JPH1149582A - Porous lightweight ceramic product and its production - Google Patents
Porous lightweight ceramic product and its productionInfo
- Publication number
- JPH1149582A JPH1149582A JP9205098A JP20509897A JPH1149582A JP H1149582 A JPH1149582 A JP H1149582A JP 9205098 A JP9205098 A JP 9205098A JP 20509897 A JP20509897 A JP 20509897A JP H1149582 A JPH1149582 A JP H1149582A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- ceramic product
- lightweight ceramic
- weight
- porous lightweight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/22—Glass ; Devitrified glass
- C04B14/24—Glass ; Devitrified glass porous, e.g. foamed glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/135—Combustion residues, e.g. fly ash, incineration waste
- C04B33/1352—Fuel ashes, e.g. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0051—Water-absorbing polymers, hydrophilic polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/36—Glass starting materials for making ceramics, e.g. silica glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Dispersion Chemistry (AREA)
- Civil Engineering (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は多孔質軽量セラミッ
ク製品に関するものであり、特に非常に空隙率の高くか
つ強度の大きな多孔質軽量セラミック製品及びその製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous lightweight ceramic product, and more particularly to a porous lightweight ceramic product having a very high porosity and a high strength, and a method for producing the same.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来の
多孔質セラミック製品の製造法には、発泡性未焼成セラ
ミック粉体に結合材を混合し、成形後、焼成する方法
や、主原料として黒曜石やシラス等の火山噴出物を用
い、これらに粘土や結合材を混合して、成形後、焼成す
る方法等がある。しかしながら、それら方法により得ら
れた多孔質セラミック製品は、嵩比重が十分に低くな
く、かつ空隙率が十分に多くないものであった。2. Description of the Related Art Conventional methods for producing a porous ceramic product include a method of mixing a binder with foamable unfired ceramic powder, molding the mixture, and firing the mixture. There is a method of using a volcanic ejecta such as obsidian or shirasu, mixing a clay or a binder with them, molding, and firing. However, the porous ceramic products obtained by those methods are not sufficiently low in bulk specific gravity and not sufficiently high in porosity.
【0003】[0003]
【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究の結果、火山噴出物として多量に産出
する黒曜石、シラス等の加熱発泡球状体粗粒子、すなわ
ち火山噴出物発泡球状粗粒子、例えばパーライトを主原
料とし、あるいは人工発泡ガラス質球状粗粒子、例えば
スラグの加熱発泡球状粗粒子を主原料とし、これに火力
発電所から大量に排出されるフライアッシュの相当量及
び吸水膨潤した高吸水性ポリマーを均質に含有する未焼
成セラミック粉体を含む結合材とが混合された混合物を
成形し、乾燥した後、750〜1200℃で焼成するこ
とによって、非常に軽量化された多孔質セラミックを提
供することに成功した。すなわち本発明は、下記構成の
多孔質軽量セラミック製品及びその製造方法である。 (1)多数のガラス質中空球状粗粒子の間をフライアッ
シュを含む多孔質セラミックマトリックス焼結体が結合
充填してなり、かつ前記多孔質セラミツクマトリックス
焼結体中の多孔質空隙部が吸水膨潤した高吸水性ポリマ
ーの消失孔であることを特徴とする多孔質軽量セラミッ
ク製品。 (2)粒径0.5〜5.0mmのガラス質中空球状粗粒
子100重量部に対して、フライアッシュ15〜350
重量部と、多孔質セラミックマトリックス焼結体5〜8
0重量部が均質混在した焼結体であり、かつ前記多孔質
セラミックマトリックス焼結体中の多孔質空隙部が吸水
膨潤した高吸水性ポリマーの消失孔であることを特徴と
する多孔質軽量セラミック製品。 (3)ガラス質中空球状粗粒子が、天然ガラス質発泡体
粗粒子であることを特徴とする(1)項又は(2)項記
載の多孔質軽量セラミック製品。 (4)ガラス質中空球状粗粒子が、人工発泡ガラス質粗
粒子であることを特徴とする(1)項又は(2)項記載
の多孔質軽量セラミック製品。 (5)多孔質軽量セラミック製品の物理特性が、嵩比重
0.15〜1.5、圧縮強度:5.0〜50kgf/c
m2、曲げ強度:0.5〜5.0kgf/cm2である
ことを特徴とする(1)項ないし(4)項のいずれか1
項に記載の多孔質軽量セラミック製品。Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, found that a large amount of heated foamed spherical particles such as obsidian and shirasu, which are produced in large quantities as volcanic ejecta, Coarse particles, for example, pearlite as a main raw material, or artificially foamed glassy spherical coarse particles, for example, slag heated expanded spherical coarse particles as a main raw material, and a considerable amount of fly ash discharged from a thermal power plant and water absorption. The mixture was mixed with a binder containing an unfired ceramic powder homogeneously containing the swollen superabsorbent polymer, dried, and then fired at 750 to 1200 ° C., resulting in a very light weight. We succeeded in providing a porous ceramic. That is, the present invention is a porous lightweight ceramic product having the following constitution and a method for producing the same. (1) A porous ceramic matrix sintered body containing fly ash is bonded and filled between a large number of glassy hollow spherical coarse particles, and the porous voids in the porous ceramic matrix sintered body absorb water and swell. A porous lightweight ceramic product characterized in that it is a lost pore of a superabsorbent polymer. (2) 100 to 100 parts by weight of glassy hollow spherical coarse particles having a particle size of 0.5 to 5.0 mm, and fly ash of 15 to 350
Parts by weight and porous ceramic matrix sintered bodies 5 to 8
A porous lightweight ceramic, wherein 0 parts by weight are a homogeneously mixed sintered body, and a porous void portion in the porous ceramic matrix sintered body is a disappearing hole of a superabsorbent polymer swollen by water. Product. (3) The porous lightweight ceramic product according to (1) or (2), wherein the vitreous hollow spherical coarse particles are natural vitreous foam coarse particles. (4) The porous lightweight ceramic product according to (1) or (2), wherein the vitreous hollow spherical coarse particles are artificial foamed vitreous coarse particles. (5) The physical properties of the porous lightweight ceramic product have a bulk specific gravity of 0.15 to 1.5 and a compressive strength of 5.0 to 50 kgf / c.
m 2 , bending strength: 0.5 to 5.0 kgf / cm 2 , any one of the above items (1) to (4)
Item 4. The porous lightweight ceramic product according to item 1.
【0004】(6)粒径0.5〜5.0mmのガラス質
中空球状粗粒子100重量部に対して、フライアッシュ
15〜350重量部と、吸水膨潤した高吸水性ポリマー
30〜70重量%を均質に含有する未焼成セラミック粉
体を含む結合材60〜450重量部とが混合された混合
物を成形し、乾燥した後、750〜1200℃で焼成す
ることを特徴とする多孔質軽量セラミック製品の製造方
法。 (7)吸水膨潤した高吸水性ポリマーの粒径が10〜2
000μmであることを特徴とする(6)項記載の多孔
質軽量セラミック製品の製造方法。 (8)結合材中に占める未焼成セラミック粉体が40〜
70重量%であることを特徴とする(6)項又は(7)
項記載の多孔質軽量セラミック製品の製造方法。 (9)結合材が、無機結合材を含むことを特徴とする
(6)項〜(8)項のいずれか1項に記載の多孔質軽量
セラミック製品の製造方法。 (10)結合材が、ガラス質粉体を含むことを特徴とす
る(6)項ないし(9)項のいずれか1項に記載の多孔
質軽量セラミック製品の製造方法。 (11)結合材が、粘土鉱物を含むことを特徴とする
(6)項ないし(10)項のいずれか1項に記載の多孔
質軽量セラミック製品の製造方法。 (12)結合材が、有機質結合材を含むことを特徴とす
る(6)項〜(11)項のいずれか1項に記載の多孔質
軽量セラミック製品の製造方法。 (13)結合材が、水溶性のアルカリ金属ケイ酸塩を含
むことを特徴とする(6)項〜(12)項のいずれか1
項に記載の多孔質軽量セラミック製品の製造方法。(6) 15-350 parts by weight of fly ash and 30-70% by weight of water-swelled superabsorbent polymer per 100 parts by weight of glassy hollow spherical coarse particles having a particle size of 0.5-5.0 mm And a mixture comprising 60 to 450 parts by weight of a binder containing an unfired ceramic powder homogeneously containing, is dried, and then fired at 750 to 1200 ° C. Manufacturing method. (7) The particle size of the superabsorbent polymer swollen by water absorption is 10 to 2
The method for producing a porous lightweight ceramic product according to (6), wherein the thickness is 000 μm. (8) Unfired ceramic powder occupying 40 to 40% in the binder
Item (6) or (7), which is 70% by weight.
The method for producing a porous lightweight ceramic product according to the above item. (9) The method for producing a porous lightweight ceramic product according to any one of the above items (6) to (8), wherein the binder contains an inorganic binder. (10) The method for producing a porous lightweight ceramic product according to any one of the above items (6) to (9), wherein the binder contains a vitreous powder. (11) The method for producing a porous lightweight ceramic product according to any one of (6) to (10), wherein the binder contains a clay mineral. (12) The method for producing a porous lightweight ceramic product according to any one of (6) to (11), wherein the binder includes an organic binder. (13) The binder according to any one of (6) to (12), wherein the binder contains a water-soluble alkali metal silicate.
13. The method for producing a porous lightweight ceramic product according to the above item.
【0005】[0005]
【発明の実施の形態】本願発明の実施の形態を以下に説
明する。まず、本願発明で主原料として用いらるガラス
質中空球状粗粒子としては、例えば天然ガラス質発泡粗
粒子である黒曜石細片や真珠岩細片等の高温加熱による
発泡粗粒子であるパーライト、人工ガラス質粗粒子であ
る水砕スラグ細片やシリカ細片の高温加熱発泡粗粒子で
あるスラグバルーンやシリカバルーン等が挙げられ、高
温加熱発泡ガラス質中空球状粗粒子の粒径は0.5〜
5.0mmであるものが好ましい。その嵩密度は0.1
/cm3〜1.0/cm3のものが好ましい。Embodiments of the present invention will be described below. First, the vitreous hollow spherical coarse particles used as the main raw material in the present invention include, for example, pearlite, artificial coarse expanded particles obtained by heating at a high temperature such as obsidian fine particles and perlite fine particles, which are natural vitreous expanded coarse particles. Examples include slag balloons and silica balloons that are high-temperature heat-expanded coarse particles of granulated slag fine particles and silica fine particles that are vitreous coarse particles, and the particle diameter of the high-temperature heat-expanded vitreous hollow spherical coarse particles is 0.5 to
Those having a diameter of 5.0 mm are preferred. Its bulk density is 0.1
/ Cm 3 to 1.0 / cm 3 are preferable.
【0006】次に、本願発明で主原料として使用される
フライアッシュは、石炭や石油ピッチ等を燃焼させたあ
とに出る残渣灰であり、火力発電所等から大量に排出さ
れるものであって、現在、その利用技術、利用量が少な
いために、各分野にてその利用が鋭意検討されているも
のである。フライアッシュの成分組成は、例えばSiO
2:50〜68%,Al2O3:20〜35%、Fe2
O3:2〜7%,CaO:0.6〜7%、MgO:0.
2〜2%,Na2O:0.1〜2%、K2O:0.3〜
1.5%,Ig.loss:2〜4%からなり、非晶質
であり、かつ各フライアッシュ粒子は粒径5〜20μm
の球状体で内部が中空となっているものである。よっ
て、フライアッシュ粒子は、転動性、充填性が良好で、
前記多数のガラス質中空球状粗粒子間に容易に隈無く充
填される。[0006] Next, fly ash used as a main raw material in the present invention is residue ash produced after burning coal, petroleum pitch, etc., and is discharged in large quantities from thermal power plants and the like. At present, the utilization technology and the amount of utilization are small, and the utilization thereof is being studied in various fields. The component composition of fly ash is, for example, SiO 2
2: 50~68%, Al 2 O 3: 20~35%, Fe 2
O 3: 2~7%, CaO: 0.6~7%, MgO: 0.
2~2%, Na 2 O: 0.1~2 %, K 2 O: 0.3~
1.5%, Ig. loss: 2 to 4%, amorphous, and each fly ash particle has a particle size of 5 to 20 μm
Of which the inside is hollow. Therefore, the fly ash particles have good rolling properties and filling properties,
The glassy hollow spherical coarse particles are easily and completely filled.
【0007】本願発明は、多くのガラス質中空球状粗粒
子間にフライアッシュと多孔質セラミックマトリックス
焼結体が焼結充填された状態の多孔質軽量セラミック製
品を提供するものであるが、その製造においては、まず
成形性を付与させるため、ガラス質中空球状粗粒子とフ
ライアッシュと吸水膨潤された高吸水性ポリマー粒子を
混有させた未焼成セラミックマトリックス生成材料(結
合材)との均質混合物を加水あるいは可塑化材を添加混
合して、生地となし、それを一定形状に成形し、乾燥し
た後、焼成することが好ましい。前記未焼成セラミック
マトリックス生成材料中に混有させる吸水膨潤した高吸
水性ポリマー粒子は、100℃前後の加熱により大量の
膨潤水が容易に蒸散、消失するものであり、高吸水性ポ
リマーとしては、具体的には、デンプン系(デンプン−
アクリロニトリルグラフト重合体加水分解物等)、セル
ロース系(セルロース−アクリロニトリルグラフト重合
体)、タンパク質(コラーゲン等)多糖類系(ピアルロ
ン酸等)等の天然高分子類、ポリピニルアルコール系
(ポリピニルアルコール架橋重合体等)、アクリル系
(ポリアクリル酸ナトリウム架橋体等)、付加重合体
(無水マレイン酸系共重合体等)、ポリエーテル系(ポ
リエチレングリコール・ジアクリレート架橋重合体
等)、縮合系ポリマー(エステル系ポリマー等)等の合
成高分子類が挙げられるが、アクリル酸ナトリウム系重
合体の架橋物が工業的に生産が容易で低コストのため好
ましい。The present invention provides a porous lightweight ceramic product in which fly ash and a porous ceramic matrix sintered body are sintered and filled between a large number of glassy hollow spherical coarse particles. First, in order to impart moldability, a homogeneous mixture of a glass ceramic hollow spherical coarse particle, an unfired ceramic matrix forming material (binder) containing fly ash, and water-swellable superabsorbent polymer particles is used. It is preferable that a dough is formed by adding and mixing water or a plasticizer, forming the dough into a uniform shape, drying, and then firing. The superabsorbent polymer particles that have been subjected to water absorption and swelling to be mixed in the unfired ceramic matrix forming material, a large amount of swelling water easily evaporates and disappears due to heating at about 100 ° C., and as the superabsorbent polymer, Specifically, starch-based (starch-
Natural polymers such as acrylonitrile graft polymer hydrolysate, cellulose (cellulose-acrylonitrile graft polymer), protein (collagen, etc.) and polysaccharide (pialuronic acid, etc.), polypinyl alcohol (polypinyl) Alcohol crosslinked polymer, etc.), acrylic type (sodium polyacrylate crosslinked product, etc.), addition polymer (maleic anhydride type copolymer, etc.), polyether type (polyethylene glycol / diacrylate crosslinked polymer, etc.), condensation type Synthetic polymers such as polymers (e.g., ester-based polymers) may be mentioned, and a crosslinked product of a sodium acrylate-based polymer is preferred because of its industrial ease of production and low cost.
【0008】また、焼成によりセラミックスマトリック
スを生成する未焼成セラミックとしては、例えば長石、
陶土、粘土鉱物等のケイ酸アルミニウム系無機材料が挙
げられ、それらには焼結剤としてのアルカリ金属・アル
カリ土類金属ケイ酸塩、ガラス粉、釉薬粉等を添加する
ことが好ましく、さらに無機系粘結材の水溶性アルカリ
ケイ酸塩(水ガラス)や有機質粘結材のコーンスター
チ、CMC等を添加したものが好ましい。なお、成形の
ための可塑性付与材としては、通常有機系のもの、例え
ば前記粘結材と同じコーンスターチ、CMCやアルギン
酸ソーダー、PVA、ポリアクリル系エマルジン、多価
アルコール系ワックス等を添加使用することができる。
なお、水溶性アルカリケイ酸塩(水ガラス)は成形用及
び焼結用に共用される可塑性付与材兼焼結剤として好ま
しいものである。[0008] Unfired ceramics that produce a ceramic matrix by firing include, for example, feldspar,
Aluminum silicate-based inorganic materials such as clay and clay minerals, and the like, to which alkali metal or alkaline earth metal silicate as a sintering agent, glass powder, glaze powder and the like are preferably added, It is preferable to add a water-soluble alkali silicate (water glass) as a base binder or corn starch, CMC or the like as an organic binder. In addition, as a plasticity-imparting material for molding, usually, an organic material such as corn starch, CMC or sodium alginate, PVA, polyacrylic emulzine, a polyhydric alcohol-based wax, etc., which are the same as the binder, is used. Can be.
In addition, a water-soluble alkali silicate (water glass) is preferable as a plasticizing agent and a sintering agent commonly used for molding and sintering.
【0009】本願発明においては、さらに耐熱性補強材
を加配することもできる。このような耐熱性補強材とし
ては、例えば鉱滓、シャモット等が採用でき、これら耐
熱性補強材を加配し、焼結して得られた多孔質軽量セラ
ミック製品は、高い機械的強度及び耐熱性を備えたもの
となる。さらに、本発明の多孔質軽量セラミック製品中
の多孔空隙を生成させるため、未焼成セラミック粉体を
含む結合材中に有機物細粒を混有させることもできる。
有機質微細物としては、高温加熱により揮発焼失するも
ので、例えば木材・竹材・穀類等の植物微細物、脂肪微
細物、プランクトン等の動物微細物、ポリスチロール、
ポリエチレン、ポリプロピレン等の合成樹脂微細物が挙
げられる。さらに、有機質短繊維、例えばナイロン短繊
維、ポリプロピレン短繊維等も使用できる。米細粒、う
どん細粒、籾がら粉等も使用できる。それら、有機物細
粒部は焼成時に酸化焼失して焼失孔となる。In the present invention, a heat-resistant reinforcing material can be further provided. As such a heat-resistant reinforcing material, for example, slag, chamotte, etc. can be adopted, and the porous lightweight ceramic product obtained by distributing and sintering these heat-resistant reinforcing materials has high mechanical strength and heat resistance. Be prepared. Furthermore, in order to generate porous voids in the porous lightweight ceramic product of the present invention, organic fine particles can be mixed in a binder containing unfired ceramic powder.
As organic fine substances, those which are volatilized and burned off by heating at high temperature, for example, plant fine substances such as wood, bamboo and cereals, fat fine substances, animal fine substances such as plankton, polystyrene,
Fine particles of synthetic resin such as polyethylene and polypropylene can be used. Further, organic short fibers such as nylon short fibers and polypropylene short fibers can also be used. Rice fines, udon fines, chaff, etc. can also be used. These organic fine particles are oxidized and burned out during firing, resulting in burned-out holes.
【0010】上記のようなガラス質中空球状粗粒子に、
フライアッシュ及び吸水膨潤された高吸水性ポリマー粒
子を含む結合材を均質に混合した混合物を所要形状に成
形した後、乾燥し、750〜1200℃程度の焼成温度
域において焼結させることにより、多孔質軽量セラミッ
ク製品を得ることができる。[0010] The vitreous hollow spherical coarse particles as described above,
After forming a mixture obtained by homogeneously mixing a binder containing fly ash and a water-absorbing and swollen superabsorbent polymer particle into a required shape, drying and sintering in a firing temperature range of about 750 to 1200 ° C. Quality and lightweight ceramic products can be obtained.
【0011】上記発明のセラミックス製品の配合組成に
おいて、ガラス質中空球状粗粒子を用いるのは、該粗粒
子は黒曜石、真珠岩等の天然ガラス等を原料にして多量
に生産され価格も安価で、内部が中空で軽量であり、か
つ一定の強度も備えているため、これを主要構成材料と
することにより製品の軽量化及びある程度の強度向上に
寄与するためであり、さらにそれがガラス質であるか
ら、その周りに接触充填されるフライアッシュ、セラミ
ックマトリックスとの焼結接合が容易であり、その結果
焼成製品はガラス質球状粗粒子表層とセラミックマトリ
ックスが強固に結合して、全体強度が向上するのであ
る。そして、主原料としてガラス質中空球状粗粒子とフ
ライアッシュを用いたことにより、製品の空隙率を多大
に確保し、かつ吸水膨潤された高吸水性ポリマー粒子及
び未焼成セラミックセラミックを含む結合材を使用した
ことによりに、製品の空隙率を最大に確保することがで
きるのである。なお、該セラミック製品中には、素材中
の各ガラス質中空球状粗粒子同士の接触部分(以下、第
1点接触部分という)間に形成される大きな空隙部(以
下、第1空隙部という)、及び第1空隙部内に充填され
たフライアッシュの各粒子同士の接触部分(以下、第2
点接触部分という)間に形成される小さな空隙部(以
下、第2空隙部という)、さらにセラミックマトリック
ス内の吸水膨潤された高吸水性ポリマー粒子の消失孔で
ある空隙部(以下、第3空隙部という)の3種の多量の
空隙部が存在するため、全体の空隙率が高く、かつ第
1,第2、第3空隙部が接続状態となって連通する結
果、軽量化及び良好な通気性・通液性が確保される。さ
らに、ガラス質中空球状粗粒子は、750〜1200℃
に加熱された際に、高温部(約1000〜1200℃)
の加熱領域で加熱されると、各粗粒子は、熔融、発泡し
て所々に部分的に発泡穴が形成されたものとなり、各粗
粒子自体がその球状壁の所々に貫通穴を備えるものとな
る結果、より良好な通気性・通液性が実現される。よっ
て、本発明の多孔質軽量セラミック製品は、下記のよう
な材料として利用できる。軽量タイル、軽量壁板パネ
ル、断熱材料、吸音材料、濾過材料、触媒を担持させた
触媒、微生物を利用する排水処理に使用される各種バク
テリア、細菌類を担持した微生物担持排水処理材料、遠
赤外線放射材料、各種フェライトなどを組成物素材とし
た電波吸収性パネル等。In the composition of the ceramic product of the present invention, the vitreous hollow spherical coarse particles are used because the coarse particles are produced in large quantities from natural glass such as obsidian, perlite and the like, and are inexpensive. Because the inside is hollow and lightweight and has a certain strength, it is because it is used as a main constituent material to contribute to the weight reduction of the product and the improvement of the strength to some extent, and it is glassy Therefore, it is easy to sinter with the fly ash and ceramic matrix, which are contact-filled around it, and as a result, the sintered product has a vitreous spherical coarse particle surface layer and a ceramic matrix that are firmly bonded, improving the overall strength It is. And by using glassy hollow spherical coarse particles and fly ash as the main raw materials, the porosity of the product is greatly secured, and the binder including the water-swelled superabsorbent polymer particles and the unfired ceramic ceramic is used. By using it, the porosity of the product can be maximized. In the ceramic product, a large void portion (hereinafter, referred to as a first void portion) formed between contact portions (hereinafter, referred to as first point contact portions) of the respective vitreous hollow spherical coarse particles in the material. And a contact portion between the particles of the fly ash filled in the first void portion (hereinafter referred to as a second portion).
A small gap (hereinafter, referred to as a second gap) formed between the point contact portions) and a gap (hereinafter, referred to as a third gap) which is a disappearing hole of the water-absorbing and swollen superabsorbent polymer particles in the ceramic matrix. ), The entire porosity is high, and the first, second, and third voids are in a connected state and communicate with each other, resulting in weight reduction and good ventilation. Properties and liquid permeability are ensured. Further, the vitreous hollow spherical coarse particles are 750 to 1200 ° C.
When heated to high temperature (about 1000-1200 ° C)
When heated in the heating region, each coarse particle is melted and foamed to partially form a foamed hole in some places, and each coarse particle itself has a through hole in its spherical wall in some places. As a result, better air permeability and liquid permeability are realized. Therefore, the porous lightweight ceramic product of the present invention can be used as the following materials. Light-weight tiles, light-wall panels, heat-insulating materials, sound-absorbing materials, filtration materials, catalysts carrying catalysts, various bacteria used in wastewater treatment using microorganisms, microorganism-bearing wastewater treatment materials carrying bacteria, far-infrared rays Radio wave absorbing panels made of radiating materials and various ferrites as composition materials.
【0012】[0012]
【実施例】本願発明の実施例を以下に説明する。 [実施例1] ガラス質球状粗粒子(粒径1〜2mm) (パーライト) 100重量部 フライアッシュ粉末 50重量部 上記の混合物に、下記組成の結合材を20重量部を添加
混合した。 ケイ酸ソーダ(3号) 40重量% 蛍石粉末 15重量% 陶石粉末 20重量% 吸水膨潤された高吸水性ポリマー粒子 10重量% メトローズ 5重量% 水 10重量% 得られた上記混合配合物を型枠に投入し低圧成形してタ
イル状成形体を得た後、乾燥し、その後970℃の焼成
帯で、90分間焼結させた。この結果、得られた多孔質
軽量セラミックス製品はカサ比重が1以下であり、圧縮
強度20〜30kg/cm2、高温耐熱性(1000℃
以上)・耐熱衝撃性に優れ、かつ通気性・通水性に優れ
吸音率も高いものであった。Embodiments of the present invention will be described below. [Example 1] Vitreous spherical coarse particles (particle size: 1-2 mm) (Perlite) 100 parts by weight Fly ash powder 50 parts by weight To the above mixture, 20 parts by weight of a binder having the following composition was added and mixed. Sodium silicate (No. 3) 40% by weight Fluorite powder 15% by weight Pottery stone powder 20% by weight Superabsorbent polymer particles swelled by water 10% by weight Metroose 5% by weight Water 10% by weight After being put into a mold and being subjected to low pressure molding to obtain a tile-shaped molded body, it was dried and then sintered in a firing zone at 970 ° C. for 90 minutes. As a result, the obtained porous lightweight ceramic product has a bulk specific gravity of 1 or less, a compressive strength of 20 to 30 kg / cm 2 , and a high temperature heat resistance (1000 ° C.
Above)-It was excellent in thermal shock resistance, excellent in air permeability and water permeability, and high in sound absorption.
【0013】[実施例2] ガラス質球状粗粒子(粒径1〜2mm) (パーライト) 100重量部 フライアッシュ粉末 100重量部 上記の混合物に、下記組成の結合材を30重量部を添加
混合した。 蛍石粉末 15重量% ガラス粉末 20重量% カオリン粉末 20重量% 吸水膨潤された高吸水性ポリマー粒子 10重量% メトローズ 5重量% 水 30重量% 上記混合物を型枠に入れてタイル状成形体にした後、1
000℃の焼成帯で、60分間焼結させた。この結果、
得られた多孔質軽量セラミックス製品はカサ比重が1以
下であり、圧縮強度10〜40kg/cm2、高温耐熱
性(1000℃以上)・耐熱衝撃性に優れ、かつ通気性
・通水性に優れ吸音率も高いものであった。なお、上記
実施例において、高吸水性ポリマーとしては、大阪有機
化学工業社製吸水性ポリマー商品名BL−100(吸水
前平均粒度70〜150μm、吸水後の粒度300〜7
00μm)を使用した。「メトローズ」(商品名:信越
化学工業社製)はメチルセルロースである。Example 2 Vitreous spherical coarse particles (particle size: 1 to 2 mm) (Perlite) 100 parts by weight Fly ash powder 100 parts by weight To the above mixture, 30 parts by weight of a binder having the following composition was added and mixed. . Fluorite powder 15% by weight Glass powder 20% by weight Kaolin powder 20% by weight Highly water-absorbing polymer particles swollen by water 10% by weight Metroose 5% by weight Water 30% by weight The above mixture was put into a mold to form a tile-shaped molded product. Later, 1
Sintering was performed in a sintering zone at 000 ° C. for 60 minutes. As a result,
The obtained porous lightweight ceramic product has a bulk specific gravity of 1 or less, a compressive strength of 10 to 40 kg / cm 2 , excellent high-temperature heat resistance (1000 ° C. or more), excellent thermal shock resistance, and excellent air permeability and water permeability. The rate was also high. In the above examples, the superabsorbent polymer is a water-absorbent polymer (trade name: BL-100, manufactured by Osaka Organic Chemical Industry Co., Ltd.) (average particle size before water absorption: 70 to 150 μm, particle size after water absorption: 300 to 7).
00 μm) was used. "Metroze" (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is methylcellulose.
【0014】[0014]
【発明の効果】以上の本願発明によれば下記のような優
れた作用効果が得られる。主原料としてガラス質中空球
状粗粒子とフライアッシュを用いたことにより、製品の
空隙率を多大に確保し、かつ吸水膨潤された高吸水性ポ
リマー粒子及び未焼成セラミックセラミックを含む結合
材を使用したことによりに、製品の空隙率を最大に確保
することができる。なお、該セラミック製品は、素材中
の各フライアッシュ粒子が中空であるため軽量であり、
かつ粒子同士の接触部分は点接触で連結され、また吸水
膨潤された高吸水性ポリマー粒子の焼失孔が残存するた
め、マトリックス部分が連通多孔質となっていて、気液
通過性が良好となる。本発明の多孔質軽量セラミック製
品は、安価なガラス質中空球状粗粒子及びフライアッシ
ュを主原料とするため、製品製造コストが低く、かつ火
力発電所等より大量に発生され、その処分が問題となっ
ているフライアッシュの有効活用に寄与するものでもあ
る。According to the present invention described above, the following excellent operational effects can be obtained. By using glassy hollow spherical coarse particles and fly ash as the main raw materials, a large porosity of the product was secured, and a binder containing superabsorbent polymer particles swollen by water and unfired ceramic ceramic was used. Thereby, the porosity of the product can be maximized. The ceramic product is lightweight because each fly ash particle in the material is hollow,
In addition, the contact portions of the particles are connected by point contact, and the burnout pores of the superabsorbent polymer particles that have been swollen by water remain, so that the matrix portion is connected and porous, and gas-liquid permeability is improved. . Since the porous lightweight ceramic product of the present invention is mainly made of inexpensive glassy hollow spherical coarse particles and fly ash, the product production cost is low, and it is generated in large quantities from thermal power plants and the like, and its disposal is a problem. It also contributes to the effective use of fly ash.
Claims (13)
イアッシュを含む多孔質セラミックマトリックス焼結体
が結合充填してなり、かつ前記多孔質セラミツクマトリ
ックス焼結体中の多孔質空隙部が吸水膨潤した高吸水性
ポリマーの消失孔であることを特徴とする多孔質軽量セ
ラミック製品。A porous ceramic matrix sintered body containing fly ash is bonded and filled between a large number of glassy hollow spherical coarse particles, and a porous void portion in the porous ceramic matrix sintered body is formed. A porous lightweight ceramic product characterized by disappearing pores of a superabsorbent polymer that has swollen by water.
状粗粒子100重量部に対して、フライアッシュ15〜
350重量部と、多孔質セラミックマトリックス焼結体
5〜80重量部が均質混在した焼結体であり、かつ前記
多孔質セラミックマトリックス焼結体中の多孔質空隙部
が吸水膨潤した高吸水性ポリマーの消失孔であることを
特徴とする多孔質軽量セラミック製品。2. A method according to claim 1, wherein 100 parts by weight of vitreous hollow spherical coarse particles having a particle size of 0.5 to 5.0 mm are mixed with 15 to 15 parts of fly ash.
A highly water-absorbing polymer which is a sintered body in which 350 parts by weight and 5 to 80 parts by weight of a porous ceramic matrix sintered body are homogeneously mixed, and wherein porous voids in the porous ceramic matrix sintered body absorb water and swell. A porous lightweight ceramic product characterized in that it has vanishing holes.
発泡体粗粒子であることを特徴とする請求項1又は2記
載の多孔質軽量セラミック製品。3. The porous lightweight ceramic product according to claim 1, wherein the vitreous hollow spherical coarse particles are natural vitreous foam coarse particles.
ス質粗粒子であることを特徴とする請求項1又は2記載
の多孔質軽量セラミック製品。4. The porous lightweight ceramic product according to claim 1, wherein the vitreous hollow spherical coarse particles are artificial foamed vitreous coarse particles.
嵩比重0.15〜1.5、圧縮強度:5.0〜50kg
f/cm2、曲げ強度:0.5〜5.0kgf/cm2
であることを特徴とする請求項1ないし4のいずれか1
項に記載の多孔質軽量セラミック製品。5. The physical properties of the porous lightweight ceramic product are as follows:
Bulk specific gravity 0.15-1.5, compressive strength: 5.0-50 kg
f / cm 2 , flexural strength: 0.5 to 5.0 kgf / cm 2
5. The method according to claim 1, wherein
Item 4. The porous lightweight ceramic product according to item 1.
状粗粒子100重量部に対して、フライアッシュ15〜
350重量部と、吸水膨潤した高吸水性ポリマー30〜
70重量%を均質に含有する未焼成セラミック粉体を含
む結合材60〜450重量部とが混合された混合物を成
形し、乾燥した後、750〜1200℃で焼成すること
を特徴とする多孔質軽量セラミック製品の製造方法。6. A fly ash of 15 to 100 parts by weight of glassy hollow spherical coarse particles having a particle size of 0.5 to 5.0 mm.
350 parts by weight, water-swellable superabsorbent polymer 30 to
A mixture comprising 60 to 450 parts by weight of a binder containing an unfired ceramic powder homogeneously containing 70% by weight is molded, dried, and then fired at 750 to 1200 ° C. Manufacturing method of lightweight ceramic products.
0〜2000μmであることを特徴とする請求項6記載
の多孔質軽量セラミック製品の製造方法。7. The water-swellable superabsorbent polymer having a particle size of 1
The method for producing a porous lightweight ceramic product according to claim 6, wherein the thickness is from 0 to 2000 µm.
40〜70重量%であることを特徴とする請求項6又は
7記載の多孔質軽量セラミック製品の製造方法。8. The method for producing a porous lightweight ceramic product according to claim 6, wherein the unfired ceramic powder accounts for 40 to 70% by weight of the binder.
する請求項6〜8のいずれか1項に記載の多孔質軽量セ
ラミック製品の製造方法。9. The method for producing a porous lightweight ceramic product according to claim 6, wherein the binder contains an inorganic binder.
徴とする請求項6ないし9のいずれか1項に記載の多孔
質軽量セラミック製品の製造方法。10. The method for producing a porous lightweight ceramic product according to claim 6, wherein the binder contains a vitreous powder.
する請求項6ないし10のいずれか1項に記載の多孔質
軽量セラミック製品の製造方法。11. The method for producing a porous lightweight ceramic product according to claim 6, wherein the binder contains a clay mineral.
徴とする請求項6〜11のいずれか1項に記載の多孔質
軽量セラミック製品の製造方法。12. The method for producing a porous lightweight ceramic product according to claim 6, wherein the binder contains an organic binder.
塩を含むことを特徴とする請求項6〜12のいずれか1
項に記載の多孔質軽量セラミック製品の製造方法。13. The method according to claim 6, wherein the binder contains a water-soluble alkali metal silicate.
13. The method for producing a porous lightweight ceramic product according to the above item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509897A JP3994232B2 (en) | 1997-07-30 | 1997-07-30 | Porous lightweight ceramic product and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509897A JP3994232B2 (en) | 1997-07-30 | 1997-07-30 | Porous lightweight ceramic product and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1149582A true JPH1149582A (en) | 1999-02-23 |
JP3994232B2 JP3994232B2 (en) | 2007-10-17 |
Family
ID=16501397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20509897A Expired - Fee Related JP3994232B2 (en) | 1997-07-30 | 1997-07-30 | Porous lightweight ceramic product and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3994232B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386881B1 (en) * | 1999-10-12 | 2003-06-09 | 손명모 | Manufactory method of discharge ceramic light weight with inorganic matter a high strength |
WO2017050946A1 (en) * | 2015-09-25 | 2017-03-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Use of a geopolymer with superabsorbent polymer |
CN112919892A (en) * | 2021-02-05 | 2021-06-08 | 江西陶瓷工艺美术职业技术学院 | Inorganic ceramic membrane support material and preparation method thereof |
CN116120087A (en) * | 2022-12-16 | 2023-05-16 | 浙江天地环保科技股份有限公司 | Light foamed ceramic synthesized by using fly ash and preparation method thereof |
-
1997
- 1997-07-30 JP JP20509897A patent/JP3994232B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386881B1 (en) * | 1999-10-12 | 2003-06-09 | 손명모 | Manufactory method of discharge ceramic light weight with inorganic matter a high strength |
WO2017050946A1 (en) * | 2015-09-25 | 2017-03-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Use of a geopolymer with superabsorbent polymer |
FR3041630A1 (en) * | 2015-09-25 | 2017-03-31 | Commissariat Energie Atomique | SUPER ABSORBENT POLYMER GEOPOLYMER, PROCESS FOR PREPARING SAME AND USES THEREOF |
CN112919892A (en) * | 2021-02-05 | 2021-06-08 | 江西陶瓷工艺美术职业技术学院 | Inorganic ceramic membrane support material and preparation method thereof |
CN116120087A (en) * | 2022-12-16 | 2023-05-16 | 浙江天地环保科技股份有限公司 | Light foamed ceramic synthesized by using fly ash and preparation method thereof |
CN116120087B (en) * | 2022-12-16 | 2024-04-12 | 浙江浙能科技环保集团股份有限公司 | Light foamed ceramic synthesized by using fly ash and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3994232B2 (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2277075C2 (en) | Porous sound-absorbing ceramic article and method of production of such article (versions) | |
CN101885620B (en) | Ceramic material with multi-stage duct structure and manufacture method thereof | |
KR20090116880A (en) | The porous humidity-control tile and method for manufacturing same | |
JP4446144B2 (en) | Method for producing porous sound-absorbing ceramic molded body | |
JP4460916B2 (en) | Ceramic sintered body having pores of binary structure and manufacturing method thereof | |
JP3994233B2 (en) | Porous ceramic product and manufacturing method thereof | |
JP3273310B2 (en) | Porous lightweight ceramic body | |
JP4448565B2 (en) | Porous lightweight ceramic product and manufacturing method thereof | |
JP3994232B2 (en) | Porous lightweight ceramic product and manufacturing method thereof | |
JPS6116753B2 (en) | ||
JP4448564B2 (en) | Porous ceramic product and manufacturing method thereof | |
JP3411242B2 (en) | Lightweight porcelain product and method of manufacturing the same | |
JPH10202082A (en) | Production of granulated body | |
CN1107038C (en) | Light ceramic product and manufacturing method thereof | |
JP2517225B2 (en) | Manufacturing method of porous inorganic material molded plate | |
JPH04240168A (en) | Production of sound-absorbing lightweight ceramic plate | |
KR100310628B1 (en) | Ceramic Micro-organism Container and Method for Manufacturing the Same | |
TW397718B (en) | The sintered body of continuous through holes using industrial waste and unused resources as major raw materials | |
JP2002145679A (en) | Method of producing porous ceramic | |
JPS61136974A (en) | Manufacture of lightweght ceramic | |
JPH0545557B2 (en) | ||
KR930009348B1 (en) | Process for producing of seramic tail | |
KR970006996B1 (en) | Pore light weight aggregate material and production thereof | |
JP2007246348A (en) | Method for manufacturing hollow ceramic grain, hollow ceramic grain, and hollow ceramic grain-using article using the hollow ceramic grain | |
JP2001317134A (en) | Sound absorbing/humidity conditioning material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070717 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |