by treatment with 0.8% trifluoroacetic acid in dichloromethane for 40 minutes Can be achieved. Thus, Bt *Anneal the probe linked via the above label After ringing, ligation, and identification, the chain termination is cleaved by acid hydrolysis (206). Of the 5 'mononucleotide on the ligated oligonucleotide. Leave the spate. This process can be repeated in a continuous cycle (208). In one aspect of this embodiment, a single starting oligonucleotide is Only nucleotides may be used as identified in each sequencing cycle. This In such embodiments, the probe preferably has the following form:                   HO- (3 ') B (5')-OP (= O) (O-) NHBB ... BBB-Bt *. In this way, after each ligation and acid cleavage step, the duplex is extended by one nucleotide. Lengthened.   Prior to hydrolysis, a capping step may be introduced. For example, probe (202) Has the following form:                 HO- (3 ') BB ... Bp^B ... BB (5 ')-OP (= O) (O-) NH-Bt * Where "p^Is an exo such as phosphorothioate, methylphosphonate, etc. Nuclease resistant binding. In such embodiments, the cap formation comprises Lambda exonuclease that cleaves unliganded extended duplexes back to exonuclease resistant binding Achieved by treating the extended duplex with an exonuclease such as Can be The presence of this bond at the 5 'end of the extended duplex then indicates that subsequent ligation To prevent it from getting involved. Obviously, many other capping methods, For example, acylation, ligation of inert oligonucleotides, and the like may be used. Free 3 'chick When droxyl is involved, cap formation is due to chain-terminating nucleoside triphosphates, e.g. For example, in the presence of dideoxynucleoside triphosphate, etc. This can be achieved by elongating the chain.   The phosphoramidate linkage described above is referred to herein as a "chemically cleavable nucleic acid." An example of a general class of internucleoside linkages called "internucleoside linkages". These are oxidizing environment, reducing environment, light of characteristic wavelength (for photo-labile coupling), etc. Cutting by treating them with characteristic chemical or physical conditions like Is an internucleoside linkage that can be Chemically cleavable that can be used according to the present invention Other examples of functional internucleoside linkages include Urdea 5,380,833; Gryaznov et al., Nucleic  Acids Research, 21: 1403-1408 (1993) (disulfide); Gryaznov et al., Nucleic.  Acids Research, 22: 2366-2369 (1994) (bromoacetyl); Urdea et al., International. No. PCT / US91 / 05287 (photoinstability); and similar documents.   Further chemically cleavable bonds that can be used in the present invention are extensible nucleic acids. Includes chain terminating nucleotides that can be chemically converted to osides. Of such compounds Examples are described in the following documents: Canard et al., International Application PCT / FR94 / 00345; Ansorg e, German Patent Application DE 4141178 A1; Metzker et al., Nucleic Acids Research, 22: 4. 259-4267 (1994); Cheeseman, U.S. Patent No. 5,302,509; Ross et al., International Application No. PCT / US90 / 06178, etc.   To extend the starting oligonucleotide or extended duplex in the 5 '→ 3' direction Is shown in FIG. 3A. The template (20) is immobilized by its 3 'end It is bound to the support (10). As mentioned above, this can be accomplished using standard techniques and biotin or Or just via a similar connecting part, it can just be achieved conveniently. 3 'hydroxyl group The starting oligonucleotide (300) having Is annealed to the template (20) as described above. Oligonucleotide of the following form Use Otide Probe (302):                     OP (= O) (O-) O- (5 ') BBB ... BBBRRRRBt * Here, BBB ... BBBRRRR is the 2'-deoxynucleotide of the oligonucleotide probe (302). Represents the sequence of the reotide, and "RRRR" represents the four ribonucleotides of the probe (302). Represents the sequence and Bt *Is the chain terminator labeled as described above. like this Mixed RNA-DNA oligonucleotides can be easily prepared using a standard automated DNA synthesizer. Synthesized (eg, Duck et al., US Pat. No. 5,011,769). RNase H has four ribosomes. Cleavage of the probe specifically at the center of the nucleotide segment (Hogrefe et al. J. Biol. Chem., 265: 5561-5566 (1990)). (312), which may participate in subsequent ligation steps. In this way, the real In an embodiment, the cycle comprises annealing the probe (302) to the template (20). It proceeds by linking (304) and forming an extended duplex (306). . Bt *After identification via, the extended duplex cleaves the label, leaving an extendable end. Treated with RNase H for regeneration. The cycle is then repeated (31 Four). The cap formation (310) consists of four dideoxynucleosides prior to RNase H treatment. Not linked with DNA polymerase in the presence of triphosphate, ddATP, ddCTP, ddGTP and ddTTP This can be done by extending the terminus.   A similar scheme can be used for 3′5 ′ extension, as described in FIG. 3B. In such embodiments, the starting oligonucleotide or extended duplex (330 ) Has a 5 ′ monophosphate and the oligonucleotide probe (332) has the following form RU:                       HO- (3 ') BBB ... BBBRRRRB..BBt *.   After annealing, ligation (334), and identification (338), the extended Heavy chain (336) is an RNase that in this case leaves a 5 'monophosphate (342) at the end of the extended duplex H cuts. The cycle is repeated using the regenerated extensible ends. (344). The cap formation step consists of an unlabeled non-RNA containing plug prior to RNase H hydrolysis. Any remaining by ligating lobes or by treatment with phosphatase By removing the 5 'monophosphate.   Nucleotide identification can be achieved by polymerase extension after ligation. FIG. For this embodiment, as illustrated in FIG. A starting oligonucleotide (4) attached to a solid support (10) and having a 3 'hydroxyl 00) is annealed to the template before the first cycle. Has the following form Oligonucleotide probe (402):             OP (= O) (O-) O- (5 ') BBB ... BBBRRRRB ... B (3') OP (= O) (O-) O Is annealed to the template (20) and ligated (404) to the extended duplex (40 6) is formed. 3'-monophosphate prevents sequential ligation of probes in the same cycle Is removed with phosphatase (408), exposing the free 3 'hydroxyl (410). Clearly, another blocking approach could be used. Extended duplex (406) Is a nucleic acid polymer in the presence of labeled dideoxynucleoside triphosphate (412). Further extended by the enzyme, thereby incorporating the incorporated dideoxynucleoside. Allows identification of the nucleotides of the template (20). Then A portion of the labeled dideoxynucleotide and probe (402) was To regenerate an extendable end on the heavy chain (406), for example, by RNase H treatment Disconnected (414). The cycle is then repeated (416).   To reduce the number of separate annealing reactions that must be performed, A oligonucleotide probe has a duplex that perfectly matches its complementary sequence. Mixtures or subsequences of probes with similar stability or free energy of binding Units. Oligonucleotides with similar duplex stability Such a subset of probes is referred to herein as an oligonucleotide probe. Is called the "stringency class." Then the oligonucleotide The mixture of lobes or stringency classes is substantially the same as the target polynucleotide. Conditions under which only oligonucleotide probes complementary to the tide form a duplex Below, it is separately mixed with the target polynucleotide. That is, hybrid The stringency of the lysis reaction is substantially completely complementary to oligonucleotides. Only the otide probe is selected to form a duplex. Then these complete Are linked to form an extended duplex. Given oligo Oligonucleotides within each stringency class per nucleotide probe length The number of reotide probes can vary widely. Oligonucleotide probe length And the choice of stringency class size depends on the length of the Is prepared and the extent to which the hybridization reaction can be automated To a degree that the stringency of the hybridization reaction can be controlled. Such as the presence or absence of an oligonucleotide probe with a specific sequence Depends on several factors. Stringency class for certain embodiments Guidance on choosing the appropriate size can be found in nucleic acid hybridization and polymer Can be found in the general literature on the polymerase chain reaction method (eg Gotoh, Adv . Biophys. 16: 1-52 (1983); Wetmer, Critical Reviews in Biochemistry and M olecular Biology 26: 227-259 (1991); Breslauer et al., Proc. Natl. Acad. Sci. 8 3: 3746-3750 (1986); Wolf et al., Nucleic Acids Research, 15: 2911-2926 (1987);  Innis et al., Ed., PCR Protocols (Academic Press, New York, 1990); McGraw et al., Bio. techniques, 8: 674-678 (1990)). Stringency depends on temperature, salt concentration, Several changing parameters, including the concentration of certain organic solvents such as formamide It can be controlled by a meter. Preferably, the various polymerases used are Ligase activity or salt or organic solvent concentration To limit the degree that can be varied to ensure specific annealing of the probe, Temperature is used to define the stringency class.   In general, the larger the stringency class, the more hybridized The complexity of the resulting mixture increases, and any particular The concentration of the oligonucleotide probe decreases. Complementary part on target polynucleotide Lower concentration oligonucleotide probe that hybridizes and ligates The relative likelihood of used oligonucleotide probes Let it. This, in turn, leads to reduced sensitivity. Also, the stringency class The larger the distance between the oligonucleotide probe and the complementary sequence There is great variation in the stability of the duplex formed. On the other hand, stringency seek The smaller the glass the smaller the set of all oligonucleotide probes To ensure that it hybridizes to the target polynucleotide, Requires a hybridization reaction.   For example, if an 8-mer oligonucleotide probe is used, the string The efficiency class contains between about 50 and about 500 oligonucleotide probes each. I can see. In this way, hundreds to thousands of hybridization / ligation reactions are necessary. Is required. For larger size oligonucleotide probes, Large stringency classes reduce the number of hybridization / extension reactions Pragmatic (for example, 10Four~TenFiveOr more).   Oligonucleotide probes of the same stringency class In a manner similar to that where a dumb oligonucleotide probe is synthesized (e.g., T elenius et al., Genomics, 13: 718-725 (1992); Welsh et al., No. cleic Acids Research,  19: 5275-5279 (1991); Grothues et al., Nucleic Acuds Research, 21: 1321-1322 (19 93); Hartley, as disclosed in European Patent Application 90304496.4, etc.) Can be synthesized. The difference is that each cycle increases the different mixture of monomers. To be applied to the growing oligonucleotide probe strand, where The ratio of each monomer of the oligonucleotide in the stringency class Indicated by the proportion of each nucleoside at the position of the probe. Stringing The ency class is based on available algorithms (eg, Breslauer et al., Proc. Natl. Acad. Sci., 83: 3746-3750 (1986); Lowe et al., Nucleic Acids Research, 18: 175. 7-1761 (1990)) to calculate the free energy of duplex formation. It is easily formed. Oligonucleotide probes are used under standard reaction conditions (e.g., For example, standard bubble sort, Base, Computer Algorithms (Addison-Wesley, Menl o Park, 1978)), ordered by the free energy of binding to their complement. It is. For example, the following is a duplex under standard hybridization conditions Has maximum stability (from top to bottom) due to the free energy of formation, Is a list of 10 6-mers with the lowest stability of free energy of formation and duplex formation (Free energy is calculated by Breslauer et al., Supra).   Thus, if the stringency class consists of the first 10 Then the mixture monomer for the first (3'-most) position is 0: 4: 6: 0 (A : C: G: T) and for the second position it would be 0: 6: 4: 0 (Hereinafter the same). If the stringency class is from the last 10 6 mer The mixture of monomers for the first position would be 1: 0: 4: 5 , For the second position, it would be 5: 0: 0: 5 (and so on). Then get The resulting mixture is heated and eluted to obtain the desired stringency class sequence. It can be further enriched (eg, Miyazawa et al., J. Mol. Biol., 11: 223-237 (1965)).   More conveniently, stringency comprising hundreds to thousands of oligonucleotides Classes can be synthesized directly by various parallel synthesis approaches (e.g., F rank et al., U.S. Patent No. 4,689,405; Matson et al., Anal. Biochem., 224; 110-116 (199 5); Fodor et al., International Application No. PCT / US93 / 04145; Pease et al., Proc. Natl. Acad. Sci. 91: 5022-5026 (1994); Southern et al. Biotechnology, 35: 217-227 (1994), Br ennan, International Application No. PCT / US94 / 05896).   In some cases, forming an oligonucleotide probe-dimer In other subsets or oligonucleotide probes that are sensitive to Separate subsets of oligos with complementary sequences to oligonucleotide probes By placing the nucleotide probe on the It may be desirable to form additional stringency classes.   Obviously, those skilled in the art will not further mention the invention, although not explicitly described above. The features of the above embodiments can be combined to design an embodiment. You.   The present invention also provides a system and apparatus for automatically performing the method of the present invention. including. Such systems and devices include: i) anchoring the target polynucleotide Ii) the desired degree of parallel operation; iii) the nature of the solid support used to Iv) some detection schemes, including whether to reuse or discard reagents It can take various forms depending on the design pharmaceutical. Generally, the device is a series of reagent reservoirs, Target polynucleotide preferably attached to a solid support (e.g., magnetic beads) One or more reaction vessels containing one, one or more detection stations, and reagent storage To transfer reagents from the instrument to the reaction vessel and detection station in a predetermined manner Computer control means. Computer to transfer reagents and control temperature The method of controlling the motor is described in Harrison et al., Biotechniques, 14: 88-97 (1993); Fujita et al., B iotechniques, 9: 584-591 (1990); Wada et al., Rev. Sci. Instrum, 54: 1569-1572 (1 983) and various general purpose laboratory robots. Can be executed. Such laboratory robots are also commercially available (e.g., A pplied Biosystems model 800 Catalyst (Foster City, CA)).   Various kits may be provided for performing different embodiments of the invention. General The kit of the present invention comprises an oligonucleotide probe, a starting oligonucleotide , And a detection system. The kit further comprises a ligation reagent and a special Includes instructions for implementing the embodiments. Protein ligase, RNase H, nucleic acid In embodiments using limerase, or other enzymes, their respective buffers May be included. In some cases, these buffers may be identical . Preferably, the kit also includes a solid support for anchoring the template ( For example, magnetic beads). In one preferred kit, the target polynucleotide Probes corresponding to the different terminal nucleotides of the otide provide clear spectral Minute Oligonucleotide probes that are fluorescently labeled to retain a resolvable fluorescent dye Robes are provided. "Spectrally resolvable" as used herein refers to Under operating conditions, the dyes are based on their spectral properties, in particular their fluorescence emission wavelength. Means that they can be distinguished. Thus, one or more ends Nucleotide identity is different in color, or perhaps intensity at different wavelengths Correlates to the ratio of More preferably, four such probes comprise a target polynucleotide. Four spectrally resolvable fluorescent dyes on the cleotide and four possible terminal nuclei It is provided to allow for a one-to-one correspondence between each of the nucleotides. Spect A set of chemically degradable dyes is disclosed in U.S. Pat.Nos. 4,855,225 and 5,188,934. : International Application No. PCT / US90 / 05565; and Lee et al., Nucleic Acids Research, 20:24. 71-2483 (1992).                                  Example 1         Amplified from pUC19 using four starting oligonucleotides                      Sequencing of the target polynucleotide   In this example, the template containing the binding region and part of the pUC19 plasmid The sheet is amplified by PCR and attached to magnetic beads. 4 starting oligos The nucleotides are used in separate reactions as described below. As shown in the following equation, An 8-mer with four central ribonucleotides and both 5 'and 3' monophosphates Use an oligonucleotide probe:                 OP (= O) (O-) O- (5 ') BBRRRRBB (3')-OP (= O) (O-) O. After annealing, the probe is enzymatically linked to the starting oligonucleotide and Wash the bead support. Remove 3 'phosphate of ligated probe with phosphatase And then in the presence of four labeled dideoxynucleoside triphosphate chain terminators. Then, the probe is extended with a DNA polymerase. Washing extended nucleotides After identification and identification, the ligated probe is cut at the ribonucleotide portion with RNase H. To remove the label and regenerate the extendable ends.   SacI / XmaI digested pUC of the following double-stranded fragment containing the 36-mer binding region Connect to 19:   After isolation and amplification, the modified 402 bp fragment of pUC19 was Amplify by PCR for use as a plate. The fragment is position 41 The binding region inserted adjacent to the SacI site in the polylinker region (unmodified pUC19 Over the region of pUC19 at position 413) (Yanisch-Perron et al., Gene, 33: 103-119 (1985)). ). The sequences 5'-CCCTCTCCCCTCTCCCTCx-3 'and 5'-GCAGCTCCCGGAGACGGT-3' (where "X" indicates a commercially available reagent (e.g., 3 'biotin- During the synthesis using ON CPG (Clonetech Laboratories, Palo Alto, California) 18-mer oligonucleotide having a 3 'biotin moiety attached) Use a probe. Isolate the amplified template and use M280-streptavi With Dynal, Inc., Great Neck, New York, the manufacturer's protocol (Dy nabeads Template Preparation Kit) using streptavidin-coated magnetic beads. (Dynabeads). About 300 g of Dynabeads M280-Streptavidin Provide a sufficient amount of biotinylated 313 bp fragment to load .   Duplex formed with the starting oligonucleotide enhances duplex stability To this end, the binding region sequence is selected to have a composition of about 66% GC. Also secondary Accidental initiating oligonucleotide to one or more positions within the structure formation and binding region Sequences are chosen to prevent hybridization. Given start in the coupling region Any shifting of oligonucleotide positions will also result in significant numbers of mismatched bases. Is generated.   After loading, the non-biotinylated strand of the template is denatured by heating. The magnetic beads are then washed and divided into four aliquots. The template attached to the magnetic beads has the following sequence:   The following four oligonucleotides were added to each of the separate aliquots of the template Use as starting oligonucleotide in:   The following reactions and washes are generally performed for 50% of the enzymes used unless otherwise specified. Performed in the buffer recommended by the manufacturer (New England Biolabs) for L volumes. Also, Standard buffers are described in Sambrook et al., Molecular Cloning, Second Edition (Cold Spring Harbor). Laboratory Press, 1989).   96 string containing all 8mer probes for each of the four aliquots together 684 or 682 oligonucleotide probes of the Gency class (48 different (Two subsets for each of the annealing temperatures). Each of 96 classes Separate each probe into target oligonucleotides in a reaction mixture with the same components Anneal separately, but with Sequenase and T4 DNA ligase at temperatures below 37 ° C Extended and ligated, and Taq Stoffel fragments and other thermostable ligers Extensions and ligation performed on zeolites are an exception.   The 48 stringency conditions are such that each group of the same temperature subset has the following: That of the subset group containing the highest and next lowest stringency classes Annealing in the range of 22 ° C to 70 ° C so that the annealing temperature differs by 1 ° C Specified by temperature. The range of annealing temperature (22-70 ° C) is the least The stable and most stable 8-mers are up to about 50 percent in standard PCR buffer By a temperature 5-10 ° C lower than the temperature expected to have large annealing You Approximately determine the boundaries.   After 5-10 minutes incubation at 80 ° C., the reaction mixture is left for 20-30 minutes To bring them to their respective annealing temperatures. Coupling, washing, and hosting After treatment with phatase, 2 units of polymerase and labeled dideoxynucleotide Tide triphosphate (0.08 mM final reaction concentration, and TAMRA (tetramethylrhodamine) , FAM (fluorescein), ROX (rhodamine X), and JOE (2 ', 7'-dimethoxy) (Labeled with -4 ', 5'-dichlorofluorescein). After 15 minutes, remove the beadsTwoO And mix each reaction mixture at standard wavelengths (eg, Users Manual, Model 37). 3 Irradiate using DNA sequencer (Applied Biosystems, Foster City, CA). Determine the identity of the extended nucleotide.   After identification, the reaction mixture is treated with RNase H using the protocol recommended by the manufacturer, And wash. RNase H-treated extended duplex removes the regenerated 3 'hydroxyl Ready for the next ligation / extension / disconnection cycle. All of the test sequences The cycle is performed until the nucleotide is identified.                                 Example 2          Amplified from pUC19 using certain starting oligonucleotides                     Sequencing of the target polynucleotide   In this example, the extension is in the 5 ′ → 3 ′ direction, so the biotin moiety is Other than attaching to the 5 'end of the primer that hybridizes to the CT rich strand In this example, a template is prepared according to Example 1. Like this In this example, the binding region of the single-stranded template is a GA-rich segment (Essentially the complement of the binding region of Example 1). Sequence 5'-xGAGGGAGAGGGGAGAGGG-3 ' And 5'-ACCGTCTCCGGGAGCTGC-3 '(where "x" is the manufacturer's protocol Commercially available reagents (e.g., Aminolink aminoalkyl phosphoramidite ligation (Applied Biosystems, Foster City, California) and Clontech Laborato ries (Biotin-X-NHS ester available from Palo Alto, California) , A 5 'biotin moiety attached during synthesis) Use nucleotide probes.   Use a single 12-mer starting oligonucleotide with the following sequence:                 5'-OP (= O) (O-) O-CCTCTCCCTTCCCTCTCCTCC-3 '. Between the most 3 ′ side of the probe and the second nucleoside from the 3 ′ side, as shown in the following formula: 6-mer oligonucleotide pro with acid labile phosphoramidate linkage between Use the following:                   HO- (3 ') B (5')-OP (= O) (O-) NH- (3 ') BBBBBBt * Here, the labels are such that they correspond to the most 3 ′ identity (therefore, 16 different label positions). Deoxynucleosides are used for probe synthesis), Bt *Means JOE-, FAM-, TAMR A- or ROX-labeled dideoxynucleoside.   As described above, a 6-mer probe was prepared for 96-strands, each containing 42 or 43 probes. Linguistic class (two sub-cells for each of the 48 different annealing temperatures) ). Hybridization and ligation are performed as described above. After ligation and washing, target by the fluorescent signal of the oligonucleotide probe Identify nucleosides in the polynucleotide. Then, at room temperature The extended duplex is treated with 0.8% trifluoroacetic acid in To perform acid cleavage to regenerate extendable ends on the extended duplex. Target Polinu The process is continued until the nucleotide sequence is determined.

Claims (1)

【特許請求の範囲】 1.ポリヌクレオチド中のヌクレオチド配列を同定する方法であって、以下の工 程: (a)開始オリゴヌクレオチドを、オリゴヌクレオチドプローブと該開始オリ ゴヌクレオチドとを連結することによってポリヌクレオチドに沿って伸長させ、 伸長した二重鎖を形成させる工程; (b)該ポリヌクレオチドの1つ以上のヌクレオチドを同定する工程;および (c)ヌクレオチドの配列が決定されるまで工程(a)および(b)を繰り返 す工程、 を包含する、方法。 2.前記オリゴヌクレオチドプローブが前記開始オリゴヌクレオチドに対して遠 位の末端に鎖終結部分を有する、請求項1に記載の方法。 3.前記同定の工程が、前記鎖終結部分を除去する工程、および1つ以上の標識 した鎖終結ヌクレオシド三リン酸の存在下で核酸ポリメラーゼを用いて該オリゴ ヌクレオチドプローブを伸長させる工程を包含する、請求項2に記載の方法。 4.前記伸長した二重鎖上に伸長可能な末端を再生する工程をさらに包含する、 請求項3に記載の方法。 5.前記オリゴヌクレオチドプローブが4つのリボヌクレオチドのサブ配列を包 含し、そして前記再生の工程が該オリゴヌクレオチドプローブをRNase Hを用い て切断する工程を包含する、請求項4に記載の方法。 6.前記鎖終結部分が3'ホスフェートである、請求項5に記載の方法。 7.伸長した二重鎖または前記開始オリゴヌクレオチドが前記オリゴヌクレオチ ドプローブに連結できない場合は常に、該伸長した二重鎖または該開始オリゴヌ クレオチドにキャップ形成させる工程をさらに包含する、請求項2に記載の方法 。 8.前記伸長した二重鎖上に伸長可能な末端を再生する工程をさらに包含する、 請求項2に記載の方法。 9.前記再生の工程が、前記伸長した二重鎖において化学的に切断可能なヌクレ オシド間結合を切断する工程を包含する、請求項8に記載の方法。 10.前記化学的に切断可能なヌクレオシド間結合がホスホルアミデートである 、請求項9に記載の方法。 11.前記再生の工程が、前記伸長した二重鎖においてヌクレオシド間結合を酵 素的に切断する工程を包含する、請求項8に記載の方法。 12.前記オリゴヌクレオチドプローブが4種のリボヌクレオチドのサブ配列を 包含し、そして前記再生の工程が該オリゴヌクレオチドプローブをRNase Hを用 いて切断する工程を包含する、請求項11に記載の方法。 13.ポリヌクレオチドのヌクレオチド配列を決定する方法であって、以下の工 程: (a)該ポリヌクレオチドを含むテンプレートを提供する工程; (b)該ポリヌクレオチドに近接する該テンプレートと二重鎖を形成する開始 オリゴヌクレオチドを提供する工程; (c)該開始オリゴヌクレオチドに近接する該テンプレートにオリゴヌクレオ チドプローブをアニールする工程; (d)該オリゴヌクレオチドプローブを該開始オリゴヌクレオチドに連結させ て、伸長した二重鎖を形成させる工程; (e)該連結されたオリゴヌクレオチドプローブ上の標識によって該ポリヌク レオチドの1つ以上のヌクレオチドを同定する工程;および (f)該ポリヌクレオチドのヌクレオチド配列が決定されるまで工程(c)〜 (e)を繰り返す工程、 を包含する、方法。 14.前記オリゴヌクレオチドプローブが前記開始オリゴヌクレオチドに対して 遠位の末端に鎖終結部分を有し、そして前記方法が該オリゴヌクレオチドプロー ブ上に伸長可能な末端を再生する工程をさらに包含する、請求項13に記載の方 法。 15.前記オリゴヌクレオチドプローブに連結できない前記伸長した二重鎖また は前記開始オリゴヌクレオチドにキャップ形成する工程をさらに包含する、請求 項14に記載の方法。 16.前記同定の工程が前記ポリヌクレオチドの1つのヌクレオチドを同定する ことよりなる、請求項14に記載の方法。 17.前記同定の工程が前記鎖終結部分を除去する工程、および1つ以上の標識 された鎖終結ヌクレオシド三リン酸の存在下で核酸ポリメラーゼを用いて前記オ リゴヌクレオチドプローブを伸長させる工程を包含する、請求項16に記載の方 法。 18.オリゴヌクレオチドプローブであって、以下の式: HO−(3')(B)j(5')−OP(=O)(O-)NH−(B)k−Bt * を有し、ここで: Bはヌクレオシドまたはそのアナログであり; jは1〜12の範囲であり; kはjとkとの合計が12以下であるように、0〜12の範囲であり; Bt *は標識された鎖終結部分である、 オリゴヌクレオチドプローブ。 19.以下からなる群より選択されるオリゴヌクレオチドプローブであって: OP(=O)(O-)O−(5')(B)sRRRR(B)wt *、 HO−(3')(B)sRRRR(B)wt *、および OP(=O)(O-)O−(5')(B)sRRRR(B)w(3')OP(=O)(O-)O ここで: Bはデオキシリボヌクレオチドまたはそのアナログであり; Rはリボヌクレオチドであり; sは1〜8の範囲であり; wはjとkとの合計が8以下であるように0〜8の範囲であり; Bt *は標識された鎖終結部分である、 オリゴヌクレオチドプローブ。[Claims] 1. A method for identifying a nucleotide sequence in a polynucleotide, comprising the following steps: About:   (A) the starting oligonucleotide is composed of an oligonucleotide probe and the starting oligonucleotide; Extending along the polynucleotide by linking with the oligonucleotide, Forming an extended duplex;   (B) identifying one or more nucleotides of the polynucleotide;   (C) repeating steps (a) and (b) until the nucleotide sequence is determined Process A method comprising: 2. The oligonucleotide probe is far from the starting oligonucleotide 2. The method of claim 1, wherein the method has a chain terminator at the terminus. 3. The step of identifying comprises removing the chain terminating moiety; and one or more labels. The oligonucleotide using a nucleic acid polymerase in the presence of the isolated chain-terminating nucleoside triphosphate. 3. The method of claim 2, comprising extending the nucleotide probe. 4. Regenerating an extendable end on the extended duplex, The method of claim 3. 5. The oligonucleotide probe encompasses four ribonucleotide subsequences. And the step of regenerating the oligonucleotide probe using RNase H. 5. The method of claim 4, comprising the step of cutting by cutting. 6. 6. The method of claim 5, wherein said chain terminating moiety is a 3 'phosphate. 7. The extended duplex or the starting oligonucleotide is the oligonucleotide Whenever the probe cannot be ligated, the extended duplex or the starting oligonucleotide 3. The method of claim 2, further comprising the step of capping the nucleotide. . 8. Regenerating an extendable end on the extended duplex, The method according to claim 2. 9. The step of regenerating comprises the step of chemically cleavable nucleic acid in the elongated duplex. 9. The method of claim 8, comprising cleaving the interosidic bond. 10. The chemically cleavable internucleoside linkage is phosphoramidate The method of claim 9. 11. The step of regenerating enzymatically induces internucleoside linkages in the elongated duplex. 9. The method of claim 8, comprising the step of elementary cutting. 12. The oligonucleotide probe comprises four ribonucleotide subsequences. And the step of regenerating uses the oligonucleotide probe with RNase H. 12. The method of claim 11, comprising cutting and cutting. 13. A method for determining the nucleotide sequence of a polynucleotide, comprising the following steps: About:   (A) providing a template comprising the polynucleotide;   (B) initiation of forming a duplex with the template in proximity to the polynucleotide Providing an oligonucleotide;   (C) oligonucleotides on the template adjacent to the starting oligonucleotide; Annealing the tide probe;   (D) linking the oligonucleotide probe to the starting oligonucleotide Forming an extended duplex;   (E) labeling the polynucleotide with a label on the ligated oligonucleotide probe Identifying one or more nucleotides of the reotide; and   (F) Steps (c) to (c) until the nucleotide sequence of the polynucleotide is determined. Repeating (e), A method comprising: 14. The oligonucleotide probe is relative to the starting oligonucleotide A chain terminator at the distal end, and wherein the method comprises: 14. The method of claim 13, further comprising the step of regenerating an extensible end on the probe. Law. 15. Said extended duplex which cannot be linked to said oligonucleotide probe or Further comprising the step of capping the starting oligonucleotide. Item 15. The method according to Item 14. 16. The step of identifying identifies one nucleotide of the polynucleotide The method of claim 14, comprising: 17. Said step of identifying removing said chain terminating moiety, and one or more labels Using a nucleic acid polymerase in the presence of the resulting chain-terminated nucleoside triphosphate 17. The method of claim 16, further comprising the step of extending the lignonucleotide probe. Law. 18. An oligonucleotide probe having the following formula: HO- (3 ') (B)j(5 ')-OP (= O) (O-) NH- (B)k-Bt * And where:   B is a nucleoside or an analog thereof;   j ranges from 1 to 12;   k ranges from 0 to 12 such that the sum of j and k is 12 or less;   Bt *Is a labeled chain terminator, Oligonucleotide probe. 19. An oligonucleotide probe selected from the group consisting of:     OP (= O) (O-) O- (5 ') (B)sRRRR (B)wBt *,     HO- (3 ') (B)sRRRR (B)wBt *,and     OP (= O) (O-) O- (5 ') (B)sRRRR (B)w(3 ') OP (= O) (O-) O here:   B is deoxyribonucleotide or an analog thereof;   R is a ribonucleotide;   s ranges from 1 to 8;   w ranges from 0 to 8 so that the sum of j and k is 8 or less;   Bt *Is a labeled chain terminator, Oligonucleotide probe.
JP53184896A 1995-04-17 1996-04-16 DNA sequencing by parallel oligonucleotide extension Expired - Lifetime JP4546582B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/424,663 US5750341A (en) 1995-04-17 1995-04-17 DNA sequencing by parallel oligonucleotide extensions
US08/424,663 1995-04-17
PCT/US1996/005245 WO1996033205A1 (en) 1995-04-17 1996-04-16 Dna sequencing by parallel oligonucleotide extensions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007185093A Division JP2007282639A (en) 1995-04-17 2007-07-13 Dna sequencing by parallel oligonucleotide extension
JP2007333327A Division JP2008086328A (en) 1995-04-17 2007-12-25 Dna sequencing by parallel oligonucleotide extensions

Publications (2)

Publication Number Publication Date
JPH11503908A true JPH11503908A (en) 1999-04-06
JP4546582B2 JP4546582B2 (en) 2010-09-15

Family

ID=23683421

Family Applications (5)

Application Number Title Priority Date Filing Date
JP53184896A Expired - Lifetime JP4546582B2 (en) 1995-04-17 1996-04-16 DNA sequencing by parallel oligonucleotide extension
JP2007185093A Pending JP2007282639A (en) 1995-04-17 2007-07-13 Dna sequencing by parallel oligonucleotide extension
JP2007333327A Pending JP2008086328A (en) 1995-04-17 2007-12-25 Dna sequencing by parallel oligonucleotide extensions
JP2010257927A Expired - Lifetime JP5279800B2 (en) 1995-04-17 2010-11-18 DNA sequencing by parallel oligonucleotide extension
JP2010257918A Pending JP2011092191A (en) 1995-04-17 2010-11-18 Dna sequencing by parallel oligonucleotide extensions

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2007185093A Pending JP2007282639A (en) 1995-04-17 2007-07-13 Dna sequencing by parallel oligonucleotide extension
JP2007333327A Pending JP2008086328A (en) 1995-04-17 2007-12-25 Dna sequencing by parallel oligonucleotide extensions
JP2010257927A Expired - Lifetime JP5279800B2 (en) 1995-04-17 2010-11-18 DNA sequencing by parallel oligonucleotide extension
JP2010257918A Pending JP2011092191A (en) 1995-04-17 2010-11-18 Dna sequencing by parallel oligonucleotide extensions

Country Status (8)

Country Link
US (3) US5750341A (en)
EP (5) EP2298787B1 (en)
JP (5) JP4546582B2 (en)
AU (1) AU718937B2 (en)
CA (1) CA2218017C (en)
DE (1) DE10184524T1 (en)
DK (1) DK2298787T3 (en)
WO (1) WO1996033205A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027401A (en) * 2006-02-24 2013-02-07 Callida Genomics Inc High throughput genome sequencing on dna array
US11414702B2 (en) 2005-06-15 2022-08-16 Complete Genomics, Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments

Families Citing this family (654)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401267B1 (en) * 1993-09-27 2002-06-11 Radoje Drmanac Methods and compositions for efficient nucleic acid sequencing
WO1998053300A2 (en) 1997-05-23 1998-11-26 Lynx Therapeutics, Inc. System and apparaus for sequential processing of analytes
USRE43097E1 (en) 1994-10-13 2012-01-10 Illumina, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US8236493B2 (en) * 1994-10-21 2012-08-07 Affymetrix, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
US6974666B1 (en) * 1994-10-21 2005-12-13 Appymetric, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
JP2001508308A (en) * 1997-01-15 2001-06-26 ブラックス グループ リミテッド Nucleic acid sequencing
US6117634A (en) 1997-03-05 2000-09-12 The Reagents Of The University Of Michigan Nucleic acid sequencing and mapping
US6197557B1 (en) 1997-03-05 2001-03-06 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
EP2327797B1 (en) 1997-04-01 2015-11-25 Illumina Cambridge Limited Method of nucleic acid sequencing
US7056659B1 (en) 1997-07-11 2006-06-06 Xzillion Gmbh & Co. Characterizing nucleic acids
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
CA2335562A1 (en) * 1998-06-22 1999-12-29 Roxana Maria Havlina Production of polymers from nucleotidic and/or non-nucleotidic elements using enzymatic methods
EP2045334A1 (en) 1998-06-24 2009-04-08 Illumina, Inc. Decoding of array sensors with microspheres
US5998175A (en) * 1998-07-24 1999-12-07 Lumigen, Inc. Methods of synthesizing and amplifying polynucleotides by ligation of multiple oligomers
US7270958B2 (en) * 1998-09-10 2007-09-18 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
AU7569600A (en) 1999-05-20 2000-12-28 Illumina, Inc. Combinatorial decoding of random nucleic acid arrays
US20020025519A1 (en) * 1999-06-17 2002-02-28 David J. Wright Methods and oligonucleotides for detecting nucleic acid sequence variations
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7244559B2 (en) * 1999-09-16 2007-07-17 454 Life Sciences Corporation Method of sequencing a nucleic acid
US7211390B2 (en) * 1999-09-16 2007-05-01 454 Life Sciences Corporation Method of sequencing a nucleic acid
US6653080B2 (en) * 2000-03-22 2003-11-25 Quantum Dot Corporation Loop probe hybridization assay for polynucleotide analysis
WO2002072892A1 (en) 2001-03-12 2002-09-19 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
US7138506B2 (en) * 2001-05-09 2006-11-21 Genetic Id, Na, Inc. Universal microarray system
US20050260570A1 (en) * 2001-05-29 2005-11-24 Mao Jen-I Sequencing by proxy
US20050009022A1 (en) * 2001-07-06 2005-01-13 Weiner Michael P. Method for isolation of independent, parallel chemical micro-reactions using a porous filter
US20030054396A1 (en) * 2001-09-07 2003-03-20 Weiner Michael P. Enzymatic light amplification
US6956114B2 (en) 2001-10-30 2005-10-18 '454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US6902921B2 (en) 2001-10-30 2005-06-07 454 Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20050124022A1 (en) * 2001-10-30 2005-06-09 Maithreyan Srinivasan Novel sulfurylase-luciferase fusion proteins and thermostable sulfurylase
US20030166026A1 (en) * 2002-01-09 2003-09-04 Lynx Therapeutics, Inc. Identification of specific biomarkers for breast cancer cells
US20030170700A1 (en) * 2002-01-09 2003-09-11 Lynx Therapeutics, Inc. Secreted and cell surface polypeptides affected by cholesterol and uses thereof
US20030180764A1 (en) * 2002-01-09 2003-09-25 Lynx Therapeutics, Inc. Genes affected by cholesterol treatment and during adipogenesis
US20050250100A1 (en) * 2002-06-12 2005-11-10 Yoshihide Hayashizaki Method of utilizing the 5'end of transcribed nucleic acid regions for cloning and analysis
JP4480715B2 (en) * 2003-01-29 2010-06-16 454 コーポレーション Double-end sequencing
US7575865B2 (en) * 2003-01-29 2009-08-18 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
CN103289893B (en) 2003-02-26 2015-11-18 凯利达基因组股份有限公司 By hybridizing the random array DNA analysis carried out
EP1604040B1 (en) * 2003-03-07 2010-10-13 Rubicon Genomics, Inc. Amplification and analysis of whole genome and whole transcriptome libraries generated by a dna polymerization process
US8206913B1 (en) 2003-03-07 2012-06-26 Rubicon Genomics, Inc. Amplification and analysis of whole genome and whole transcriptome libraries generated by a DNA polymerization process
EP2532745B1 (en) 2003-07-05 2015-09-09 The Johns Hopkins University Method and Compositions for Detection and Enumeration of Genetic Variations
GB0324456D0 (en) * 2003-10-20 2003-11-19 Isis Innovation Parallel DNA sequencing methods
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7981604B2 (en) 2004-02-19 2011-07-19 California Institute Of Technology Methods and kits for analyzing polynucleotide sequences
CA2557841A1 (en) * 2004-02-27 2005-09-09 President And Fellows Of Harvard College Polony fluorescent in situ sequencing beads
US7635562B2 (en) 2004-05-25 2009-12-22 Helicos Biosciences Corporation Methods and devices for nucleic acid sequence determination
US7476734B2 (en) 2005-12-06 2009-01-13 Helicos Biosciences Corporation Nucleotide analogs
US7311794B2 (en) 2004-05-28 2007-12-25 Wafergen, Inc. Methods of sealing micro wells
WO2006073504A2 (en) * 2004-08-04 2006-07-13 President And Fellows Of Harvard College Wobble sequencing
GB0422551D0 (en) * 2004-10-11 2004-11-10 Univ Liverpool Labelling and sequencing of nucleic acids
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
US7482120B2 (en) 2005-01-28 2009-01-27 Helicos Biosciences Corporation Methods and compositions for improving fidelity in a nucleic acid synthesis reaction
EP2241637A1 (en) * 2005-02-01 2010-10-20 AB Advanced Genetic Analysis Corporation Nucleic acid sequencing by performing successive cycles of duplex extension
EP2239342A3 (en) * 2005-02-01 2010-11-03 AB Advanced Genetic Analysis Corporation Reagents, methods and libraries for bead-based sequencing
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
US7960104B2 (en) 2005-10-07 2011-06-14 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
GB0524069D0 (en) 2005-11-25 2006-01-04 Solexa Ltd Preparation of templates for solid phase amplification
US20090305248A1 (en) * 2005-12-15 2009-12-10 Lander Eric G Methods for increasing accuracy of nucleic acid sequencing
US20070168197A1 (en) * 2006-01-18 2007-07-19 Nokia Corporation Audio coding
SG10201405158QA (en) 2006-02-24 2014-10-30 Callida Genomics Inc High throughput genome sequencing on dna arrays
US20080309926A1 (en) * 2006-03-08 2008-12-18 Aaron Weber Systems and methods for reducing detected intensity non uniformity in a laser beam
US7397546B2 (en) * 2006-03-08 2008-07-08 Helicos Biosciences Corporation Systems and methods for reducing detected intensity non-uniformity in a laser beam
CA2649725A1 (en) * 2006-04-19 2007-10-25 Applera Corporation Reagents, methods, and libraries for gel-free bead-based sequencing
US8921073B2 (en) * 2006-06-23 2014-12-30 Illumina, Inc. Devices and systems for creation of DNA cluster arrays
US20080241836A1 (en) * 2006-08-07 2008-10-02 Gafur Zainiev Process for self-assembly of structures in a liquid
CA2662837C (en) * 2006-08-30 2012-07-31 Bioventures, Inc. Methods and substances for isolation and detection of small polynucleotides
US7754429B2 (en) 2006-10-06 2010-07-13 Illumina Cambridge Limited Method for pair-wise sequencing a plurity of target polynucleotides
EP2076609A1 (en) 2006-10-10 2009-07-08 Illumina Inc. Compositions and methods for representational selection of nucleic acids fro complex mixtures using hybridization
WO2008070352A2 (en) 2006-10-27 2008-06-12 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US20090111706A1 (en) * 2006-11-09 2009-04-30 Complete Genomics, Inc. Selection of dna adaptor orientation by amplification
US20080242560A1 (en) * 2006-11-21 2008-10-02 Gunderson Kevin L Methods for generating amplified nucleic acid arrays
US7881933B2 (en) * 2007-03-23 2011-02-01 Verizon Patent And Licensing Inc. Age determination using speech
WO2008151127A1 (en) * 2007-06-04 2008-12-11 President And Fellows Of Harvard College Compounds and methods for chemical ligation
EP2181204A2 (en) * 2007-08-23 2010-05-05 Applied Biosystems Inc. Methods of modifying support surfaces for the immobilization of particles and the use of the immobilized particles for analyzing nucleic acids
US8759077B2 (en) * 2007-08-28 2014-06-24 Lightspeed Genomics, Inc. Apparatus for selective excitation of microparticles
US8222040B2 (en) * 2007-08-28 2012-07-17 Lightspeed Genomics, Inc. Nucleic acid sequencing by selective excitation of microparticles
WO2009029728A1 (en) 2007-08-29 2009-03-05 Applied Biosystems Inc. Alternative nucleic acid sequencing methods
EP2212434A1 (en) * 2007-10-01 2010-08-04 Applied Biosystems Inc. Chase ligation sequencing
US8951731B2 (en) 2007-10-15 2015-02-10 Complete Genomics, Inc. Sequence analysis using decorated nucleic acids
US7767441B2 (en) 2007-10-25 2010-08-03 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
US7811810B2 (en) 2007-10-25 2010-10-12 Industrial Technology Research Institute Bioassay system including optical detection apparatuses, and method for detecting biomolecules
US8415099B2 (en) 2007-11-05 2013-04-09 Complete Genomics, Inc. Efficient base determination in sequencing reactions
US7897344B2 (en) 2007-11-06 2011-03-01 Complete Genomics, Inc. Methods and oligonucleotide designs for insertion of multiple adaptors into library constructs
US8617811B2 (en) 2008-01-28 2013-12-31 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
US8518640B2 (en) 2007-10-29 2013-08-27 Complete Genomics, Inc. Nucleic acid sequencing and process
US7901890B2 (en) 2007-11-05 2011-03-08 Complete Genomics, Inc. Methods and oligonucleotide designs for insertion of multiple adaptors employing selective methylation
DK2215209T3 (en) 2007-10-30 2018-09-03 Complete Genomics Inc DEVICE FOR HIGH-THROUGHPUT SEQUENCE OF NUCLEIC ACIDS
WO2009067632A1 (en) * 2007-11-20 2009-05-28 Applied Biosystems Inc. Method of sequencing nucleic acids using elaborated nucleotide phosphorothiolate compounds
US8017338B2 (en) * 2007-11-20 2011-09-13 Life Technologies Corporation Reversible di-nucleotide terminator sequencing
WO2009073629A2 (en) 2007-11-29 2009-06-11 Complete Genomics, Inc. Efficient shotgun sequencing methods
US9551026B2 (en) 2007-12-03 2017-01-24 Complete Genomincs, Inc. Method for nucleic acid detection using voltage enhancement
US8592150B2 (en) 2007-12-05 2013-11-26 Complete Genomics, Inc. Methods and compositions for long fragment read sequencing
EP2565279B1 (en) 2007-12-05 2014-12-03 Complete Genomics, Inc. Efficient base determination in sequencing reactions
US8852864B2 (en) 2008-01-17 2014-10-07 Sequenom Inc. Methods and compositions for the analysis of nucleic acids
WO2009132028A1 (en) * 2008-04-21 2009-10-29 Complete Genomics, Inc. Array structures for nucleic acid detection
US9434988B2 (en) 2008-04-30 2016-09-06 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
EP3150727B1 (en) 2008-04-30 2019-07-10 Integrated DNA Technologies Inc. Rnase-h-based assays utilizing modified rna monomers
US8911948B2 (en) * 2008-04-30 2014-12-16 Integrated Dna Technologies, Inc. RNase H-based assays utilizing modified RNA monomers
US8039817B2 (en) 2008-05-05 2011-10-18 Illumina, Inc. Compensator for multiple surface imaging
EP2294214A2 (en) * 2008-05-07 2011-03-16 Illumina, Inc. Compositions and methods for providing substances to and from an array
CA2724322C (en) 2008-05-14 2019-07-16 Dermtech International Diagnosis of melanoma and solar lentigo by nucleic acid analysis
EP2291533B2 (en) 2008-07-02 2020-09-30 Illumina Cambridge Limited Using populations of beads for the fabrication of arrays on surfaces
WO2010003153A2 (en) * 2008-07-03 2010-01-07 Life Technologies Corporation Methylation analysis of mate pairs
US8173198B2 (en) * 2008-07-23 2012-05-08 Life Technologies Corporation Deposition of metal oxides onto surfaces as an immobilization vehicle for carboxylated or phophated particles or polymers
US8530156B2 (en) * 2008-08-08 2013-09-10 President And Fellows Of Harvard College Chemically cleavable phosphoramidite linkers for sequencing by ligation
US8583380B2 (en) 2008-09-05 2013-11-12 Aueon, Inc. Methods for stratifying and annotating cancer drug treatment options
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
US8481264B2 (en) * 2008-09-19 2013-07-09 Pacific Biosciences Of California, Inc. Immobilized nucleic acid complexes for sequence analysis
US8921046B2 (en) 2008-09-19 2014-12-30 Pacific Biosciences Of California, Inc. Nucleic acid sequence analysis
US8728764B2 (en) 2008-10-02 2014-05-20 Illumina Cambridge Limited Nucleic acid sample enrichment for sequencing applications
EP2340314B8 (en) 2008-10-22 2015-02-18 Illumina, Inc. Preservation of information related to genomic dna methylation
AU2009319907B2 (en) 2008-11-03 2015-10-01 The Regents Of The University Of California Methods for detecting modification resistant nucleic acids
WO2010068702A2 (en) * 2008-12-10 2010-06-17 Illumina, Inc. Methods and compositions for hybridizing nucleic acids
EP2607496B1 (en) 2008-12-23 2014-07-16 Illumina, Inc. Methods useful in nucleic acid sequencing protocols
JP2012515533A (en) * 2009-01-20 2012-07-12 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Methods of single cell gene expression for diagnosis, prognosis, and drug discovery target identification
WO2010091021A2 (en) * 2009-02-03 2010-08-12 Complete Genomics, Inc. Oligomer sequences mapping
US8738296B2 (en) * 2009-02-03 2014-05-27 Complete Genomics, Inc. Indexing a reference sequence for oligomer sequence mapping
WO2010091024A1 (en) * 2009-02-03 2010-08-12 Complete Genomics, Inc. Oligomer sequences mapping
US9778188B2 (en) 2009-03-11 2017-10-03 Industrial Technology Research Institute Apparatus and method for detection and discrimination molecular object
GB0907372D0 (en) 2009-04-29 2009-06-10 Invitrogen Dynal As Particles
CN102460155B (en) * 2009-04-29 2015-03-25 考利达基因组股份有限公司 Method and system for calling variations in a sample polynucleotide sequence with respect to a reference polynucleotide sequence
CA2760439A1 (en) 2009-04-30 2010-11-04 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
WO2010127304A2 (en) * 2009-05-01 2010-11-04 Illumina, Inc. Sequencing methods
DK2977455T3 (en) 2009-06-15 2020-07-13 Complete Genomics Inc PROGRESS FOR LONG-FRAGMENT READING SEQUENCE
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
DK2456892T3 (en) * 2009-07-24 2014-12-08 Illumina Inc Procedure for sequencing of a polynukleotidskabelon
AU2010278668B2 (en) 2009-07-29 2015-06-18 Pyrobett Pte Ltd Method and apparatus for conducting an assay
HUE030765T2 (en) 2009-08-25 2017-05-29 Illumina Inc Methods for selecting and amplifying polynucleotides
US8975019B2 (en) * 2009-10-19 2015-03-10 University Of Massachusetts Deducing exon connectivity by RNA-templated DNA ligation/sequencing
US20110117559A1 (en) * 2009-11-13 2011-05-19 Integrated Dna Technologies, Inc. Small rna detection assays
US9482615B2 (en) 2010-03-15 2016-11-01 Industrial Technology Research Institute Single-molecule detection system and methods
US8502867B2 (en) 2010-03-19 2013-08-06 Lightspeed Genomics, Inc. Synthetic aperture optics imaging method using minimum selective excitation patterns
US9465228B2 (en) 2010-03-19 2016-10-11 Optical Biosystems, Inc. Illumination apparatus optimized for synthetic aperture optics imaging using minimum selective excitation patterns
WO2011123246A2 (en) 2010-04-01 2011-10-06 Illumina, Inc. Solid-phase clonal amplification and related methods
US10787701B2 (en) 2010-04-05 2020-09-29 Prognosys Biosciences, Inc. Spatially encoded biological assays
US20190300945A1 (en) 2010-04-05 2019-10-03 Prognosys Biosciences, Inc. Spatially Encoded Biological Assays
CA2794522C (en) 2010-04-05 2019-11-26 Prognosys Biosciences, Inc. Spatially encoded biological assays
WO2011140433A2 (en) 2010-05-07 2011-11-10 The Board Of Trustees Of The Leland Stanford Junior University Measurement and comparison of immune diversity by high-throughput sequencing
US9670243B2 (en) 2010-06-02 2017-06-06 Industrial Technology Research Institute Compositions and methods for sequencing nucleic acids
US8865077B2 (en) 2010-06-11 2014-10-21 Industrial Technology Research Institute Apparatus for single-molecule detection
US8865078B2 (en) 2010-06-11 2014-10-21 Industrial Technology Research Institute Apparatus for single-molecule detection
EP2952590B1 (en) 2010-06-11 2017-07-26 Life Technologies Corporation Alternative nucleotide flows in sequencing-by-synthesis methods
US9029103B2 (en) 2010-08-27 2015-05-12 Illumina Cambridge Limited Methods for sequencing polynucleotides
US9671344B2 (en) 2010-08-31 2017-06-06 Complete Genomics, Inc. High-density biochemical array chips with asynchronous tracks for alignment correction by moiré averaging
EP3327140A1 (en) 2010-09-16 2018-05-30 Gen-Probe Incorporated Capture probes immobilizable via l-nucleotide tail
US8483969B2 (en) 2010-09-17 2013-07-09 Illuminia, Inc. Variation analysis for multiple templates on a solid support
IN2013MN00522A (en) 2010-09-24 2015-05-29 Univ Leland Stanford Junior
US8759038B2 (en) 2010-09-29 2014-06-24 Illumina Cambridge Limited Compositions and methods for sequencing nucleic acids
GB201016484D0 (en) 2010-09-30 2010-11-17 Geneseque As Method
US8725422B2 (en) 2010-10-13 2014-05-13 Complete Genomics, Inc. Methods for estimating genome-wide copy number variations
US20150218639A1 (en) 2014-01-17 2015-08-06 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US20150225792A1 (en) 2014-01-17 2015-08-13 Northwestern University Compositions and methods for identifying depressive disorders
US10233501B2 (en) 2010-10-19 2019-03-19 Northwestern University Biomarkers predictive of predisposition to depression and response to treatment
US10093981B2 (en) 2010-10-19 2018-10-09 Northwestern University Compositions and methods for identifying depressive disorders
WO2012055929A1 (en) 2010-10-26 2012-05-03 Illumina, Inc. Sequencing methods
EP2633470B1 (en) 2010-10-27 2016-10-26 Life Technologies Corporation Predictive model for use in sequencing-by-synthesis
US10273540B2 (en) 2010-10-27 2019-04-30 Life Technologies Corporation Methods and apparatuses for estimating parameters in a predictive model for use in sequencing-by-synthesis
US9255293B2 (en) 2010-11-01 2016-02-09 Gen-Probe Incorporated Integrated capture and amplification of target nucleic acid for sequencing
US8575071B2 (en) 2010-11-03 2013-11-05 Illumina, Inc. Reducing adapter dimer formation
US9074251B2 (en) 2011-02-10 2015-07-07 Illumina, Inc. Linking sequence reads using paired code tags
CA2821299C (en) 2010-11-05 2019-02-12 Frank J. Steemers Linking sequence reads using paired code tags
WO2012074855A2 (en) 2010-11-22 2012-06-07 The Regents Of The University Of California Methods of identifying a cellular nascent rna transcript
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
US9594870B2 (en) 2010-12-29 2017-03-14 Life Technologies Corporation Time-warped background signal for sequencing-by-synthesis operations
WO2013025998A1 (en) 2011-08-18 2013-02-21 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
WO2012092515A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Methods, systems, and computer readable media for nucleic acid sequencing
US20130060482A1 (en) 2010-12-30 2013-03-07 Life Technologies Corporation Methods, systems, and computer readable media for making base calls in nucleic acid sequencing
WO2012092455A2 (en) 2010-12-30 2012-07-05 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
WO2012125220A2 (en) * 2011-01-14 2012-09-20 Life Technologies Corporation Methods for isolation, identification, and quantification of mirnas
WO2012100194A1 (en) 2011-01-20 2012-07-26 Ibis Biosciences, Inc. Microfluidic transducer
EP2670894B1 (en) 2011-02-02 2017-11-29 University Of Washington Through Its Center For Commercialization Massively parallel continguity mapping
AU2012225310B2 (en) 2011-03-09 2017-08-03 Cell Signaling Technology, Inc. Methods and reagents for creating monoclonal antibodies
US9353411B2 (en) 2011-03-30 2016-05-31 Parallel Synthesis Technologies Nucleic acid sequencing technique using a pH-sensing agent
EP3878975A1 (en) 2011-04-08 2021-09-15 Life Technologies Corporation Phase-protecting reagent flow orderings for use in sequencing-by-synthesis
GB201106254D0 (en) 2011-04-13 2011-05-25 Frisen Jonas Method and product
EP2697397B1 (en) 2011-04-15 2017-04-05 The Johns Hopkins University Safe sequencing system
CN103502457A (en) 2011-05-02 2014-01-08 先锋国际良种公司 Bacterial mrna screen strategy for novel pesticide-encoding nucleic acid molecule discovery
US8778848B2 (en) 2011-06-09 2014-07-15 Illumina, Inc. Patterned flow-cells useful for nucleic acid analysis
US9670538B2 (en) 2011-08-05 2017-06-06 Ibis Biosciences, Inc. Nucleic acid sequencing by electrochemical detection
US10704164B2 (en) 2011-08-31 2020-07-07 Life Technologies Corporation Methods, systems, computer readable media, and kits for sample identification
WO2013049135A1 (en) 2011-09-26 2013-04-04 Gen-Probe Incorporated Algorithms for sequence determinations
US10378051B2 (en) 2011-09-29 2019-08-13 Illumina Cambridge Limited Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing
EP2766498B1 (en) 2011-10-14 2019-06-19 President and Fellows of Harvard College Sequencing by structure assembly
WO2013058907A1 (en) 2011-10-17 2013-04-25 Good Start Genetics, Inc. Analysis methods
US9206418B2 (en) 2011-10-19 2015-12-08 Nugen Technologies, Inc. Compositions and methods for directional nucleic acid amplification and sequencing
CA2856163C (en) 2011-10-28 2019-05-07 Illumina, Inc. Microarray fabrication system and method
US10837879B2 (en) 2011-11-02 2020-11-17 Complete Genomics, Inc. Treatment for stabilizing nucleic acid arrays
EP2776165A2 (en) 2011-11-07 2014-09-17 Illumina, Inc. Integrated sequencing apparatuses and methods of use
EP2788499B1 (en) 2011-12-09 2016-01-13 Illumina, Inc. Expanded radix for polymeric tags
US20130189679A1 (en) 2011-12-20 2013-07-25 The Regents Of The University Of Michigan Pseudogenes and uses thereof
US10150993B2 (en) 2011-12-22 2018-12-11 Ibis Biosciences, Inc. Macromolecule positioning by electrical potential
WO2014163886A1 (en) 2013-03-12 2014-10-09 President And Fellows Of Harvard College Method of generating a three-dimensional nucleic acid containing matrix
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
WO2013096838A2 (en) 2011-12-22 2013-06-27 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids
US9334491B2 (en) 2011-12-22 2016-05-10 Ibis Biosciences, Inc. Systems and methods for isolating nucleic acids from cellular samples
EP4108782B1 (en) 2011-12-22 2023-06-07 President and Fellows of Harvard College Compositions and methods for analyte detection
WO2013102091A1 (en) 2011-12-28 2013-07-04 Ibis Biosciences, Inc. Nucleic acid ligation systems and methods
US9823246B2 (en) 2011-12-28 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Fluorescence enhancing plasmonic nanoscopic gold films and assays based thereon
WO2013102081A2 (en) 2011-12-29 2013-07-04 Ibis Biosciences, Inc. Macromolecule delivery to nanowells
US9222115B2 (en) 2011-12-30 2015-12-29 Abbott Molecular, Inc. Channels with cross-sectional thermal gradients
US9822417B2 (en) 2012-01-09 2017-11-21 Oslo Universitetssykehus Hf Methods and biomarkers for analysis of colorectal cancer
EP2802666B1 (en) 2012-01-13 2018-09-19 Data2Bio Genotyping by next-generation sequencing
CN105861487B (en) 2012-01-26 2020-05-05 纽亘技术公司 Compositions and methods for targeted nucleic acid sequence enrichment and efficient library generation
US9515676B2 (en) 2012-01-31 2016-12-06 Life Technologies Corporation Methods and computer program products for compression of sequencing data
US9864846B2 (en) 2012-01-31 2018-01-09 Life Technologies Corporation Methods and computer program products for compression of sequencing data
CA2863084C (en) 2012-02-01 2020-07-07 Gen-Probe Incorporated Asymmetric hairpin target capture oligomers
WO2013117595A2 (en) 2012-02-07 2013-08-15 Illumina Cambridge Limited Targeted enrichment and amplification of nucleic acids on a support
EP2817627A2 (en) 2012-02-21 2014-12-31 Oslo Universitetssykehus HF Methods and biomarkers for detection and prognosis of cervical cancer
US11177020B2 (en) 2012-02-27 2021-11-16 The University Of North Carolina At Chapel Hill Methods and uses for molecular tags
AU2013229151A1 (en) 2012-03-06 2014-09-25 Aarhus University Gene signatures associated with efficacy of postmastectomy radiotherapy in breast cancer
NO2694769T3 (en) 2012-03-06 2018-03-03
US9732387B2 (en) 2012-04-03 2017-08-15 The Regents Of The University Of Michigan Biomarker associated with irritable bowel syndrome and Crohn's disease
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
US8812422B2 (en) 2012-04-09 2014-08-19 Good Start Genetics, Inc. Variant database
US9444880B2 (en) 2012-04-11 2016-09-13 Illumina, Inc. Cloud computing environment for biological data
US20130274148A1 (en) 2012-04-11 2013-10-17 Illumina, Inc. Portable genetic detection and analysis system and method
US10227635B2 (en) 2012-04-16 2019-03-12 Molecular Loop Biosolutions, Llc Capture reactions
EP2844772B1 (en) 2012-05-02 2018-07-11 Ibis Biosciences, Inc. Dna sequencing
EP2844775B1 (en) 2012-05-02 2018-07-18 Ibis Biosciences, Inc. Dna sequencing
EP2844767A4 (en) 2012-05-02 2015-11-18 Ibis Biosciences Inc Nucleic acid sequencing systems and methods
EP2844774B1 (en) 2012-05-02 2018-07-18 Ibis Biosciences, Inc. Dna sequencing
WO2013166517A1 (en) 2012-05-04 2013-11-07 Complete Genomics, Inc. Methods for determining absolute genome-wide copy number variations of complex tumors
US9646132B2 (en) 2012-05-11 2017-05-09 Life Technologies Corporation Models for analyzing data from sequencing-by-synthesis operations
AU2012380717B2 (en) 2012-05-24 2018-08-16 Fundacio Institucio Catalana De Recerca I Estudis Avancats Method for the identification of the origin of a cancer of unknown primary origin by methylation analysis
WO2013184754A2 (en) 2012-06-05 2013-12-12 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using dna origami probes
US9012022B2 (en) 2012-06-08 2015-04-21 Illumina, Inc. Polymer coatings
US8895249B2 (en) 2012-06-15 2014-11-25 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
SG11201408478QA (en) 2012-06-18 2015-02-27 Nugen Technologies Inc Compositions and methods for negative selection of non-desired nucleic acid sequences
WO2014005076A2 (en) 2012-06-29 2014-01-03 The Regents Of The University Of Michigan Methods and biomarkers for detection of kidney disorders
US20150011396A1 (en) 2012-07-09 2015-01-08 Benjamin G. Schroeder Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US9092401B2 (en) 2012-10-31 2015-07-28 Counsyl, Inc. System and methods for detecting genetic variation
CA2876505A1 (en) 2012-07-17 2014-01-23 Counsyl, Inc. System and methods for detecting genetic variation
WO2014015098A1 (en) 2012-07-18 2014-01-23 Siemens Healthcare Diagnostics Inc. A method of normalizing biological samples
US10329608B2 (en) 2012-10-10 2019-06-25 Life Technologies Corporation Methods, systems, and computer readable media for repeat sequencing
CA2889765C (en) 2012-10-26 2021-06-22 Minna D. BALBAS Androgen receptor variants and methods for making and using
ES2886507T3 (en) 2012-10-29 2021-12-20 Univ Johns Hopkins Pap test for ovarian and endometrial cancers
US9116139B2 (en) 2012-11-05 2015-08-25 Illumina, Inc. Sequence scheduling and sample distribution techniques
EP2917368A1 (en) 2012-11-07 2015-09-16 Good Start Genetics, Inc. Methods and systems for identifying contamination in samples
EP2746405B1 (en) 2012-12-23 2015-11-04 HS Diagnomics GmbH Methods and primer sets for high throughput PCR sequencing
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
WO2014116729A2 (en) 2013-01-22 2014-07-31 The Board Of Trustees Of The Leland Stanford Junior University Haplotying of hla loci with ultra-deep shotgun sequencing
US9805407B2 (en) 2013-01-25 2017-10-31 Illumina, Inc. Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data
US9512422B2 (en) 2013-02-26 2016-12-06 Illumina, Inc. Gel patterned surfaces
GB2515990B (en) * 2013-03-06 2016-05-04 Lgc Genomics Ltd Polymerase chain reaction detection system
US20140272967A1 (en) 2013-03-13 2014-09-18 Abbott Molecular Inc. Systems and methods for isolating nucleic acids
DK2969479T3 (en) 2013-03-13 2021-08-02 Illumina Inc Multilayer liquid devices and methods for their manufacture
ES2887177T3 (en) 2013-03-13 2021-12-22 Illumina Inc Nucleic Acid Sequencing Library Preparation Method
WO2014152421A1 (en) 2013-03-14 2014-09-25 Good Start Genetics, Inc. Methods for analyzing nucleic acids
US20140287946A1 (en) 2013-03-14 2014-09-25 Ibis Biosciences, Inc. Nucleic acid control panels
US20140296080A1 (en) 2013-03-14 2014-10-02 Life Technologies Corporation Methods, Systems, and Computer Readable Media for Evaluating Variant Likelihood
US9701999B2 (en) 2013-03-14 2017-07-11 Abbott Molecular, Inc. Multiplex methylation-specific amplification systems and methods
WO2014150910A1 (en) 2013-03-15 2014-09-25 Ibis Biosciences, Inc. Dna sequences to assess contamination in dna sequencing
US9816088B2 (en) 2013-03-15 2017-11-14 Abvitro Llc Single cell bar-coding for antibody discovery
US9822408B2 (en) 2013-03-15 2017-11-21 Nugen Technologies, Inc. Sequential sequencing
US9890425B2 (en) 2013-03-15 2018-02-13 Abbott Molecular Inc. Systems and methods for detection of genomic copy number changes
EP3388442A1 (en) 2013-03-15 2018-10-17 Illumina Cambridge Limited Modified nucleosides or nucleotides
US9193998B2 (en) 2013-03-15 2015-11-24 Illumina, Inc. Super resolution imaging
EP3005200A2 (en) 2013-06-03 2016-04-13 Good Start Genetics, Inc. Methods and systems for storing sequence read data
EP3603679B1 (en) 2013-06-04 2022-08-10 President and Fellows of Harvard College Rna-guided transcriptional regulation
EP3008211A4 (en) 2013-06-11 2016-12-21 Courtagen Life Sciences Inc Methods and kits for treating and classifying individuals at risk of or suffering from trap1 change-of-function
US9879313B2 (en) 2013-06-25 2018-01-30 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
TR201816438T4 (en) 2013-07-01 2018-11-21 Illumina Inc Catalyst-free surface functionalization and polymer grafting.
CN109112193A (en) 2013-07-03 2019-01-01 伊鲁米那股份有限公司 Orthogonal synthesis sequencing
US9926597B2 (en) 2013-07-26 2018-03-27 Life Technologies Corporation Control nucleic acid sequences for use in sequencing-by-synthesis and methods for designing the same
US9116866B2 (en) 2013-08-21 2015-08-25 Seven Bridges Genomics Inc. Methods and systems for detecting sequence variants
US9898575B2 (en) 2013-08-21 2018-02-20 Seven Bridges Genomics Inc. Methods and systems for aligning sequences
US10726942B2 (en) 2013-08-23 2020-07-28 Complete Genomics, Inc. Long fragment de novo assembly using short reads
CN105916689A (en) 2013-08-30 2016-08-31 Illumina公司 Manipulation of droplets on hydrophilic or variegated-hydrophilic surfaces
US9352315B2 (en) 2013-09-27 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method to produce chemical pattern in micro-fluidic structure
WO2015051338A1 (en) 2013-10-04 2015-04-09 Life Technologies Corporation Methods and systems for modeling phasing effects in sequencing using termination chemistry
EP3058092B1 (en) 2013-10-17 2019-05-22 Illumina, Inc. Methods and compositions for preparing nucleic acid libraries
US11049587B2 (en) 2013-10-18 2021-06-29 Seven Bridges Genomics Inc. Methods and systems for aligning sequences in the presence of repeating elements
CA2927102C (en) 2013-10-18 2022-08-30 Seven Bridges Genomics Inc. Methods and systems for genotyping genetic samples
WO2015057565A1 (en) 2013-10-18 2015-04-23 Good Start Genetics, Inc. Methods for assessing a genomic region of a subject
US10832797B2 (en) 2013-10-18 2020-11-10 Seven Bridges Genomics Inc. Method and system for quantifying sequence alignment
EP3680347B1 (en) 2013-10-18 2022-08-10 Seven Bridges Genomics Inc. Methods and systems for identifying disease-induced mutations
US10851414B2 (en) 2013-10-18 2020-12-01 Good Start Genetics, Inc. Methods for determining carrier status
US9063914B2 (en) 2013-10-21 2015-06-23 Seven Bridges Genomics Inc. Systems and methods for transcriptome analysis
CA2929596C (en) 2013-11-13 2022-07-05 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
CA3181696A1 (en) 2013-12-03 2015-06-11 Paul BELITZ Methods and systems for analyzing image data
EP3077545B1 (en) 2013-12-05 2020-09-16 Centrillion Technology Holdings Corporation Methods for sequencing nucleic acids
EP3628747B1 (en) 2013-12-05 2022-10-05 Centrillion Technology Holdings Corporation Fabrication of patterned arrays
US10385335B2 (en) 2013-12-05 2019-08-20 Centrillion Technology Holdings Corporation Modified surfaces
EP3080268A1 (en) 2013-12-09 2016-10-19 Illumina, Inc. Methods and compositions for targeted nucleic acid sequencing
US9909181B2 (en) 2013-12-13 2018-03-06 Northwestern University Biomarkers for post-traumatic stress states
EP3083700B1 (en) 2013-12-17 2023-10-11 The Brigham and Women's Hospital, Inc. Detection of an antibody against a pathogen
EP3957750A1 (en) 2013-12-20 2022-02-23 Illumina, Inc. Preserving genomic connectivity information in fragmented genomic dna samples
WO2015100373A2 (en) 2013-12-23 2015-07-02 Illumina, Inc. Structured substrates for improving detection of light emissions and methods relating to the same
US10537889B2 (en) 2013-12-31 2020-01-21 Illumina, Inc. Addressable flow cell using patterned electrodes
SG11201605506QA (en) 2014-01-10 2016-08-30 Seven Bridges Genomics Inc Systems and methods for use of known alleles in read mapping
WO2015107430A2 (en) 2014-01-16 2015-07-23 Oslo Universitetssykehus Hf Methods and biomarkers for detection and prognosis of cervical cancer
US9817944B2 (en) 2014-02-11 2017-11-14 Seven Bridges Genomics Inc. Systems and methods for analyzing sequence data
CA2939642C (en) 2014-02-13 2022-05-31 Illumina, Inc. Integrated consumer genomic services
NZ723399A (en) 2014-02-18 2020-08-28 Illumina Inc Methods and compositions for dna profiling
US9745614B2 (en) 2014-02-28 2017-08-29 Nugen Technologies, Inc. Reduced representation bisulfite sequencing with diversity adaptors
US10767219B2 (en) 2014-03-11 2020-09-08 Illumina, Inc. Disposable, integrated microfluidic cartridge and methods of making and using same
US11060139B2 (en) 2014-03-28 2021-07-13 Centrillion Technology Holdings Corporation Methods for sequencing nucleic acids
US11053548B2 (en) 2014-05-12 2021-07-06 Good Start Genetics, Inc. Methods for detecting aneuploidy
WO2015175832A1 (en) 2014-05-16 2015-11-19 Illumina, Inc. Nucleic acid synthesis techniques
AU2015267189B2 (en) 2014-05-27 2019-12-05 Illumina, Inc. Systems and methods for biochemical analysis including a base instrument and a removable cartridge
EP3151733B1 (en) 2014-06-06 2020-04-15 The Regents Of The University Of Michigan Compositions and methods for characterizing and diagnosing periodontal disease
US20150353989A1 (en) 2014-06-09 2015-12-10 Illumina Cambridge Limited Sample preparation for nucleic acid amplification
CA3172086A1 (en) 2014-06-13 2015-12-17 Illumina Cambridge Limited Methods and compositions for preparing sequencing libraries
CN114214314A (en) 2014-06-24 2022-03-22 生物辐射实验室股份有限公司 Digital PCR barcoding
WO2015200833A2 (en) 2014-06-27 2015-12-30 Abbott Laboratories COMPOSITIONS AND METHODS FOR DETECTING HUMAN PEGIVIRUS 2 (HPgV-2)
DK3161152T3 (en) 2014-06-30 2019-03-25 Illumina Inc Methods and compositions using one-sided transposition
CA2955356C (en) 2014-07-15 2024-01-02 Illumina, Inc. Biochemically activated electronic device
BR112017001500A2 (en) 2014-07-24 2018-02-20 Abbott Molecular Inc compositions and methods for the detection and analysis of mycobacterial tuberculosis
GB201413929D0 (en) 2014-08-06 2014-09-17 Geneseque As Method
US10102337B2 (en) 2014-08-06 2018-10-16 Nugen Technologies, Inc. Digital measurements from targeted sequencing
GB201414098D0 (en) 2014-08-08 2014-09-24 Illumina Cambridge Ltd Modified nucleotide linkers
CN106796212A (en) 2014-08-12 2017-05-31 新生代吉恩公司 System and method for monitoring health based on the body fluid collected
CN107076739B (en) 2014-08-21 2018-12-25 伊卢米纳剑桥有限公司 Reversible surface functionalization
WO2016040446A1 (en) 2014-09-10 2016-03-17 Good Start Genetics, Inc. Methods for selectively suppressing non-target sequences
WO2016040602A1 (en) 2014-09-11 2016-03-17 Epicentre Technologies Corporation Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv
CA2961210A1 (en) 2014-09-15 2016-03-24 Abvitro, Inc. High-throughput nucleotide library sequencing
ES2788692T3 (en) 2014-09-17 2020-10-22 Ibis Biosciences Inc Synthesis sequencing using pulse read optics
CA2999708A1 (en) 2014-09-24 2016-03-31 Good Start Genetics, Inc. Process control for increased robustness of genetic assays
US10040048B1 (en) 2014-09-25 2018-08-07 Synthego Corporation Automated modular system and method for production of biopolymers
US10676787B2 (en) 2014-10-13 2020-06-09 Life Technologies Corporation Methods, systems, and computer-readable media for accelerated base calling
US9558321B2 (en) 2014-10-14 2017-01-31 Seven Bridges Genomics Inc. Systems and methods for smart tools in sequence pipelines
US9897791B2 (en) 2014-10-16 2018-02-20 Illumina, Inc. Optical scanning systems for in situ genetic analysis
BR112017007912A2 (en) 2014-10-17 2018-01-23 Illumina Cambridge Limited contiguity preservation transposon
WO2016061514A1 (en) 2014-10-17 2016-04-21 Good Start Genetics, Inc. Pre-implantation genetic screening and aneuploidy detection
WO2016066586A1 (en) 2014-10-31 2016-05-06 Illumina Cambridge Limited Novel polymers and dna copolymer coatings
US10000799B2 (en) 2014-11-04 2018-06-19 Boreal Genomics, Inc. Methods of sequencing with linked fragments
GB201419731D0 (en) 2014-11-05 2014-12-17 Illumina Cambridge Ltd Sequencing from multiple primers to increase data rate and density
CN111024936A (en) 2014-11-05 2020-04-17 纳迈达斯生物科技中心 Metal composites for enhanced imaging
DK3215616T3 (en) 2014-11-05 2020-03-02 Illumina Cambridge Ltd Reducing DNA damage during sample preparation and sequencing using siderophore chelators
PL3218511T3 (en) 2014-11-11 2020-10-19 Illumina Cambridge Limited Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid
WO2016081712A1 (en) 2014-11-19 2016-05-26 Bigdatabio, Llc Systems and methods for genomic manipulations and analysis
CA3010579A1 (en) 2015-01-06 2016-07-14 Good Start Genetics, Inc. Screening for structural variants
US9984201B2 (en) 2015-01-18 2018-05-29 Youhealth Biotech, Limited Method and system for determining cancer status
KR20200020997A (en) 2015-02-10 2020-02-26 일루미나, 인코포레이티드 The method and the composition for analyzing the cellular constituent
US10421993B2 (en) 2015-02-11 2019-09-24 Paragon Genomics, Inc. Methods and compositions for reducing non-specific amplification products
WO2016130746A1 (en) 2015-02-11 2016-08-18 Paragon Genomics, Inc. Method and compositions for reducing non-specific amplification products
US10208339B2 (en) 2015-02-19 2019-02-19 Takara Bio Usa, Inc. Systems and methods for whole genome amplification
EP3822361A1 (en) 2015-02-20 2021-05-19 Takara Bio USA, Inc. Method for rapid accurate dispensing, visualization and analysis of single cells
WO2016141294A1 (en) 2015-03-05 2016-09-09 Seven Bridges Genomics Inc. Systems and methods for genomic pattern analysis
ES2846730T3 (en) 2015-03-31 2021-07-29 Illumina Cambridge Ltd Concatemerization on the surface of molds
EP4119677B1 (en) 2015-04-10 2023-06-28 Spatial Transcriptomics AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
CN112229834A (en) 2015-04-14 2021-01-15 亿明达股份有限公司 Structured substrate for improved detection of light emission and method relating thereto
KR102333255B1 (en) 2015-05-11 2021-12-01 일루미나, 인코포레이티드 Platform for discovery and analysis of therapeutic agents
EP3295345B1 (en) 2015-05-14 2023-01-25 Life Technologies Corporation Barcode sequences, and related systems and methods
US10275567B2 (en) 2015-05-22 2019-04-30 Seven Bridges Genomics Inc. Systems and methods for haplotyping
WO2016196358A1 (en) 2015-05-29 2016-12-08 Epicentre Technologies Corporation Methods of analyzing nucleic acids
CA2985545C (en) 2015-05-29 2021-02-09 Illumina Cambridge Limited Enhanced utilization of surface primers in clusters
EP3103885B1 (en) 2015-06-09 2019-01-30 Centrillion Technology Holdings Corporation Methods for sequencing nucleic acids
CN115261468A (en) 2015-07-06 2022-11-01 伊卢米纳剑桥有限公司 Sample preparation for nucleic acid amplification
CN107924121B (en) 2015-07-07 2021-06-08 亿明达股份有限公司 Selective surface patterning via nanoimprinting
WO2017011538A1 (en) 2015-07-14 2017-01-19 Abbott Molecular Inc. Purification of nucleic acids using copper-titanium oxides
EP3322483A4 (en) 2015-07-14 2019-01-02 Abbott Molecular Inc. Compositions and methods for identifying drug resistant tuberculosis
CA2992578A1 (en) 2015-07-14 2017-01-19 Victor Velculescu Neoantigen analysis
WO2017015018A1 (en) 2015-07-17 2017-01-26 Illumina, Inc. Polymer sheets for sequencing applications
US11214829B2 (en) 2015-07-23 2022-01-04 Asuragen, Inc. Methods, compositions, kits, and uses for analysis of nucleic acids comprising repeating A/T-rich segments
ES2888626T3 (en) 2015-07-27 2022-01-05 Illumina Inc Spatial mapping of nucleic acid sequence information
CA2993347A1 (en) 2015-07-29 2017-02-02 Progenity, Inc. Nucleic acids and methods for detecting chromosomal abnormalities
IL305561A (en) 2015-07-30 2023-10-01 Illumina Inc Orthogonal Deblocking of Nucleotides
WO2017024138A1 (en) 2015-08-06 2017-02-09 Arc Bio, Llc Systems and methods for genomic analysis
WO2017027653A1 (en) 2015-08-11 2017-02-16 The Johns Hopkins University Assaying ovarian cyst fluid
JP6612421B2 (en) 2015-08-14 2019-11-27 イラミーナ インコーポレーテッド System and method using a magnetic response sensor to determine genetic information
US10793895B2 (en) 2015-08-24 2020-10-06 Seven Bridges Genomics Inc. Systems and methods for epigenetic analysis
US10584380B2 (en) 2015-09-01 2020-03-10 Seven Bridges Genomics Inc. Systems and methods for mitochondrial analysis
US10724110B2 (en) 2015-09-01 2020-07-28 Seven Bridges Genomics Inc. Systems and methods for analyzing viral nucleic acids
EP3344389B1 (en) 2015-09-02 2020-06-10 Illumina Cambridge Limited Method of fixing defects in a hydrophobic surface of a droplet actuator
US10450598B2 (en) 2015-09-11 2019-10-22 Illumina, Inc. Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest
EP3933047A1 (en) 2015-09-24 2022-01-05 AbVitro LLC Affinity-oligonucleotide conjugates and uses thereof
WO2017053903A1 (en) 2015-09-24 2017-03-30 Abvitro Llc Single amplicon activated exclusion pcr
CN113774495A (en) 2015-09-25 2021-12-10 阿布维特罗有限责任公司 High throughput method for T cell receptor targeted identification of naturally paired T cell receptor sequences
US10577643B2 (en) 2015-10-07 2020-03-03 Illumina, Inc. Off-target capture reduction in sequencing techniques
EP3693459A1 (en) 2015-10-10 2020-08-12 Guardant Health, Inc. Methods and applications of gene fusion detection in cell-free dna analysis
US11347704B2 (en) 2015-10-16 2022-05-31 Seven Bridges Genomics Inc. Biological graph or sequence serialization
WO2017079406A1 (en) 2015-11-03 2017-05-11 President And Fellows Of Harvard College Method and apparatus for volumetric imaging of a three-dimensional nucleic acid containing matrix
CA3005101A1 (en) 2015-11-16 2017-05-26 Progenity, Inc. Nucleic acids and methods for detecting methylation status
WO2017106768A1 (en) 2015-12-17 2017-06-22 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
CN115881230A (en) 2015-12-17 2023-03-31 伊路敏纳公司 Differentiating methylation levels in complex biological samples
US20170199960A1 (en) 2016-01-07 2017-07-13 Seven Bridges Genomics Inc. Systems and methods for adaptive local alignment for graph genomes
US10730030B2 (en) 2016-01-08 2020-08-04 Bio-Rad Laboratories, Inc. Multiple beads per droplet resolution
US10364468B2 (en) 2016-01-13 2019-07-30 Seven Bridges Genomics Inc. Systems and methods for analyzing circulating tumor DNA
US10460829B2 (en) 2016-01-26 2019-10-29 Seven Bridges Genomics Inc. Systems and methods for encoding genetic variation for a population
EA037304B1 (en) 2016-01-27 2021-03-09 КАБУСИКИ КАЙСЯ ДиЭнЭйФОРМ Method for decoding base sequence of nucleic acid corresponding to end region of rna and method for analyzing dna element
CA3013916A1 (en) 2016-02-08 2017-08-17 RGENE, Inc. Multiple ligase compositions, systems, and methods
US10262102B2 (en) 2016-02-24 2019-04-16 Seven Bridges Genomics Inc. Systems and methods for genotyping with graph reference
CN109477127A (en) 2016-03-14 2019-03-15 R基因股份有限公司 Uht-stable lysine-saltant type ssDNA/RNA ligase
EP4071250A1 (en) 2016-03-22 2022-10-12 Myriad Women's Health, Inc. Combinatorial dna screening
EP3377226B1 (en) 2016-03-28 2021-02-17 Illumina, Inc. Multi-plane microarrays
EP4282974A3 (en) 2016-03-28 2024-03-13 Ncan Genomics, Inc. Linked duplex target capture
US10961573B2 (en) 2016-03-28 2021-03-30 Boreal Genomics, Inc. Linked duplex target capture
US11326206B2 (en) 2016-04-07 2022-05-10 Pacific Biosciences Of California, Inc. Methods of quantifying target nucleic acids and identifying sequence variants
WO2017180909A1 (en) 2016-04-13 2017-10-19 Nextgen Jane, Inc. Sample collection and preservation devices, systems and methods
WO2017189525A1 (en) 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US10619205B2 (en) 2016-05-06 2020-04-14 Life Technologies Corporation Combinatorial barcode sequences, and related systems and methods
US11118233B2 (en) 2016-05-18 2021-09-14 The University Of Chicago BTK mutation and ibrutinib resistance
EP3464642A4 (en) 2016-05-31 2020-02-19 The Regents of the University of California Methods for evaluating, monitoring, and modulating aging process
US11352667B2 (en) 2016-06-21 2022-06-07 10X Genomics, Inc. Nucleic acid sequencing
US10093986B2 (en) 2016-07-06 2018-10-09 Youhealth Biotech, Limited Leukemia methylation markers and uses thereof
EP3481403B1 (en) 2016-07-06 2022-02-09 Youhealth Biotech, Limited Solid tumor methylation markers and uses thereof
US11396678B2 (en) 2016-07-06 2022-07-26 The Regent Of The University Of California Breast and ovarian cancer methylation markers and uses thereof
WO2018013509A1 (en) 2016-07-11 2018-01-18 Arizona Board Of Regents On Behalf Of The University Of Arizona Compositions and methods for diagnosing and treating arrhythmias
EP3487616B1 (en) 2016-07-21 2023-08-09 Takara Bio USA, Inc. Multi-z imaging of wells of multi-well devices and liquid dispensing into the wells
EP3488002B1 (en) 2016-07-22 2021-03-31 Oregon Health & Science University Single cell whole genome libraries and combinatorial indexing methods of making thereof
CN109890198A (en) 2016-08-22 2019-06-14 拜欧卢米克有限公司 Seed treatment systems, devices and methods
EP3507385A4 (en) 2016-08-31 2020-04-29 President and Fellows of Harvard College Methods of combining the detection of biomolecules into a single assay using fluorescent in situ sequencing
GB2570412A (en) 2016-08-31 2019-07-24 Harvard College Methods of generating libraries of nucleic acid sequences for detection via fluorescent in situ sequencing
US11250931B2 (en) 2016-09-01 2022-02-15 Seven Bridges Genomics Inc. Systems and methods for detecting recombination
WO2018057770A1 (en) 2016-09-22 2018-03-29 Illumina, Inc. Somatic copy number variation detection
AU2017332495A1 (en) 2016-09-24 2019-04-11 Abvitro Llc Affinity-oligonucleotide conjugates and uses thereof
EP4361287A2 (en) 2016-09-28 2024-05-01 Life Technologies Corporation Methods for sequencing nucleic acids using termination chemistry
US10190155B2 (en) 2016-10-14 2019-01-29 Nugen Technologies, Inc. Molecular tag attachment and transfer
US11725232B2 (en) 2016-10-31 2023-08-15 The Hong Kong University Of Science And Technology Compositions, methods and kits for detection of genetic variants for alzheimer's disease
US20200248244A1 (en) 2016-11-15 2020-08-06 Personal Genome Diagnostics Inc. Non-unique barcodes in a genotyping assay
WO2018104908A2 (en) 2016-12-09 2018-06-14 Boreal Genomics, Inc. Linked ligation
US11021738B2 (en) 2016-12-19 2021-06-01 Bio-Rad Laboratories, Inc. Droplet tagging contiguity preserved tagmented DNA
GB201704754D0 (en) 2017-01-05 2017-05-10 Illumina Inc Kinetic exclusion amplification of nucleic acid libraries
DK3566158T3 (en) 2017-01-06 2022-07-18 Illumina Inc PHASE DIVISION CORRECTION
WO2018128544A1 (en) 2017-01-06 2018-07-12 Agendia N.V. Biomarkers for selecting patient groups, and uses thereof.
ES2874143T3 (en) 2017-01-10 2021-11-04 Paragon Genomics Inc Methods and compositions to reduce redundant, molecular barcodes created in primer extension reactions
EP3571613A1 (en) 2017-01-17 2019-11-27 Illumina, Inc. Oncogenic splice variant determination
GB201700983D0 (en) 2017-01-20 2017-03-08 Life Tech As Polymeric particles
SG11201906569XA (en) 2017-01-20 2019-08-27 Omniome Inc Genotyping by polymerase binding
CA3050241C (en) 2017-01-20 2022-11-29 Omniome, Inc. Allele-specific capture of nucleic acids
GB201701688D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials in non-recliner layouts
GB201701686D0 (en) 2017-02-01 2017-03-15 Illunina Inc System & method with fiducials having offset layouts
GB201701689D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials of non-closed shapes
EP3494235A1 (en) 2017-02-17 2019-06-12 Stichting VUmc Swarm intelligence-enhanced diagnosis and therapy selection for cancer using tumor- educated platelets
BR112019018272A2 (en) 2017-03-02 2020-07-28 Youhealth Oncotech, Limited methylation markers to diagnose hepatocellular carcinoma and cancer
EP3601611B1 (en) 2017-03-24 2022-01-05 Life Technologies Corporation Polynucleotide adapters and methods of use thereof
EP3607087A4 (en) 2017-04-04 2020-12-30 Omniome, Inc. Fluidic apparatus and methods useful for chemical and biological reactions
US10975430B2 (en) 2017-04-23 2021-04-13 Illumina Cambridge Limited Compositions and methods for improving sample identification in indexed nucleic acid libraries
ES2937929T3 (en) 2017-04-23 2023-04-03 Illumina Inc Compositions and methods to improve sample identification in indexed nucleic acid libraries
FI3872187T3 (en) 2017-04-23 2022-12-15 Compositions and methods for improving sample identification in indexed nucleic acid libraries
CN110785492B (en) 2017-04-23 2024-04-30 伊鲁米纳剑桥有限公司 Compositions and methods for improved sample identification in indexed nucleic acid libraries
WO2018213803A1 (en) 2017-05-19 2018-11-22 Neon Therapeutics, Inc. Immunogenic neoantigen identification
AU2018273999A1 (en) 2017-05-26 2019-12-05 Abvitro Llc High-throughput polynucleotide library sequencing and transcriptome analysis
CN110997932B (en) 2017-06-07 2024-06-04 俄勒冈健康科学大学 Single cell whole genome library for methylation sequencing
EP3634992B1 (en) 2017-06-08 2024-03-27 The Brigham And Women's Hospital, Inc. Methods and compositions for identifying epitopes
EP3642362A1 (en) 2017-06-20 2020-04-29 Illumina, Inc. Methods and compositions for addressing inefficiencies in amplification reactions
WO2018236918A1 (en) 2017-06-20 2018-12-27 Bio-Rad Laboratories, Inc. Mda using bead oligonucleotide
EP3662482A1 (en) 2017-07-31 2020-06-10 Illumina Inc. Sequencing system with multiplexed biological sample aggregation
SG11201911869XA (en) 2017-08-01 2020-01-30 Illumina Inc Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells
HUE061474T2 (en) 2017-08-01 2023-07-28 Mgi Tech Co Ltd Nucleic acid sequencing method
JP6998404B2 (en) 2017-08-01 2022-02-04 深▲セン▼恒特基因有限公司 Method for enriching and determining the target nucleotide sequence
AU2018317826B2 (en) 2017-08-15 2022-11-24 Pacific Biosciences Of California, Inc. Scanning apparatus and methods useful for detection of chemical and biological analytes
WO2019038594A2 (en) 2017-08-21 2019-02-28 Biolumic Limited High growth and high hardiness transgenic plants
MA50079A (en) 2017-09-07 2020-07-15 Juno Therapeutics Inc METHODS FOR IDENTIFYING CELLULAR CHARACTERISTICS RELATING TO RESPONSES ASSOCIATED WITH CELL THERAPY
WO2019055829A1 (en) 2017-09-15 2019-03-21 Nazarian Javad Methods for detecting cancer biomarkers
RU2020113600A (en) 2017-09-20 2021-10-20 Ридженерон Фармасьютикалз, Инк. METHODS FOR IMMUNOTHERAPY OF PATIENTS WHICH TUMORS ARE CHARACTERIZED BY HIGH LOAD OF PASSENGER GENE MUTATIONS
WO2019068880A1 (en) 2017-10-06 2019-04-11 Cartana Ab Rna templated ligation
WO2019071164A1 (en) 2017-10-06 2019-04-11 The University Of Chicago Screening of t lymphocytes for cancer-specific antigens
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
US10907205B2 (en) 2017-11-02 2021-02-02 Bio-Rad Laboratories, Inc. Transposase-based genomic analysis
FI3707723T3 (en) 2017-11-06 2023-12-13 Illumina Inc Nucleic acid indexing techniques
JP6955035B2 (en) 2017-11-16 2021-10-27 イルミナ インコーポレイテッド Systems and methods for determining microsatellite instability
CA3083183A1 (en) 2017-11-22 2019-05-31 The Regents Of The University Of Michigan Compositions and methods for treating cancer
US20190206510A1 (en) 2017-11-30 2019-07-04 Illumina, Inc. Validation methods and systems for sequence variant calls
US11701656B2 (en) 2018-01-02 2023-07-18 The Regents Of The University Of Michigan Multi-droplet capture
EP3738122A1 (en) 2018-01-12 2020-11-18 Life Technologies Corporation Methods for flow space quality score prediction by neural networks
CN111801937B8 (en) 2018-01-30 2022-10-14 瑞巴斯生物系统 Method and system for detecting particles using structured illumination
EP3746552B1 (en) 2018-01-31 2023-12-27 Bio-Rad Laboratories, Inc. Methods and compositions for deconvoluting partition barcodes
EP3752645A4 (en) 2018-02-14 2022-04-13 Dermtech, Inc. Novel gene classifiers and uses thereof in non-melanoma skin cancers
KR102383799B1 (en) 2018-04-02 2022-04-05 일루미나, 인코포레이티드 Compositions and methods for preparing controls for sequence-based genetic testing
EP3553182A1 (en) 2018-04-11 2019-10-16 Université de Bourgogne Detection method of somatic genetic anomalies, combination of capture probes and kit of detection
US20190338352A1 (en) 2018-04-19 2019-11-07 Omniome, Inc. Accuracy of base calls in nucleic acid sequencing methods
US20210239700A1 (en) 2018-05-04 2021-08-05 Abbott Laboratories Hbv diagnostic, prognostic, and therapeutic methods and products
KR102640255B1 (en) 2018-05-17 2024-02-27 일루미나, 인코포레이티드 High-throughput single-cell sequencing with reduced amplification bias
KR102393414B1 (en) 2018-06-04 2022-05-02 일루미나, 인코포레이티드 High-throughput, high-volume single-cell transcriptome libraries and methods of making and using same
WO2020022891A2 (en) 2018-07-26 2020-01-30 Stichting Vumc Biomarkers for atrial fibrillation
WO2020028194A1 (en) 2018-07-30 2020-02-06 Readcoor, Inc. Methods and systems for sample processing or analysis
EP4249651A3 (en) 2018-08-20 2023-10-18 Bio-Rad Laboratories, Inc. Nucleotide sequence generation by barcode bead-colocalization in partitions
WO2020047005A1 (en) 2018-08-28 2020-03-05 10X Genomics, Inc. Resolving spatial arrays
CN113286893A (en) 2018-08-28 2021-08-20 10X基因组学股份有限公司 Method of generating an array
US11519033B2 (en) 2018-08-28 2022-12-06 10X Genomics, Inc. Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
MX2021003768A (en) 2018-10-25 2021-05-27 Illumina Inc Methods and compositions for identifying ligands on arrays using indexes and barcodes.
NL2022043B1 (en) 2018-11-21 2020-06-03 Akershus Univ Hf Tagmentation-Associated Multiplex PCR Enrichment Sequencing
CN211311438U (en) 2018-12-04 2020-08-21 欧姆尼欧美公司 Flow cell
WO2020114918A1 (en) 2018-12-05 2020-06-11 Illumina Cambridge Limited Methods and compositions for cluster generation by bridge amplification
US20220162667A1 (en) 2018-12-07 2022-05-26 Octant, Inc. Systems for protein-protein interaction screening
US20220025447A1 (en) 2018-12-10 2022-01-27 10X Genomics, Inc. Generating spatial arrays with gradients
SG11202012807YA (en) 2018-12-18 2021-01-28 Illumina Cambridge Ltd Methods and compositions for paired end sequencing using a single surface primer
PT3899037T (en) 2018-12-19 2023-12-22 Illumina Inc Methods for improving polynucleotide cluster clonality priority
US11041199B2 (en) 2018-12-20 2021-06-22 Omniome, Inc. Temperature control for analysis of nucleic acids and other analytes
US11293061B2 (en) 2018-12-26 2022-04-05 Illumina Cambridge Limited Sequencing methods using nucleotides with 3′ AOM blocking group
US11473136B2 (en) 2019-01-03 2022-10-18 Ncan Genomics, Inc. Linked target capture
US20220081714A1 (en) 2019-01-04 2022-03-17 Northwestern University Storing temporal data into dna
US11926867B2 (en) 2019-01-06 2024-03-12 10X Genomics, Inc. Generating capture probes for spatial analysis
US11649485B2 (en) 2019-01-06 2023-05-16 10X Genomics, Inc. Generating capture probes for spatial analysis
WO2020146741A1 (en) 2019-01-10 2020-07-16 Selim Olcum Calibration of a functional biomarker instrument
US11499189B2 (en) 2019-02-14 2022-11-15 Pacific Biosciences Of California, Inc. Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes
CN114174531A (en) 2019-02-28 2022-03-11 10X基因组学有限公司 Profiling of biological analytes with spatially barcoded oligonucleotide arrays
BR112021006234A2 (en) 2019-03-01 2021-09-28 Illumina, Inc. HIGH PERFORMANCE SINGLE CELL AND SINGLE CORE LIBRARIES AND METHODS OF PREPARATION AND USE
CN114127309A (en) 2019-03-15 2022-03-01 10X基因组学有限公司 Method for single cell sequencing using spatial arrays
WO2020198071A1 (en) 2019-03-22 2020-10-01 10X Genomics, Inc. Three-dimensional spatial analysis
US11578373B2 (en) 2019-03-26 2023-02-14 Dermtech, Inc. Gene classifiers and uses thereof in skin cancers
WO2020206170A1 (en) 2019-04-02 2020-10-08 Progenity, Inc. Methods, systems, and compositions for counting nucleic acid molecules
CN114585741A (en) 2019-05-28 2022-06-03 奥科坦特公司 Transcription relay system
WO2020243579A1 (en) 2019-05-30 2020-12-03 10X Genomics, Inc. Methods of detecting spatial heterogeneity of a biological sample
SG11202111878RA (en) 2019-05-31 2021-11-29 10X Genomics Inc Method of detecting target nucleic acid molecules
US11644406B2 (en) 2019-06-11 2023-05-09 Pacific Biosciences Of California, Inc. Calibrated focus sensing
US10656368B1 (en) 2019-07-24 2020-05-19 Omniome, Inc. Method and system for biological imaging using a wide field objective lens
WO2021050681A1 (en) 2019-09-10 2021-03-18 Omniome, Inc. Reversible modification of nucleotides
US20210087613A1 (en) 2019-09-20 2021-03-25 Illumina, Inc. Methods and compositions for identifying ligands on arrays using indexes and barcodes
CN114761992B (en) 2019-10-01 2023-08-08 10X基因组学有限公司 System and method for identifying morphological patterns in tissue samples
US11919000B2 (en) 2019-10-10 2024-03-05 1859, Inc. Methods and systems for microfluidic screening
WO2021076152A1 (en) 2019-10-18 2021-04-22 Omniome, Inc. Methods and compositions for capping nucleic acids
WO2021092433A2 (en) 2019-11-08 2021-05-14 10X Genomics, Inc. Enhancing specificity of analyte binding
EP4055185A1 (en) 2019-11-08 2022-09-14 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
EP4062373A1 (en) 2019-11-21 2022-09-28 10X Genomics, Inc. Spatial analysis of analytes
DE202019106694U1 (en) 2019-12-02 2020-03-19 Omniome, Inc. System for sequencing nucleic acids in fluid foam
DE202019106695U1 (en) 2019-12-02 2020-03-19 Omniome, Inc. System for sequencing nucleic acids in fluid foam
WO2021118349A1 (en) 2019-12-10 2021-06-17 Prinses Máxima Centrum Voor Kinderoncologie B.V. Methods of typing germ cell tumors
JP2023508792A (en) 2019-12-19 2023-03-06 イルミナ インコーポレイテッド HIGH THROUGHPUT SINGLE-CELL LIBRARIES AND METHODS OF MAKING AND USING
EP3891300B1 (en) 2019-12-23 2023-03-29 10X Genomics, Inc. Methods for spatial analysis using rna-templated ligation
EP4081653A4 (en) 2019-12-23 2023-07-26 Singular Genomics Systems, Inc. Methods for long read sequencing
WO2021146184A1 (en) 2020-01-13 2021-07-22 Fluent Biosciences Inc. Single cell sequencing
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
WO2021152586A1 (en) 2020-01-30 2021-08-05 Yeda Research And Development Co. Ltd. Methods of analyzing microbiome, immunoglobulin profile and physiological state
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
EP4100161A1 (en) 2020-02-04 2022-12-14 Pacific Biosciences of California, Inc. Flow cells and methods for their manufacture and use
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
IL294909A (en) 2020-02-13 2022-09-01 Zymergen Inc Metagenomic library and natural product discovery platform
WO2021167986A1 (en) 2020-02-17 2021-08-26 10X Genomics, Inc. In situ analysis of chromatin interaction
AU2021225020A1 (en) 2020-02-21 2022-08-18 10X Genomics, Inc. Methods and compositions for integrated in situ spatial assay
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11926863B1 (en) 2020-02-27 2024-03-12 10X Genomics, Inc. Solid state single cell method for analyzing fixed biological cells
EP4114966A1 (en) 2020-03-03 2023-01-11 Pacific Biosciences Of California, Inc. Methods and compositions for sequencing double stranded nucleic acids
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
EP4114978A2 (en) 2020-03-06 2023-01-11 Singular Genomics Systems, Inc. Linked paired strand sequencing
WO2021188500A1 (en) 2020-03-16 2021-09-23 Fluent Biosciences Inc. Multi-omic analysis in monodisperse droplets
WO2021214766A1 (en) 2020-04-21 2021-10-28 Yeda Research And Development Co. Ltd. Methods of diagnosing viral infections and vaccines thereto
ES2965354T3 (en) 2020-04-22 2024-04-12 10X Genomics Inc Methods for spatial analysis using targeted RNA deletion
EP4143344A1 (en) 2020-04-27 2023-03-08 Agendia N.V. Treatment of her2 negative, mammaprint high risk 2 breast cancer
US20230203592A1 (en) 2020-05-05 2023-06-29 Akershus Universitetssykehus Hf Compositions and methods for characterizing bowel cancer
IL297921A (en) 2020-05-08 2023-01-01 Illumina Inc Genome sequencing and detection techniques
US20210355518A1 (en) 2020-05-12 2021-11-18 Illumina, Inc. Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase
US10941453B1 (en) 2020-05-20 2021-03-09 Paragon Genomics, Inc. High throughput detection of pathogen RNA in clinical specimens
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021237087A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
KR20230019872A (en) 2020-05-27 2023-02-09 지네틱 테크놀로지스 리미티드 How to Assess Your Risk of Severe Reactions to Coronavirus Infection
CN116249785A (en) 2020-06-02 2023-06-09 10X基因组学有限公司 Space transcriptomics for antigen-receptor
AU2021283174A1 (en) 2020-06-02 2023-01-05 10X Genomics, Inc. Nucleic acid library methods
EP4162074B1 (en) 2020-06-08 2024-04-24 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252617A1 (en) 2020-06-09 2021-12-16 Illumina, Inc. Methods for increasing yield of sequencing libraries
EP4165207A1 (en) 2020-06-10 2023-04-19 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
BR112022026056A2 (en) 2020-06-22 2023-03-07 Illumina Cambridge Ltd NUCLEOSIDES AND NUCLEOTIDES WITH BLOCKING GROUP 3? ACETAL
AU2021294334A1 (en) 2020-06-25 2023-02-02 10X Genomics, Inc. Spatial analysis of DNA methylation
US11981960B1 (en) 2020-07-06 2024-05-14 10X Genomics, Inc. Spatial analysis utilizing degradable hydrogels
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
WO2022010965A1 (en) 2020-07-08 2022-01-13 Illumina, Inc. Beads as transposome carriers
WO2022015600A2 (en) 2020-07-13 2022-01-20 Singular Genomics Systems, Inc. Methods of sequencing complementary polynucleotides
US20220042107A1 (en) 2020-08-06 2022-02-10 Agendia NV Systems and methods of scoring risk and residual disease from passenger mutations
WO2022029488A1 (en) 2020-08-06 2022-02-10 Agenda Nv Systems and methods of assessing breast cancer
WO2022029484A1 (en) 2020-08-06 2022-02-10 Agendia NV Methods of assessing breast cancer using circulating hormone receptor transcripts
WO2022029489A1 (en) 2020-08-06 2022-02-10 Agendia NV Systems and methods of using cell-free nucleic acids to tailor cancer treatment
US11981958B1 (en) 2020-08-20 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using DNA capture
US20230279382A1 (en) * 2022-03-04 2023-09-07 Element Biosciences, Inc. Single-stranded splint strands and methods of use
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
EP4256565A1 (en) 2020-12-02 2023-10-11 Illumina Software, Inc. System and method for detection of genetic alterations
EP4012046A1 (en) 2020-12-11 2022-06-15 10X Genomics, Inc. Methods and compositions for multimodal in situ analysis
EP4121555A1 (en) 2020-12-21 2023-01-25 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US20220228200A1 (en) 2021-01-19 2022-07-21 10X Genomics, Inc. Methods and compositions for internally controlled in situ assays
CN116724125A (en) 2021-01-26 2023-09-08 10X基因组学有限公司 Nucleic acid analogue probes for in situ analysis
WO2022170212A1 (en) 2021-02-08 2022-08-11 Singular Genomics Systems, Inc. Methods and compositions for sequencing complementary polynucleotides
US20240043915A1 (en) 2021-02-13 2024-02-08 The General Hospital Corporation Methods and compositions for in situ macromolecule detection and uses thereof
US20220282319A1 (en) 2021-03-03 2022-09-08 10X Genomics, Inc. Analyte detection in situ using nucleic acid origami
EP4263868A1 (en) 2021-03-12 2023-10-25 Singular Genomics Systems, Inc. Nanoarrays and methods of use thereof
US11884977B2 (en) 2021-03-12 2024-01-30 Singular Genomics Systems, Inc. Nanoarrays and methods of use thereof
AU2022238446A1 (en) 2021-03-18 2023-09-07 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
US20220333178A1 (en) 2021-03-22 2022-10-20 Illumina Cambridge Limited Methods for improving nucleic acid cluster clonality
EP4314338A1 (en) 2021-03-31 2024-02-07 Illumina Cambridge Limited Nucleic acid library sequencing techniques with adapter dimer detection
WO2022208171A1 (en) 2021-03-31 2022-10-06 UCL Business Ltd. Methods for analyte detection
WO2022213027A1 (en) 2021-04-02 2022-10-06 Illumina, Inc. Machine-learning model for detecting a bubble within a nucleotide-sample slide for sequencing
EP4294920A1 (en) 2021-04-27 2023-12-27 Singular Genomics Systems, Inc. High density sequencing and multiplexed priming
JP2024522025A (en) 2021-04-29 2024-06-10 イルミナ インコーポレイテッド Amplification methods for nucleic acid characterization
EP4334475A1 (en) 2021-05-07 2024-03-13 Agendia N.V. Endocrine treatment of hormone receptor positive breast cancer typed as having a low risk of recurrence
JP2024519372A (en) 2021-05-20 2024-05-10 イルミナ インコーポレイテッド Compositions and methods for sequencing by synthesis
US20220380838A1 (en) 2021-06-01 2022-12-01 10X Genomics, Inc. Methods and compositions for analyte detection and probe resolution
CN117751197A (en) 2021-06-02 2024-03-22 10X基因组学有限公司 Sample analysis using asymmetric circularizable probes
US20220403450A1 (en) 2021-06-03 2022-12-22 Illumina Software, Inc. Systems and methods for sequencing nucleotides using two optical channels
EP4364149A1 (en) 2021-06-29 2024-05-08 Illumina, Inc. Machine-learning model for generating confidence classifications for genomic coordinates
KR20240022490A (en) 2021-06-29 2024-02-20 일루미나, 인코포레이티드 Signal-to-noise ratio metrics for determining nucleotide base calling and base calling quality
WO2023288225A1 (en) 2021-07-13 2023-01-19 10X Genomics, Inc. Methods for preparing polymerized matrix with controllable thickness
US20230021577A1 (en) 2021-07-23 2023-01-26 Illumina Software, Inc. Machine-learning model for recalibrating nucleotide-base calls
US20230057571A1 (en) 2021-08-03 2023-02-23 10X Genomics, Inc. Nucleic acid concatemers and methods for stabilizing and/or compacting the same
WO2023023484A1 (en) 2021-08-16 2023-02-23 10X Genomics, Inc. Probes comprising a split barcode region and methods of use
AU2022331421A1 (en) 2021-08-17 2024-01-04 Illumina, Inc. Methods and compositions for identifying methylated cytosines
EP4196605A1 (en) 2021-09-01 2023-06-21 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
KR20240049214A (en) 2021-09-01 2024-04-16 일루미나, 인코포레이티드 Amplitude modulation for accelerated base calling
CN117561573A (en) 2021-09-17 2024-02-13 因美纳有限公司 Automatic identification of the source of faults in nucleotide sequencing from base interpretation error patterns
US20230095961A1 (en) 2021-09-21 2023-03-30 Illumina, Inc. Graph reference genome and base-calling approach using imputed haplotypes
WO2023085932A1 (en) 2021-11-10 2023-05-19 Omnigen B.V. Prediction of response following folfirinox treatment in cancer patients
WO2023102118A2 (en) 2021-12-01 2023-06-08 10X Genomics, Inc. Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis
CN117581303A (en) 2021-12-02 2024-02-20 因美纳有限公司 Generating cluster-specific signal corrections for determining nucleotide base detection
CA3223595A1 (en) 2021-12-16 2023-06-22 Xiaoyu Ma Hybrid clustering
US20230215515A1 (en) 2021-12-23 2023-07-06 Illumina Software, Inc. Facilitating secure execution of external workflows for genomic sequencing diagnostics
WO2023122363A1 (en) 2021-12-23 2023-06-29 Illumina Software, Inc. Dynamic graphical status summaries for nucelotide sequencing
US20230242974A1 (en) 2021-12-27 2023-08-03 10X Genomics, Inc. Methods and compositions for rolling circle amplification
US20230207050A1 (en) 2021-12-28 2023-06-29 Illumina Software, Inc. Machine learning model for recalibrating nucleotide base calls corresponding to target variants
WO2023129764A1 (en) 2021-12-29 2023-07-06 Illumina Software, Inc. Automatically switching variant analysis model versions for genomic analysis applications
US20230212667A1 (en) 2021-12-29 2023-07-06 Illumina Cambridge Limited Methods of nucleic acid sequencing using surface-bound primers
WO2023135485A1 (en) 2022-01-13 2023-07-20 Oslo Universitetssykehus Hf Prostate cancer markers and uses thereof
AU2023208743A1 (en) 2022-01-20 2024-01-04 Illumina, Inc. Methods of detecting methylcytosine and hydroxymethylcytosine by sequencing
US20230279475A1 (en) 2022-01-21 2023-09-07 10X Genomics, Inc. Multiple readout signals for analyzing a sample
WO2023152568A2 (en) 2022-02-10 2023-08-17 Oslo Universitetssykehus Hf Compositions and methods for characterizing lung cancer
AU2023225949A1 (en) 2022-02-25 2024-01-18 Illumina, Inc. Machine-learning models for detecting and adjusting values for nucleotide methylation levels
WO2023164660A1 (en) 2022-02-25 2023-08-31 Illumina, Inc. Calibration sequences for nucelotide sequencing
US11639499B1 (en) 2022-03-08 2023-05-02 Watchmaker Genomics, Inc. Reverse transcriptase variants
WO2023172665A2 (en) 2022-03-10 2023-09-14 Singular Genomics Systems, Inc. Nucleic acid delivery scaffolds
WO2023175021A1 (en) 2022-03-15 2023-09-21 Illumina, Inc. Methods of preparing loop fork libraries
EP4341426A2 (en) 2022-03-15 2024-03-27 Illumina, Inc. Concurrent sequencing of forward and reverse complement strands on separate polynucleotides for methylation detection
AU2023244497A1 (en) 2022-03-31 2024-01-18 Illumina, Inc. Paired-end re-synthesis using blocked p5 primers
WO2023192616A1 (en) 2022-04-01 2023-10-05 10X Genomics, Inc. Compositions and methods for targeted masking of autofluorescence
WO2023196526A1 (en) 2022-04-06 2023-10-12 10X Genomics, Inc. Methods for multiplex cell analysis
CA3223722A1 (en) 2022-04-07 2023-10-12 Illumina, Inc. Altered cytidine deaminases and methods of use
WO2023196528A1 (en) 2022-04-08 2023-10-12 Illumina, Inc. Aptamer dynamic range compression and detection techniques
US11680293B1 (en) 2022-04-21 2023-06-20 Paragon Genomics, Inc. Methods and compositions for amplifying DNA and generating DNA sequencing results from target-enriched DNA molecules
US20230340571A1 (en) 2022-04-26 2023-10-26 Illumina, Inc. Machine-learning models for selecting oligonucleotide probes for array technologies
US20240002902A1 (en) 2022-05-06 2024-01-04 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
WO2023220627A1 (en) 2022-05-10 2023-11-16 Illumina Software, Inc. Adaptive neural network for nucelotide sequencing
WO2023225095A1 (en) 2022-05-18 2023-11-23 Illumina Cambridge Limited Preparation of size-controlled nucleic acid fragments
WO2023224488A1 (en) 2022-05-19 2023-11-23 Agendia N.V. Dna repair signature and prediction of response following cancer therapy
WO2023224487A1 (en) 2022-05-19 2023-11-23 Agendia N.V. Prediction of response to immune therapy in breast cancer patients
WO2023245190A1 (en) 2022-06-17 2023-12-21 10X Genomics, Inc. Catalytic de-crosslinking of samples for in situ analysis
US20230420080A1 (en) 2022-06-24 2023-12-28 Illumina Software, Inc. Split-read alignment by intelligently identifying and scoring candidate split groups
WO2024006779A1 (en) 2022-06-27 2024-01-04 Illumina, Inc. Accelerators for a genotype imputation model
WO2024006769A1 (en) 2022-06-27 2024-01-04 Illumina Software, Inc. Generating and implementing a structural variation graph genome
WO2024006705A1 (en) 2022-06-27 2024-01-04 Illumina Software, Inc. Improved human leukocyte antigen (hla) genotyping
WO2024015962A1 (en) 2022-07-15 2024-01-18 Pacific Biosciences Of California, Inc. Blocked asymmetric hairpin adaptors
WO2024026356A1 (en) 2022-07-26 2024-02-01 Illumina, Inc. Rapid single-cell multiomics processing using an executable file
WO2024036304A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Puma1 polymerases and uses thereof
US20240084373A1 (en) 2022-08-16 2024-03-14 10X Genomics, Inc. Ap50 polymerases and uses thereof
WO2024039516A1 (en) 2022-08-19 2024-02-22 Illumina, Inc. Third dna base pair site-specific dna detection
WO2024061799A1 (en) 2022-09-19 2024-03-28 Illumina, Inc. Deformable polymers comprising immobilised primers
US20240102067A1 (en) 2022-09-26 2024-03-28 Illumina, Inc. Resynthesis Kits and Methods
US20240112753A1 (en) 2022-09-29 2024-04-04 Illumina, Inc. Target-variant-reference panel for imputing target variants
WO2024073047A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Cytidine deaminases and methods of use in mapping modified cytosine nucleotides
WO2024069581A1 (en) 2022-09-30 2024-04-04 Illumina Singapore Pte. Ltd. Helicase-cytidine deaminase complexes and methods of use
WO2024073043A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of using cpg binding proteins in mapping modified cytosine nucleotides
US20240124929A1 (en) 2022-09-30 2024-04-18 Illumina, Inc. Mesophilic compositions for nucleic acid amplification
US20240110234A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Amplification Compositions and Methods
US20240110221A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Methods of modulating clustering kinetics
US20240124914A1 (en) 2022-09-30 2024-04-18 Illumina, Inc. Thermophilic compositions for nucleic acid amplification
WO2024073519A1 (en) 2022-09-30 2024-04-04 Illumina, Inc. Machine-learning model for refining structural variant calls
US20240127905A1 (en) 2022-10-05 2024-04-18 Illumina, Inc. Integrating variant calls from multiple sequencing pipelines utilizing a machine learning architecture
US20240127906A1 (en) 2022-10-11 2024-04-18 Illumina, Inc. Detecting and correcting methylation values from methylation sequencing assays
WO2024081869A1 (en) 2022-10-14 2024-04-18 10X Genomics, Inc. Methods for analysis of biological samples
WO2024102736A1 (en) 2022-11-08 2024-05-16 10X Genomics, Inc. Immobilization methods and compositions for in situ detection
US20240158852A1 (en) 2022-11-16 2024-05-16 10X Genomics, Inc. Methods and compositions for assessing performance of in situ assays
US20240177802A1 (en) 2022-11-30 2024-05-30 Illumina, Inc. Accurately predicting variants from methylation sequencing data
WO2024123917A1 (en) 2022-12-07 2024-06-13 Illumina, Inc. Monoclonal clustering using double stranded dna size exclusion with patterned seeding

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2122529A1 (en) * 1971-05-06 1972-12-14 Max Planck Gesellschaft zur Förde rung der Wissenschaften e V , 3400 Gottin gen Thiophosphate analogs of the nucleoside di and tnphosphate and processes for their preparation
US4123610A (en) 1977-03-09 1978-10-31 The United States Government Nucleic acid crosslinking agent and affinity inactivation of nucleic acids therewith
US4362876A (en) * 1978-08-11 1982-12-07 The Sherwin-Williams Company Preparation of dihydroxyquinoline and certain derivatives
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
US4415732A (en) 1981-03-27 1983-11-15 University Patents, Inc. Phosphoramidite compounds and processes
US4973679A (en) 1981-03-27 1990-11-27 University Patents, Inc. Process for oligonucleo tide synthesis using phosphormidite intermediates
DE3301833A1 (en) 1983-01-20 1984-07-26 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig METHOD FOR SIMULTANEOUS SYNTHESIS OF SEVERAL OLIGONOCLEOTIDES IN A SOLID PHASE
US4661450A (en) * 1983-05-03 1987-04-28 Molecular Genetics Research And Development Limited Partnership Molecular cloning of RNA using RNA ligase and synthetic oligonucleotides
DE3329892A1 (en) 1983-08-18 1985-03-07 Köster, Hubert, Prof. Dr., 2000 Hamburg METHOD FOR PRODUCING OLIGONUCLEOTIDES
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US5367066A (en) * 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US4734363A (en) 1984-11-27 1988-03-29 Molecular Diagnostics, Inc. Large scale production of DNA probes
US4757141A (en) 1985-08-26 1988-07-12 Applied Biosystems, Incorporated Amino-derivatized phosphite and phosphate linking agents, phosphoramidite precursors, and useful conjugates thereof
US5011769A (en) * 1985-12-05 1991-04-30 Meiogenics U.S. Limited Partnership Methods for detecting nucleic acid sequences
US4876187A (en) * 1985-12-05 1989-10-24 Meiogenics, Inc. Nucleic acid compositions with scissile linkage useful for detecting nucleic acid sequences
US4855225A (en) 1986-02-07 1989-08-08 Applied Biosystems, Inc. Method of detecting electrophoretically separated oligonucleotides
FR2596761B1 (en) 1986-04-08 1988-05-20 Commissariat Energie Atomique NUCLEOSIDE DERIVATIVES AND THEIR USE FOR SYNTHESIS OF OLIGONUCLEOTIDES
US5091519A (en) 1986-05-01 1992-02-25 Amoco Corporation Nucleotide compositions with linking groups
US5151507A (en) 1986-07-02 1992-09-29 E. I. Du Pont De Nemours And Company Alkynylamino-nucleotides
EP0260032B1 (en) * 1986-09-08 1994-01-26 Ajinomoto Co., Inc. Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers
US4816571A (en) * 1987-06-04 1989-03-28 Applied Biosystems, Inc. Chemical capping by phosphitylation during oligonucleotide synthesis
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5002867A (en) * 1988-04-25 1991-03-26 Macevicz Stephen C Nucleic acid sequence determination by multiple mixed oligonucleotide probes
JP3042626B2 (en) * 1988-05-24 2000-05-15 ゲゼルシャフト フュア バイオテクノロギッシェ フォーシュング エムベーハー(ゲーベーエフ) Determination of DNA base sequence using oligonucleotide bank
US5218103A (en) * 1988-05-26 1993-06-08 University Patents, Inc. Nucleoside thiophosphoramidites
DD287040A5 (en) * 1989-07-28 1991-02-14 Veb Forschungszentrum Biotechnologie Berlin,De NEW FLUORPHOR DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PREPARATION OF NOVEL FLUORESCENCE-MARKED NUCLEOSIDES, NUCLEOTIDES AND OLIGONUCLEOTIDES
US5302509A (en) 1989-08-14 1994-04-12 Beckman Instruments, Inc. Method for sequencing polynucleotides
US5149796A (en) * 1989-08-31 1992-09-22 City Of Hope Chimeric DNA-RNA catalytic sequences
US5407799A (en) * 1989-09-14 1995-04-18 Associated Universities, Inc. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides
US5264562A (en) * 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5188934A (en) 1989-11-14 1993-02-23 Applied Biosystems, Inc. 4,7-dichlorofluorescein dyes as molecular probes
CA2070664C (en) * 1989-12-04 2000-08-08 Christopher K. Mirabelli Antisense oligonucleotide inhibition of papillomavirus
US5149797A (en) * 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
WO1993005183A1 (en) * 1991-09-09 1993-03-18 Baylor College Of Medicine Method and device for rapid dna or rna sequencing determination by a base addition sequencing scheme
ES2112302T3 (en) * 1991-10-11 1998-04-01 Behringwerke Ag METHOD FOR PRODUCING A POLYNUCLEOTIDE FOR USE IN AMPLIFICATION WITH A SINGLE PRIMER AND OLIGONUCLEOTIDES CONTAINING PHOSPHOROTIOATE AS PRIMERS FOR AMPLIFICATION OF NUCLEIC ACIDS.
DE4141178A1 (en) 1991-12-13 1993-06-17 Europ Lab Molekularbiolog New nucleic acid sequencing method - using one labelled nucleotide at one time in cycles comprising elongation, wash, label detection and removal of the label, then repeating
US5403708A (en) * 1992-07-06 1995-04-04 Brennan; Thomas M. Methods and compositions for determining the sequence of nucleic acids
US5272250A (en) * 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
GB9214873D0 (en) * 1992-07-13 1992-08-26 Medical Res Council Process for categorising nucleotide sequence populations
US5652355A (en) * 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
US6180338B1 (en) * 1992-08-04 2001-01-30 Beckman Coulter, Inc. Method, reagent and kit for the detection and amplification of nucleic acid sequences
US5503980A (en) * 1992-11-06 1996-04-02 Trustees Of Boston University Positional sequencing by hybridization
US5795714A (en) * 1992-11-06 1998-08-18 Trustees Of Boston University Method for replicating an array of nucleic acid probes
JP2763263B2 (en) 1992-12-31 1998-06-11 第一合纖株式會社 Optical recording medium
US5547835A (en) * 1993-01-07 1996-08-20 Sequenom, Inc. DNA sequencing by mass spectrometry
US5476925A (en) * 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US5593826A (en) * 1993-03-22 1997-01-14 Perkin-Elmer Corporation, Applied Biosystems, Inc. Enzymatic ligation of 3'amino-substituted oligonucleotides
US5595739A (en) * 1993-05-07 1997-01-21 Abbott Laboratories Hepatitis B virus mutants, reagents and methods for detection
US5728545A (en) * 1993-06-18 1998-03-17 The Salk Institute Of Biological Studies Cloning and recombinant production of CRF receptor (S)
GB9315847D0 (en) * 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
WO1995004748A1 (en) * 1993-08-09 1995-02-16 Isis Pharmaceuticals, Inc. Oligomers for modulating viral processes
GB9401200D0 (en) * 1994-01-21 1994-03-16 Medical Res Council Sequencing of nucleic acids
DE69531542T2 (en) * 1994-02-07 2004-06-24 Beckman Coulter, Inc., Fullerton LIGASE / POLYMERASE-MEDIATED ANALYSIS OF GENETIC ELEMENTS OF SINGLE-NUCLEOTIDE POLYMORPHISMS AND THEIR USE IN GENETIC ANALYSIS
US5625050A (en) * 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5750341A (en) * 1995-04-17 1998-05-12 Lynx Therapeutics, Inc. DNA sequencing by parallel oligonucleotide extensions
US8264792B2 (en) 2009-05-04 2012-09-11 Headway Technologies, Inc. PMR writer device with multi-level tapered write pole
US9005565B2 (en) 2010-06-24 2015-04-14 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene
US9006178B2 (en) 2010-11-09 2015-04-14 Novo Nordisk A/S Double-acylated GLP-1 derivatives with a linker
US8408891B2 (en) 2010-12-23 2013-04-02 Bridgestone Sports Co., Ltd Golf ball mold and golf ball manufacturing method
US9405896B2 (en) 2011-04-12 2016-08-02 Salesforce.Com, Inc. Inter-application management of user credential data
KR101694297B1 (en) 2012-08-30 2017-01-23 한국전자통신연구원 DESKTOP VIRTUALIZATION MANAGER APPARATUS AND CLIENT APPARATUS FOR DaaS SYSTEM
JP2016031772A (en) 2014-07-30 2016-03-07 株式会社日立ハイテクファインシステムズ Inspection method and apparatus of heat-assisted magnetic head element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11414702B2 (en) 2005-06-15 2022-08-16 Complete Genomics, Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments
JP2013027401A (en) * 2006-02-24 2013-02-07 Callida Genomics Inc High throughput genome sequencing on dna array

Also Published As

Publication number Publication date
JP2007282639A (en) 2007-11-01
WO1996033205A1 (en) 1996-10-24
US5969119A (en) 1999-10-19
EP0871646A1 (en) 1998-10-21
EP2433949A1 (en) 2012-03-28
JP2011092191A (en) 2011-05-12
US6306597B1 (en) 2001-10-23
DE10184524T1 (en) 2011-07-07
JP5279800B2 (en) 2013-09-04
EP2433950A1 (en) 2012-03-28
AU5549096A (en) 1996-11-07
CA2218017C (en) 2003-12-02
AU718937B2 (en) 2000-05-04
EP2298787B1 (en) 2015-10-28
EP2298786A1 (en) 2011-03-23
JP2008086328A (en) 2008-04-17
CA2218017A1 (en) 1996-10-24
JP2011092192A (en) 2011-05-12
DK2298787T3 (en) 2016-01-11
EP2298787A1 (en) 2011-03-23
JP4546582B2 (en) 2010-09-15
EP0871646B1 (en) 2011-09-07
US5750341A (en) 1998-05-12
EP0871646A4 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP5279800B2 (en) DNA sequencing by parallel oligonucleotide extension
US5599675A (en) DNA sequencing by stepwise ligation and cleavage
US5714330A (en) DNA sequencing by stepwise ligation and cleavage
EP0705349B1 (en) Parallel primer extension approach to nucleic acid sequence analysis
US6153379A (en) Parallel primer extension approach to nucleic acid sequence analysis
US5831065A (en) Kits for DNA sequencing by stepwise ligation and cleavage
IL132465A (en) Gene expression profiling
AU754991B2 (en) DNA sequencing by parallel oligonucleotide extensions
EP1114185B1 (en) Method of isolating primer extension products with modular oligonucleotides

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070323

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20070713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081023

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091014

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term