JP4460916B2 - Ceramic sintered body having pores of binary structure and manufacturing method thereof - Google Patents

Ceramic sintered body having pores of binary structure and manufacturing method thereof Download PDF

Info

Publication number
JP4460916B2
JP4460916B2 JP2004049846A JP2004049846A JP4460916B2 JP 4460916 B2 JP4460916 B2 JP 4460916B2 JP 2004049846 A JP2004049846 A JP 2004049846A JP 2004049846 A JP2004049846 A JP 2004049846A JP 4460916 B2 JP4460916 B2 JP 4460916B2
Authority
JP
Japan
Prior art keywords
pores
ceramic sintered
sintered body
fired
iron slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049846A
Other languages
Japanese (ja)
Other versions
JP2005239467A (en
Inventor
英雄 居上
穣 居上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH ENGINEERING CORPORATION
Original Assignee
EARTH ENGINEERING CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH ENGINEERING CORPORATION filed Critical EARTH ENGINEERING CORPORATION
Priority to JP2004049846A priority Critical patent/JP4460916B2/en
Publication of JP2005239467A publication Critical patent/JP2005239467A/en
Application granted granted Critical
Publication of JP4460916B2 publication Critical patent/JP4460916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Description

本発明は耐火断熱材料、水質浄化材料、調湿材料及びVOC吸着材料など、環境を改善する価値ある製品を珪藻土の持つ特有のマクロ気孔と人工的にミリメートルサイズのトンネル構造の孔隙を連結させた二元構造の新規な気孔構造を持ち、各種の用途に対応出来る製品としたものである。   In the present invention, a unique macropore of diatomaceous earth is artificially connected to a pore of a millimeter-sized tunnel structure, such as a refractory heat insulating material, a water purification material, a humidity control material and a VOC adsorbing material. It has a new dual pore structure and can be used for various applications.

多孔質セラミックスを造る技術は数多く知られているが、気孔のサイズや構造によってそれぞれの造り方が知られている。   Many techniques for producing porous ceramics are known, but the respective production methods are known depending on the size and structure of the pores.

第1の技術は「格子構造」を持つ多孔体であり、発泡ウレタン樹脂の気孔内へセラミックス組成物を注入充填した後、樹脂成分を分解させて成型したものを焼成焼結するものであり、気孔サイズは大きく、アルミニウム溶解時の耐火濾過材として普及されている。   The first technique is a porous body having a “lattice structure”, in which a ceramic composition is injected and filled into pores of a urethane foam resin, and then the resin component is decomposed and molded and fired and sintered. The pore size is large and is widely used as a fireproof filter material when aluminum is dissolved.

第2の技術は「アグリゲート型」の多孔体であり、組成物中の粗粒子の骨材の間隙を気孔として焼結されたものであり、透水舗道板や吸音板として造られている。   The second technique is an “aggregate type” porous body, which is sintered with pores of the aggregate of coarse particles in the composition as pores, and is produced as a water-permeable pavement plate or a sound absorbing plate.

第3の技術は「独立気泡型」の泡ガラスとして知られるものであり、アメリカのコーニング社の技術は古くから知られるものである。   The third technology is known as “closed-cell” foam glass, and the technology of Corning in the United States has been known for a long time.

第4の技術は本発明者による特開2002−47075として発明した、ダクタイル鋳鉄スラグの加熱時の特徴的な発泡現象を利用したもの及び特許第3216034号は焼成時に収縮する粘土質等の原料と焼成時に容積を膨張するスラグ類を混合した組成物を焼成時に微小なキレツ孔隙を発生させた保水性のセラミックスを造る技術がある。   The fourth technique, which was invented by the present inventor as Japanese Patent Laid-Open No. 2002-47075, uses a characteristic foaming phenomenon during heating of ductile cast iron slag, and Japanese Patent No. 3216034 discloses a raw material such as clay that shrinks during firing. There is a technique for producing water-retaining ceramics in which fine crevices are generated during firing from a composition in which slags that expand in volume during firing are mixed.

第5の技術は本発明者による特開平10−182262及び特開平11−92211による金属アルミニウムにアルカリ溶液を加えて発生する水素を含水組成物内に形成させて発泡体を成形し、焼成して焼結した連続貫通気孔のセラミックス製造技術がある。   According to the fifth technique, hydrogen produced by adding alkaline solution to metal aluminum according to Japanese Patent Laid-Open Nos. 10-182262 and 11-92211 by the present inventor is formed in a water-containing composition, and a foam is formed and fired. There is ceramic manufacturing technology for sintered continuous through-holes.

以上のように多くの従来技術が知られているが、本発明は発明者の保有する第4及び第5の従来技術に、天然資源として特有のマクロ気孔を持ち、耐火断熱材や濾過材として広く使われてきた原料の特徴ある気孔組織と、人工的にサイズの大きい且つトンネル構造の孔隙との併存によって多目的な用途に対応できる製品を開発した新規な技術である。   As described above, many conventional technologies are known, but the present invention has macropores that are unique to natural resources in the fourth and fifth conventional technologies possessed by the inventor, and is used as a refractory heat insulating material or filter material. It is a new technology that has developed a product that can be used for various purposes by coexisting the characteristic pore structure of the widely used raw material with the artificially large pores of the tunnel structure.

第1の課題は「珪藻土」は焼成、焼結の時に1000℃を越えると大きい収縮が始まりサイズの大きい製品を造る時に収縮キレツが発生する為、耐火断熱材料としてもJIS煉瓦サイズの製品のように小さいブロック状に制約されている。本発明の主たる目的はサイズの大きい焼結体であり、焼成キレツを防ぐ為には900℃から膨張を始める鋳鉄スラグ、特にダクタイル鋳鉄スラグは好適なものとして選択した。   The first problem is that diatomaceous earth begins to shrink when it exceeds 1000 ° C during firing and sintering, and shrinkage occurs when a large product is made. It is restricted to a small block shape. The main object of the present invention is a sintered body having a large size, and cast iron slag starting to expand from 900 ° C., particularly ductile cast iron slag, was selected as a suitable one in order to prevent fired sinter.

第2の課題は、孔隙の大きさや形の制御である。特許2899954号に示すようにスラグ粒子はそれぞれ個々に膨張して溶着して気孔を生成するものであり、スラグ粒子の粒度や形状よって制御することが出来るものである。更に特開2002−4705に示すように請求項2に於いて、真空土練機によって円筒状に押出すことによりスラグ粒子は押出し方向に配向整列された組織となり、更にローラー圧延によって密度を高める事により製品の気孔、孔隙は扁平状のトンネル構造のものとして特徴あるものとなったが、この方法で造る製品はかさ比重0.5g/ccが限度であり、更に表面積の大きい気孔率の高いものが求められる対象商品には請求項3に示すように予め設計された条件の多孔体を成形した後、焼成焼結する方法が必要である。この方法はALCの製造技術と同様にアルミニウムの酸化による水素の利用であり、泥状体の粘度とアルミニウムのとアルカリ溶液の混合比率によって調整出来るが、気孔率は80%を越える多孔生地は極めて強度が弱く、ハンドリングが困難なものである。これらを解決する手段として本発明者出願による特開2000−119066による紙型を使って成形し、紙型のまま焼成焼却する方法によって解決したものである。   The second problem is the control of the size and shape of the pores. As shown in Japanese Patent No. 2899954, slag particles are individually expanded and welded to generate pores, and can be controlled by the particle size and shape of the slag particles. Further, as disclosed in JP-A-2002-4705, in claim 2, the slag particles are oriented and aligned in the extrusion direction by being extruded into a cylindrical shape by a vacuum kneader, and the density is further increased by roller rolling. As a result, the pores and pores of the product became a characteristic of a flat tunnel structure, but the product made by this method is limited to a bulk specific gravity of 0.5 g / cc, and has a large surface area and a high porosity. The target product required requires a method of firing and sintering after molding a porous body under predesigned conditions as shown in claim 3. This method is the use of hydrogen by oxidation of aluminum in the same way as the production technology of ALC, and it can be adjusted by the viscosity of the sludge and the mixing ratio of aluminum and alkali solution, but the porous fabric with a porosity exceeding 80% is extremely The strength is weak and handling is difficult. As means for solving these problems, the present invention has been solved by a method in which a paper mold according to Japanese Patent Application Laid-Open No. 2000-119066 filed by the present inventor is molded and fired and incinerated as it is.

請求項4は起泡剤によって成形体内へ気泡を封入させたものであり、起泡剤の添加量により気孔率を制御することが出来るものであり、セメントによって硬化体を造るものである。   According to the fourth aspect of the present invention, bubbles are encapsulated in the molded body by a foaming agent, the porosity can be controlled by the amount of foaming agent added, and a cured body is made by cement.

更に珪藻土が焼成されたとき、無定形のシリカはクリストバライトに転移されるものであり、クリストバライトは石英鉱物の中で麦飯石などで知られるように、ナノメートルサイズのミクロ気孔を持つものであり、ガス体の吸着などの分野にも製品用途を拡大出来る可能性がある。   Furthermore, when diatomaceous earth is fired, amorphous silica is transferred to cristobalite, and cristobalite has nanometer-sized micropores, as is known in barleystone among quartz minerals, There is a possibility that product applications can be expanded in fields such as gas body adsorption.

なお、請求項2、3、4の製造方法に於いて、珪藻土の配合率と膨張スラグの比率はそれぞれ目的商品の形状、サイズなどにより選択した範囲であり、粘土は大形製品を押出し成形する場合は成形条件として最低20%以上が必須の条件であるが、請求項3及び請求項4に於ける発泡成形には乾燥発泡体の強度、乾燥収縮などの条件から粘土を使用せずにセメントで硬化させる方法が好適の場合もある。   In addition, in the manufacturing method according to claims 2, 3, and 4, the blending ratio of diatomaceous earth and the ratio of expanded slag are ranges selected according to the shape and size of the target product, respectively, and clay extrudes a large product. In this case, at least 20% or more is essential as the molding condition. However, in the foam molding according to claim 3 and 4, cement is used without using clay because of the strength of the dried foam and drying shrinkage. In some cases, the method of curing with is preferable.

実施例に於ける物性評価のように、本発明は、省エネルギーと環境改善の為の多目的な要求機能に対処出来る製品を低コストで市場に提供出来る新規な技術である。   As in the physical property evaluation in the embodiments, the present invention is a novel technology that can provide a product that can cope with a versatile required function for energy saving and environmental improvement at low cost.

この発明は天然資源として「珪藻土」が持つ気孔特性を利用して従来からこれらを原料としてセラミックスを造る際の欠点とされた加熱時の収縮キレツの発生を改善する為に加熱膨張性のスラグ等によって調整し、かつ商品の要求される機能に応じた大きいサイズのトンネル型の貫通気孔を共存させるという特徴を持つものであり、以下に実施形態の1例を説明する。   The present invention utilizes the pore characteristics of “diatomaceous earth” as a natural resource, so that heat-expandable slag, etc. has been used to improve the generation of shrinkage cracks during heating, which has been regarded as a drawback in the production of ceramics using these as raw materials. In the following, an example of the embodiment will be described. The tunnel-type through-holes having a large size corresponding to the function required by the product coexist.

本発明の主原料である珪藻土は従来、耐火断煉瓦、濾過材等に使用されていた様に狭雑している粘土鉱物(モンモソロナイト)や石英、長石などを分別精製する必要はなく、これらの含有率を認識した上で配合率を調整するものであり、更には自然乾燥状態で含水率が40%程度になったものの含水率を認識しながら混合、混練の際に狭雑物注の粗粒子分を除去して使用する、経済性の高い製造システムにより使用される。   The diatomaceous earth that is the main raw material of the present invention does not need to separate and refine clay minerals (Monmo Solonite), quartz, feldspar, etc. that are conventionally used in refractory bricks, filter media, etc. The mixture ratio is adjusted after recognizing these contents, and further, when the moisture content is about 40% in the natural dry state, the mixture is mixed and kneaded while recognizing the moisture content. It is used by an economical production system that removes the coarse particles.

加熱時に膨張性を示すスラグ類は、非品質状態に排出されたものは何れも800℃〜850℃から結晶化による僅かな膨張を示すものであるが、特に本発明の実施にはダクタイル鋳鉄製造時の水滓の800℃〜850℃の結晶化膨張と連続的な硫化マンガンの分解によって起こる発泡により、少量で効果は格段に大きいものであり、目的商品の気孔サイズによって粒度が0.25mm〜1.0mmまでの範囲に選んで使用する。   Slags that exhibit expansibility during heating are those that are discharged in a non-quality state, but show slight expansion due to crystallization from 800 ° C to 850 ° C. Due to the foaming caused by the crystallization expansion of the water tank at 800 ° C to 850 ° C and the continuous decomposition of manganese sulfide, the effect is much greater in a small amount, and the particle size is 0.25 mm to 1.0 depending on the pore size of the target product Select and use within the range up to mm.

請求項3に示す発泡成形体を造る際に使用する金属アルミニウムはALC等に使用するアルミ粉で良いが、アルミ缶等の再熔解の際に発生する金属アルミニウムを20%〜30%を含むアルミドロスは廃棄物として未だ有効利用がされていないものであり、これらを使用することが出来る。   The aluminum metal used for producing the foamed molded product according to claim 3 may be aluminum powder used for ALC, etc., but aluminum containing 20% to 30% of metal aluminum generated when remelting aluminum cans, etc. Dross has not yet been effectively used as waste and can be used.

水素を発生させる為のアルカリ成分は苛性ソーダ、炭酸ソーダをpH12以上の水溶液として混合し使用する、更にスラグとこれらアルカリとの反応は急速に進行して硬化するスラグアルカリセメント(S.A.C.)として知られるものであり、アルミニウムの酸化発熱とこれらの反応が同時に進行する為、発泡体の硬化時間は極めて短時間に行われるものであり、生産性の高い製造条件に好適の条件となる。   Alkaline components for generating hydrogen are mixed with caustic soda and sodium carbonate as aqueous solutions with a pH of 12 or more, and the reaction between slag and these alkalis is known as slag alkali cement (SAC), which rapidly hardens and hardens. Since the oxidation heat generation of aluminum and these reactions proceed simultaneously, the foam is cured in a very short time, which is suitable for production conditions with high productivity.

発泡成形体でかさ比重0.5g/cc以下のものは極めて強度が弱く、そのままでは製造ラインコンベアー上移送や、キルン焼成中に於いても崩壊し易いものであり、これらを改善するために所望サイズの製品の紙型に軟泥状組成物を流し込んだまま発泡養生、乾燥硬化処理をして、そのままローラーハースキルン内へ投入して焼成する。紙の中には耐火度の高いカオリナイト質或いは石灰質の無機質物を含み、成形体の底面に付着したまま焼成されて、ローラーハースキルンのセラミックスローラーの溶着を防止し、焼成初期の約500℃までは形状保持に有効である。   Foam molded products with a bulk specific gravity of 0.5 g / cc or less are very weak, and as such, they are easily disintegrated during transportation on the production line conveyor or kiln firing. With the soft mud composition poured into the paper mold of the product, foam curing and drying / curing treatment are performed, and the product is placed in a roller hearth kiln and baked. The paper contains kaolinite or calcareous minerals with high fire resistance, and is fired while adhering to the bottom of the compact to prevent welding of the roller hearth kiln ceramic roller. Up to this is effective for shape retention.

請求項4はプレフォームの泥状体を造り成形する方法で、気泡コンクリートの製造方法として知られた方法である。気泡は成形体ではコンクリートの製造方法として知られた方法である。気泡は成形体では0.1mm〜0.2mm程度の球状バルーンであるが、焼成過程に於いてスラグの発泡によって球状気孔は変形してお互いに連結された孔隙を形成して本発明の目的の適合するものである。   A fourth aspect of the present invention is a method for forming a preform mud, which is known as a method for producing cellular concrete. Bubbles are a known method for producing concrete in a molded body. Although the bubble is a spherical balloon of about 0.1 mm to 0.2 mm in the molded body, the spherical pores are deformed by the foaming of the slag in the firing process to form the connected pores and meet the purpose of the present invention. Is.

本発明により製造される商品は多目的の機能商品に適用されるものであるが、請求項2及び請求項3によって製造される製品について記述する。   The product manufactured according to the present invention is applied to a multipurpose functional product, and the product manufactured according to claims 2 and 3 will be described.

大形耐火断熱板、建築用大形内装タイル   Large fireproof insulation board, large interior tile for building

1.原料配合率(乾物換算重量比)

Figure 0004460916
1. Raw material mixing ratio (weight ratio in terms of dry matter)
Figure 0004460916

2.製造方法
上記配合物を含水率20%±1%に調整したものをミックスマラーによって混合混練して可塑状態の杯土とし、真空土練機を用いて直径(外径)350mmφ、厚さ30mmの円筒状に押出、円筒長さ500mmに切断し、展開して幅約900mm、長さ500mm、厚さ30mmの平板生地とした後更にローラー圧延設備を用いて厚さ10mmに圧延したサイズ幅600mm×長さ1200mm×厚さ10mmの生地板を波長5μm〜20μmの遠赤外線照射空間に約5分間処理し、更に温度180℃〜200℃の熱風ドライヤーで含水率2%以下としたものを、ローラーハースキルンを用いて1000℃に焼成して、厚さ25mmの製品を得た。
2. Manufacturing method Mixing and kneading the above-mentioned composition to a moisture content of 20% ± 1% using a mix muller to make a plastic state clay, using a vacuum kneader, the diameter (outer diameter) 350mmφ, thickness 30mm Extruded into a cylindrical shape, cut into a cylinder length of 500 mm, unfolded to form a flat plate with a width of about 900 mm, a length of 500 mm, and a thickness of 30 mm, and then rolled to a thickness of 10 mm using a roller rolling facility Roller hearth with a dough board of 1200mm length x 10mm thickness treated in a far-infrared irradiation space with a wavelength of 5μm to 20μm for about 5 minutes, and further with a hot air dryer at a temperature of 180 ° C to 200 ° C to a moisture content of 2% or less The product was fired at 1000 ° C. using a kiln to obtain a product having a thickness of 25 mm.

3.製品の物性

Figure 0004460916
3. Product properties
Figure 0004460916

4.評価
耐火断熱煉瓦としてJIS規格に示されるB2―B5のグレードのものであるが、再加熱収縮率はゼロであること、及び板状材としての曲げ強度を充分満足出来るものである。また、気孔率は70%を越えるもので、保水性が高く、化学吸湿剤(HgCl2)水溶液を吸着させた板の湿度45%〜90%の間の吸放湿率は木炭を超える6%〜8%を示すものであった。
更にトンネル構造の屈曲した孔隙は吸音材料として極めて効果的な構造であり、高い性能が期待される。
4). Evaluation Although it is a grade of B2-B5 shown in the JIS standard as a fireproof heat-insulating brick, the reheat shrinkage rate is zero and the bending strength as a plate-like material can be sufficiently satisfied. In addition, the porosity is over 70%, the water retention is high, and the moisture absorption and desorption rate between 45% and 90% of the plate adsorbed with the chemical moisture absorbent (HgCl 2 ) aqueous solution is 6% over charcoal. -8%.
Furthermore, the bent pore of the tunnel structure is a very effective structure as a sound absorbing material, and high performance is expected.

低密度多孔体   Low density porous material

1.原料配合率(乾物重量比)

Figure 0004460916
1. Raw material mixing ratio (dry matter weight ratio)
Figure 0004460916

2.製造工程
1)上記組成物に苛性ソーダによってpH12.5に調整したアルカリ水を重量比で1.5倍
加え、更に組成物重量に対して0.02%の高分子ポリエチレンオキサイドを加えて
粘度の高い軟泥状態として1分間高速撹拌機にて撹拌すると、容積が約2倍に膨
張した多孔体となり、予め用意した300×300×100mmの紙製の型内へ振動を与え
ながら充填する。
2)紙型のまま温度50℃〜60℃に調整された発泡養生室にいれ、30分以上置くと、自
己発熱による熱量も加えられて、含水率約30%成型体となる。
3)更に温度100℃〜150℃の熱風ドライヤー内にて脱水乾燥を行い、紙型に充填され
たまま、ローラーハースキルンに投入して1100℃で焼成して、300×300×50mmの
焼結体を得た。
2. Manufacturing process 1) Alkaline water adjusted to pH 12.5 with caustic soda is added to the above composition 1.5 times by weight, and 0.02% of high molecular weight polyethylene oxide is added to the composition weight to make a soft mud state with high viscosity 1 When stirred with a high-speed stirrer for 5 minutes, the volume expands to about 2 times and fills in a 300 × 300 × 100 mm paper mold prepared in advance with vibration.
2) When placed in a foam curing room adjusted to a temperature of 50 ° C to 60 ° C in a paper mold and placed for 30 minutes or more, the amount of heat generated by self-heating is also added, resulting in a molded product with a moisture content of about 30%.
3) Further, dehydration drying is performed in a hot air dryer at a temperature of 100 ° C to 150 ° C, and the paper mold is filled into a roller hearth kiln and baked at 1100 ° C to sinter 300 x 300 x 50 mm. Got the body.

3.製品の物性

Figure 0004460916
本多孔体は濾過材或いは水質改良材として大量に需要のある分野であるが、物性評価の数値として吸音特性を示したものである。 3. Product properties
Figure 0004460916
Although this porous body is a field that is in great demand as a filter material or a water quality improving material, it shows a sound absorption characteristic as a numerical value for evaluating physical properties.

4.評価
建築材料や吸音材料として使用されるセメント系多孔体として、ヘーベル、シポレックス等の商品名で販売されているALC製品は、かさ比重に於いて同等のものであるが、圧縮強度に於いては本製品の約1/3である。
また、熱伝導率は極めて低く、多孔質セラミックス製品としては市場製品よりも優れた特性をもつものである。更には耐火度は1200度以上を有し、高温度の排気フィルター材としても期待される。
4). Evaluation ALC products sold under trade names such as Hebel and Sipolex as cement-based porous materials used as building materials and sound-absorbing materials are equivalent in bulk specific gravity, but in terms of compressive strength About 1/3 of this product.
Moreover, the thermal conductivity is extremely low, and the porous ceramic product has characteristics superior to those of the market product. Furthermore, it has a fire resistance of 1200 degrees or more and is expected as a high temperature exhaust filter material.

Claims (4)

珪藻土由来のマクロ気孔と人工的に生成させたミリメートルサイズのトンネル構造孔隙とが相互に連結された二元構造の気孔を持つセラミックス焼結体であって、人工的に孔隙を生成させる為に焼結時に容積を拡大させる原料は鋳鉄スラグである、二元構造の気孔を持つセラミックス焼結体。 A ceramic sintered body with dual-structure pores in which macropores derived from diatomite and artificially created millimeter-size tunnel structure pores are interconnected, and sintered to produce pores artificially material to expand the volume during sintering is cast iron slag, ceramic sintered bodies having a pore dual structure. 珪藻土20%〜60%、鋳鉄スラグ10%〜60%、粘土類20%〜30%の重量比の範囲の組成物を含水率15%〜25%の可塑状態に混合混練し、真空土練機を用いて円筒状に押し出し、切開、展開して板状とした後、ローラー圧延によって所定の厚みに圧縮成形した後、遠赤外線照射ゾーンによって加温し、更に熱風ドライヤーにて含水率3%以下としたものを、ローラーハースキルンに投入して950℃〜1200℃の温度範囲で焼成して成る、請求項1記載の二元構造の気孔を持つセラミックス焼結体の製造方法。 20% to 60% diatomaceous earth, iron slag 1 0% to 60%, the composition range of clays 20% to 30% by weight ratio were mixed and kneaded into a plastic state of the moisture content of 15% to 25%, a vacuum clay After extruding into a cylindrical shape using a kneader, cutting and developing to form a plate, compression molding to a predetermined thickness by roller rolling, heating in a far-infrared irradiation zone, and a moisture content of 3 with a hot air dryer The method for producing a ceramic sintered body having a porous structure having a binary structure according to claim 1, wherein a material having a porosity of% or less is charged into a roller hearth kiln and fired in a temperature range of 950 ° C. to 1200 ° C. 珪藻土50%〜75%、鋳鉄スラグ20%〜30%、粘土又はセメント5%〜20%の重量比範囲の組成物に金属アルミニウム分として0.2%〜1.0%を含む様にアルミ粉又はアルミドロスを加え、苛性ソーダ又は炭酸ソーダによりpH12以上に調整されたアルカリ水溶液を加えて軟泥状として、所定サイズの成形型へ注入充填し、型内に於いて発泡させたものをローラーハースキルンに投入して950℃〜1200℃の温度範囲で焼成して成る、請求項1記載の二元構造の気孔を持つセラミックス焼結体の製造方法。 50% to 75% diatomaceous earth, iron slag 2 0% to 30%, aluminum powder or aluminum as containing 0.2% to 1.0% as a metallic aluminum content in the composition in a weight ratio ranging from 5% to 20% clay or cement Add dross, add alkaline aqueous solution adjusted to pH 12 or higher with caustic soda or sodium carbonate to make it soft mud, inject and fill into the mold of the specified size, and put the foamed in the mold into the roller hearth kiln. The method for producing a ceramic sintered body having pores having a binary structure according to claim 1, wherein the ceramic sintered body is fired in a temperature range of 950 ° C to 1200 ° C. 珪藻土60%〜70%、鋳鉄スラグ10%〜20%、セメント10%〜20%の重量比組成物に高分子起泡剤0.1%〜0.3%を加えて多量の気泡を内蔵させた泥状とした後、ポリエチレンオキサイド0.01%〜0.03%を加えて粘度を高めた粘稠な泥状としたものを紙型に注型した後、乾燥硬化させ、950℃〜1200℃の範囲の温度で焼成して成る、請求項1記載の二元構造の気孔を持つセラミックス焼結体の製造方法。 A mud that contains a large amount of bubbles by adding 0.1% to 0.3% of a polymer foaming agent to a weight ratio composition of diatomaceous earth 60% to 70%, cast iron slag 10% to 20%, cement 10% to 20% After that, a thick mud with a viscosity increased by adding 0.01% to 0.03% of polyethylene oxide is poured into a paper mold, dried and cured, and fired at a temperature in the range of 950 ° C to 1200 ° C. A method for producing a ceramic sintered body having pores having a binary structure according to claim 1.
JP2004049846A 2004-02-25 2004-02-25 Ceramic sintered body having pores of binary structure and manufacturing method thereof Expired - Fee Related JP4460916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049846A JP4460916B2 (en) 2004-02-25 2004-02-25 Ceramic sintered body having pores of binary structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049846A JP4460916B2 (en) 2004-02-25 2004-02-25 Ceramic sintered body having pores of binary structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005239467A JP2005239467A (en) 2005-09-08
JP4460916B2 true JP4460916B2 (en) 2010-05-12

Family

ID=35021602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049846A Expired - Fee Related JP4460916B2 (en) 2004-02-25 2004-02-25 Ceramic sintered body having pores of binary structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4460916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126760A (en) * 2015-09-28 2015-12-09 福州大学 Heavy metal poly-hole adsorption material and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850868B2 (en) * 2008-05-13 2012-01-11 ダイセラ株式会社 Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same
JP5192909B2 (en) * 2008-05-31 2013-05-08 株式会社ミスズライフ Mushroom cultivation facility
JP5291646B2 (en) * 2010-03-05 2013-09-18 清水建設株式会社 Moss greening platform
US20130330530A1 (en) * 2010-09-16 2013-12-12 Komatsu Seiren Co., Ltd. Porous Ceramic Sintered Body
JP5927121B2 (en) * 2010-10-26 2016-05-25 小松精練株式会社 Porous ceramic sintered body and method for producing the same
JP2012125741A (en) * 2010-12-17 2012-07-05 Komatsu Seiren Co Ltd Water purification material
EP2738148B1 (en) * 2011-07-01 2019-05-08 KOMATSU MATERE Co., Ltd. Interlocking block
JP6046356B2 (en) * 2011-12-01 2016-12-14 小松精練株式会社 Roof base laying structure
JP6337403B2 (en) * 2013-02-28 2018-06-06 小松精練株式会社 Porous ceramic fired body and method for producing the same
JP2014221703A (en) * 2013-05-14 2014-11-27 小松精練株式会社 Porous ceramic fired body
CN105731976A (en) * 2016-01-20 2016-07-06 广西丛欣实业有限公司 Insulating brick and preparation method thereof
CN105601253A (en) * 2016-01-20 2016-05-25 广西丛欣实业有限公司 Manufacturing method of regeneration bricks
CN105669165A (en) * 2016-01-20 2016-06-15 广西丛欣实业有限公司 Regeneration brick
JP2019011210A (en) * 2017-06-29 2019-01-24 株式会社テクノフロンティア Dehumidifying/humidifying rotor
CN109053152B (en) * 2018-08-29 2021-06-22 戴成豪 Diatomite ceramic flowerpot and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105126760A (en) * 2015-09-28 2015-12-09 福州大学 Heavy metal poly-hole adsorption material and preparation method thereof
CN105126760B (en) * 2015-09-28 2017-08-25 福州大学 Poly- hole sorbing material of one heavy metal species and preparation method thereof

Also Published As

Publication number Publication date
JP2005239467A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4460916B2 (en) Ceramic sintered body having pores of binary structure and manufacturing method thereof
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
US4824811A (en) Lightweight ceramic material for building purposes, process for the production thereof and the use thereof
JP5658136B2 (en) Porous ceramic sintered body and method for producing the same
KR100729677B1 (en) Porous ceramic and method for manuracturing the same
DE102014003104A1 (en) Alkali aluminosilicate foam or slurry compositions or bodies and process for their preparation and their use
CN101723595A (en) Ceramic foam glass product and manufacturing technology thereof
KR101892391B1 (en) Method for manufacturing bottom ash molded foam article
HU224808B1 (en) Method for producing of silicate foam product from waste material
KR100952225B1 (en) Method for manufacturing multi-cellular body by using waste basalt sullage and multi-cellular body made by the method
Perumal et al. Porous alkali-activated materials
KR101646155B1 (en) Fly ash composition for preparing a light-weight molded foam article and method for producing a light-weight molded foam article using them and a light-weight molded foam article made thereby
JP2010143774A (en) Geopolymer hardened body which uses sewage sludge molten slag as activated filler
JP4446144B2 (en) Method for producing porous sound-absorbing ceramic molded body
ATE299484T1 (en) MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF
CN1887756A (en) Foamed glass and ceramic product and its making process
JP2002047075A (en) Ceramics porous body and its manufacturing method
CN107266119A (en) A kind of construction material of insulation and preparation method thereof
KR100420246B1 (en) Light-weight porous aggregate for acoustic wave damping modules and method for manufacturing the same
JP2007261901A (en) Ceramic formed by using waste as main material, and its manufacturing method
JPH06166579A (en) Production of lightweight cellular building material produced by using coal ash as main raw material
Tihomirovs et al. Porous Ceramics Produced from Glass and Clay
JP2008001564A (en) Method for manufacturing porous ceramic fired body
JPH0324414B2 (en)
JPH1149582A (en) Porous lightweight ceramic product and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4460916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees