JP4850868B2 - Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same - Google Patents

Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same Download PDF

Info

Publication number
JP4850868B2
JP4850868B2 JP2008126041A JP2008126041A JP4850868B2 JP 4850868 B2 JP4850868 B2 JP 4850868B2 JP 2008126041 A JP2008126041 A JP 2008126041A JP 2008126041 A JP2008126041 A JP 2008126041A JP 4850868 B2 JP4850868 B2 JP 4850868B2
Authority
JP
Japan
Prior art keywords
oriented
laminated
range
producing
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008126041A
Other languages
Japanese (ja)
Other versions
JP2009274895A (en
Inventor
英雄 居上
穣 居上
Original Assignee
ダイセラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセラ株式会社 filed Critical ダイセラ株式会社
Priority to JP2008126041A priority Critical patent/JP4850868B2/en
Publication of JP2009274895A publication Critical patent/JP2009274895A/en
Application granted granted Critical
Publication of JP4850868B2 publication Critical patent/JP4850868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Road Paving Structures (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は焼成によって発泡するケイ酸塩原料を平板状に成形し、焼成によって個々の粒子が発泡し溶着して連続気孔を持つセラミックス多孔体の製造方法にかかるものであり、特に本発明に於いては扁平状の連続気孔が積層配向された全く新規な気孔形状及び構造を持つセラミックス焼結体に関する。 The present invention relates to a method for producing a porous ceramic body having continuous pores in which a silicate raw material foamed by firing is formed into a flat plate shape, and individual particles are foamed and welded by firing. In particular, the present invention relates to a ceramic sintered body having a completely novel pore shape and structure in which flat continuous pores are laminated and oriented.

本発明は発明者が既に「多孔質結晶化ガラス組成物」として特許第2899954号に登録された成分範囲の、無定形ガラスが加熱され約800℃からCaO,Al2O3,2SiO2及びCaOSiO2の結晶の析出と共に分相して生成した低融点の液相の粘土が105ポアズ以下となったとき、成分中のFeS2及びMaSが熱分解したSO2ガスが爆発的に放出され発泡し、これ等が溶着して連続貫通気孔体となることを発見した。更にこれ等の無定形ガラスはダクタイル鋳鉄の製造時に水滓として産出されるスラグが近似的組成であることを発見し、特願2000−233972「セラミックス多孔体及びその製造方法」として、粒度、配合比率、成形方法及び焼成条件を限定して本発明者等によって出願した。 In the present invention, precipitation of CaO, Al2O3, 2SiO2 and CaOSiO2 crystals from about 800 ° C. is effected by heating the amorphous glass in the component range already registered in Patent No. 2,899,954 as a “porous crystallized glass composition”. When the low-melting-point liquid phase clay generated by phase separation becomes 105 poise or less, the SO2 gas in which FeS2 and MaS in the component are thermally decomposed is explosively released and foamed, and these are welded. It was discovered that it becomes a continuous through-pore. Furthermore, these amorphous glasses were found to have an approximate composition of slag produced as water tanks during the production of ductile cast iron. Japanese Patent Application No. 2000-233972 “Ceramic Porous Material and Method for Producing the Same” describes the particle size, composition The inventors filed the application by limiting the ratio, molding method and firing conditions.

これ等の技術を利用して工業生産を行い、吸音材料、断熱材料、緑化材料として市場へ供給されているものであるが、市場拡大によって特に吸音材料として400Hzから630Hzの低周波域に於ける吸音性能の向上、及び断熱材料としてより高い省エネルギー効率が求められ、これ等の改良技術として鋭意研究開発を行い、本発明を完成した。
特開平10−7433 特開2002−47075
These technologies are used for industrial production and are supplied to the market as sound-absorbing materials, heat-insulating materials, and greening materials. However, as the market expands, especially in the low frequency range from 400 Hz to 630 Hz. Improvement in sound absorption performance and higher energy saving efficiency as a heat insulating material are required, and as a result of these improvements, earnest research and development have been carried out to complete the present invention.
JP 10-7433 JP 2002-47075 A

先ず従来技術による量産製品の気孔組織を詳細に解析するとミリメートルサイズの気孔の形状は立方体が様々な形に変形して溶着した気孔が不規則に分布し、気孔間を結合している外皮部分にはミクロンサイス゛の独立気孔が多数含まれているものでかさ密度は0.55〜0.6、気孔率は65%から70%のものであった。 First, the pore structure of mass-produced products according to the prior art is analyzed in detail. The shape of millimeter-size pores is deformed into various shapes of the cube, and the welded pores are irregularly distributed. Had many micron-sized independent pores, had a bulk density of 0.55 to 0.6, and a porosity of 65% to 70%.

更に使用しているスラグ粒子は粒度1mm以上のものは立方体状であるが粒子が小さくなる程球状の粒子から成っていた。これ等のスラグに粘土を加えて押出し成形した生地の断面を観察するとスラグ粒子間を結合している粘土質の厚さが極めて不揃いであった。 Further, the slag particles used were those having a particle size of 1 mm or more in a cubic shape, but the particles became smaller as the particles became smaller. When the cross section of the dough obtained by adding clay to these slags and extruding was observed, the thickness of the clay connecting the slag particles was extremely uneven.

本発明の目的はより高気孔率であり且つ品質にばらつきの無い高精度の製品を造る為の技術的条件であり、従って第1の課題はスラグ粒子の形状である。本技術の特徴はスラグ粒子を高温に於いて爆発的に発泡させるものであり、これ等の膨張を容積の拡大で成形体の厚さ方向に集中的に集約することが高気孔率とする最大の要因である。又スラグと粘土の配合比率においてより少ない粘土で成形出来る様な即ち押出し成形に於ける可塑流動抵抗の少ない配向性の良いスラグ粒子の形状である。 The object of the present invention is a technical condition for producing a highly accurate product having higher porosity and no variation in quality, and therefore the first problem is the shape of slag particles. The feature of this technology is that the slag particles are explosively foamed at a high temperature, and the maximum porosity is achieved by concentrating these expansions in the thickness direction of the compact by expanding the volume. It is a factor. Further, it is a shape of slag particles with good orientation that can be molded with less clay in the blending ratio of slag and clay, that is, with low plastic flow resistance in extrusion molding.

第2の課題は低周波音域に於ける吸音率の向上である。低周波域で広く使用されている吸音材料の殆どはガラスウール等をルーズに成形した材料から成っているものである。これ等の材料の構造は入射した音波が水平方向分散させる様に気孔が配向されている事である。又、熱伝導に於いても同様の効果が期待される。 The second problem is the improvement of the sound absorption coefficient in the low frequency sound range. Most of the sound absorbing materials widely used in the low frequency range are made of a material obtained by loosely molding glass wool or the like. The structure of these materials is that the pores are oriented so that the incident sound wave is dispersed in the horizontal direction. The same effect can be expected in heat conduction.

第1の課題はスラグ粒子の形状である。理想的な多孔体の構造は気孔を包む外皮(セル)が薄く、気孔相互の間隙が少なく規則的に配向配列された構造であることから本発明の改良技術の要点はスラグ粒子を鱗片状とすることである。鱗片状の粒子は粘土を加えた可塑性組成物を真空土練機を用いて円筒状に押出し成形すると容易に押出し方向へ配向して流動抵抗が少なくなりより少量の粘土で成形可能となる。次に押し出し方向と同一方向にローラー圧延機を用いることにより配向を乱さずに所望の厚さに成型することができる。さらに圧延された成形体は一連の流れで連続的にローラーハースキルンで焼成加工されて扁平状の連続気孔が積層配向されたセラミックス焼結体が得られるものである。 The first problem is the shape of the slag particles. The ideal porous structure has a thin outer skin (cell) that wraps pores, and there are few gaps between pores, and the structure is regularly oriented. The main point of the improved technique of the present invention is that the slag particles are scaled. It is to be. When the flaky particles are extruded into a cylindrical shape by using a vacuum clay kneader, the scale-like particles are easily oriented in the direction of extrusion and flow resistance is reduced, so that a smaller amount of clay can be formed. Next, by using a roller mill in the same direction as the extrusion direction, it can be molded to a desired thickness without disturbing the orientation. Further, the rolled compact is continuously fired by a roller hearth kiln in a series of flows to obtain a ceramic sintered body in which flat continuous pores are laminated and oriented.

更に成形体は鱗片状粒が積層された極めて好ましい構造のものとなったが、ガラス質で「もろい」スラグは各種の破砕、粉砕設備を用いて実験したがアスペクト比は2〜3の範囲であった。
Furthermore, the molded product had a very preferable structure in which scaly grains were laminated, but the glassy and “friable” slag was tested using various crushing and crushing equipments, but the aspect ratio was in the range of 2-3. there were.

これ等のスラグの粒度が0.5mm〜1.0mmのものを75%にベントナイト25%の重量比で押出し成形(請求項3)の加熱条件で焼成してみると厚さは生地の約3倍の高い膨張率を示し、且つミリメートルサイズの気孔は扁平状で規則的に配向し積層された従来にない新規な組成の連続気孔体が得られた。これ等の焼成物はかさ比重0.48〜0.5の従来品より約10%気孔率の大きいものが得られた。 When these slag particles having a particle size of 0.5 mm to 1.0 mm are fired to 75% by weight ratio of 25% bentonite under extrusion molding (Claim 3), the thickness is about 3 times that of the dough. An unprecedented novel composition of continuous pores having a double expansion rate and having millimeter-sized pores flat and regularly oriented and laminated was obtained. These fired products had a porosity of about 10% greater than that of conventional products having a bulk specific gravity of 0.48 to 0.5.

第2の課題はこれ等扁平状の気孔体とする事により道路用吸音材として求められている400Hz〜630Hzの平均吸音率は従来品の0.83に対し0.86と向上するものであった。 The second problem is that the average sound absorption coefficient of 400 Hz to 630 Hz required as a sound absorbing material for roads is improved to 0.86 from 0.83 of the conventional product by making these flat pore bodies. It was.

本発明は同一発明者により改良技術として既に工業製品として市場に供給され多くのユーザーから求められている品質を満たす物性を改良するために、従来この種材料として例のない扁平状の気孔が積層された組織構造を新規な製品設計として開発したものである。特に吸音特性及び断熱特性に於いて扁平状の気孔体は何れも大幅な品質の改良をする事が出来た。 In order to improve the physical properties that satisfy the quality demanded by many users already supplied to the market as an industrial product by the same inventor as an improved technology, the present invention has been laminated with flat pores that are unprecedented as this kind of material. The developed organizational structure was developed as a new product design. In particular, the flat pores were able to greatly improve the quality in terms of sound absorption characteristics and heat insulation characteristics.

本発明の実施例について以下に述べる。 Examples of the present invention will be described below.

1)スラグの粉砕整粒
スラグはエッジランナーミルを用い圧縮転動方式で1.5mm以下に粉砕し0.25mm以下の微粉含有率が20%以下に整粒した。
該整粒後のスラグは、アスペクト比が2〜3の範囲であった。
2)配合率(重量比)
スラグ75%、ベントナイト25%、水分(外掛け)15%
3)成形
真空度−720mmHg、押出し圧力25〜30kg/cm2の真空土練機にて外径300mm、肉厚30mmの円筒状に押出し、展開切断して平板状とし、ローラー圧延機にて厚さ15mm、幅500mm、長さ1,000mmの生地に成形した。
4)乾燥、焼成
遠赤外線照射コンベア上で10分間熱処理し、更に300℃の熱風ドライヤーで乾燥したものを、ローラーハースキルンを用い850℃迄は10℃/分の昇温速度、850℃〜1,050℃の間は20℃/分の急速加熱をし、1050℃10分間キープした後冷却した。
5)焼成品の膨張、製品の物性及び吸音特性の従来品との比較を表1〜表3に示す。
1) Grinding and sizing of slag The slag was pulverized to 1.5 mm or less by an edge runner mill by a compression rolling method, and the fine powder content of 0.25 mm or less was sized to 20% or less.
The slag after the sizing had an aspect ratio in the range of 2-3.
2) Mixing ratio (weight ratio)
75% slag, 25% bentonite, 15% moisture (outer)
3) Extrusion into a cylindrical shape with an outer diameter of 300 mm and a wall thickness of 30 mm using a vacuum kneader with a forming vacuum degree of -720 mmHg and an extrusion pressure of 25 to 30 kg / cm 2. It was formed into a fabric having a size of 15 mm, a width of 500 mm, and a length of 1,000 mm.
4) Drying and firing Heat treatment for 10 minutes on a far-infrared irradiation conveyor, and further drying with a hot air dryer at 300 ° C., using a roller hearth kiln, up to 850 ° C., a heating rate of 10 ° C./min, 850 ° C.-1 , 050 ° C. was rapidly heated at 20 ° C./min, kept at 1050 ° C. for 10 minutes, and then cooled.
5) Tables 1 to 3 show the comparison of the baked product with the conventional product in terms of expansion, product properties and sound absorption characteristics.

Figure 0004850868
Figure 0004850868

Figure 0004850868
Figure 0004850868

Figure 0004850868
Figure 0004850868

上記表1、表2、表3に示した結果から明らかなように、扁平状の気孔が積層された構造には気孔率80%に近いものとなり、特に音波及び熱の入射が水平方向に拡散される効果は高い性能を示すものである。
As is clear from the results shown in Table 1, Table 2, and Table 3, the structure in which flat pores are stacked has a porosity close to 80%, and in particular, the incidence of sound waves and heat diffuses in the horizontal direction. The effect is high performance.

Claims (1)

ダクタイル鋳鉄の製造時に水滓として産出される鋳鉄スラグを、エッジランナーミルによる圧縮転動方式で粒度0.25mm〜1.5mm範囲でアスペクト比2以上の鱗片状の粒子に整粒し、
該鋳鉄スラグが重量比60%〜75%、可塑性粘土が重量比25%〜40%の範囲に配合すると共に、水分を外掛け15〜20%の範囲で加えて混練した後、真空土練機で円筒状に押し出し、展開して平板状とし、ローラー圧延機で押し出し方向と同一方向に鱗片状粒子が積層配向する様に圧延成形し、
これを遠赤外線で乾燥後、ローラーハースキルンを用いて850℃迄は10℃/分以下で加熱し、850℃〜1050℃の温度範囲は20℃/分以上と急速加熱して容積を2倍以上に拡大させるよう発泡焼成して扁平状の連続気孔を積層配向させたことを特徴とするセラミックス焼結体の製造方法。
The cast iron slag produced as a water tank during the manufacture of ductile cast iron is sized into scaly particles having an aspect ratio of 2 or more in a particle size range of 0.25 mm to 1.5 mm by a compression rolling method using an edge runner mill.
The cast iron slag is blended in the range of 60% to 75% by weight and the plastic clay is blended in the range of 25% to 40% by weight. Extruded into a cylindrical shape, developed into a flat plate shape, rolled and formed so that scaly particles are laminated and oriented in the same direction as the extrusion direction with a roller rolling mill,
After drying this with far infrared rays, it is heated at 10 ° C / min or less up to 850 ° C using a roller hearth kiln, and the temperature range of 850 ° C to 1050 ° C is rapidly heated to 20 ° C / min or more to double the volume. A method for producing a ceramic sintered body, characterized by laminating and orientation of flat continuous pores by foaming and firing so as to expand as described above.
JP2008126041A 2008-05-13 2008-05-13 Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same Expired - Fee Related JP4850868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126041A JP4850868B2 (en) 2008-05-13 2008-05-13 Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126041A JP4850868B2 (en) 2008-05-13 2008-05-13 Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009274895A JP2009274895A (en) 2009-11-26
JP4850868B2 true JP4850868B2 (en) 2012-01-11

Family

ID=41440664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126041A Expired - Fee Related JP4850868B2 (en) 2008-05-13 2008-05-13 Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4850868B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159838A1 (en) * 2014-04-17 2015-10-22 日本碍子株式会社 Porous plate-like filler, heat insulation film and method for producing porous plate-like filler
JP6466124B2 (en) * 2014-09-29 2019-02-06 大和ハウス工業株式会社 Firing body and method for producing the same
KR102136043B1 (en) 2020-01-03 2020-07-20 최승규 Manufacturing method of large ceramic panel for artificial reef using purified water sludge
KR102351167B1 (en) 2020-06-12 2022-01-13 최승규 Continuous porous architectural ceramic panel for recycling purified water sludge and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617976A (en) * 1979-06-22 1981-02-20 Kurosaki Refractories Co Manufacture of gas blowing refractories
JP3801673B2 (en) * 1995-11-02 2006-07-26 クリオン株式会社 Porous sound absorbing material
JP2973198B2 (en) * 1997-11-28 1999-11-08 日本磁力選鉱株式会社 How to use metal discharged from melting furnace
JP2002047075A (en) * 2000-08-02 2002-02-12 Clay Baan Gijutsu Kenkyusho:Kk Ceramics porous body and its manufacturing method
JP2002321988A (en) * 2001-04-27 2002-11-08 Nippon Sheet Glass Co Ltd Ceramic foamed body and its manufacturing method
JP4460916B2 (en) * 2004-02-25 2010-05-12 株式会社アースエンジニアリング Ceramic sintered body having pores of binary structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009274895A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
Ding et al. Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding
Onutai et al. Fast microwave syntheses of fly ash based porous geopolymers in the presence of high alkali concentration
WO2018006835A1 (en) High temperature-resistant light-weight thermal-insulating material having duel porous structure and preparation method therefor
JP4850868B2 (en) Ceramic sintered body in which flat continuous pores are laminated and oriented, and method for producing the same
CN101638324B (en) Light porous heat-insulating refractory material and preparation method and applications thereof
Xu et al. Investigation on the influence factors for preparing mullite-whisker-structured porous ceramic
CN103232228B (en) Preparation method of porous aluminum oxide composite ceramic
CN103496957A (en) Light porous tourmaline composite ceramic and preparation method thereof
JPS602272B2 (en) Method for manufacturing cordierite bodies
CN103951260A (en) Energy-saving open-cell foamed glass and preparation method thereof
CN107010990B (en) Preparation method of low-thermal-conductivity cordierite porous ceramic
CN107954742A (en) Light porous refractory brick and preparation method thereof
Song et al. Processing of microcellular cordierite ceramics from a preceramic polymer
Wu et al. Fabrication and properties of in-situ mullite-bonded Si3N4/SiC composites for solar heat absorber
JP2005239467A (en) Ceramic sintered compact with binary structure pores and its production method
Yamane et al. Fabrication of porous SiC ceramics having pores shaped with Si grain templates
CN103436006B (en) Modified polyurethane foamed wallboard
Aydin Development of porous lightweight clay bricks using a replication method
JP2002047075A (en) Ceramics porous body and its manufacturing method
CN105645941B (en) A kind of preparation method of ultra-fine porous calcium silicate ceramic membrane
Li et al. Fabrication of ultra-high-porosity cordierite foams by the thermo-foaming of powder dispersions in molten D-glucose anhydrous
CN101362650A (en) Semi-silicium heat preserving heat insulation refractory product and preparation method thereof
CN202063839U (en) Expansion furnace for hollow glass microspheres
CN106518139B (en) A kind of preparation method of insulating fire brick
CN105347686B (en) A kind of preparation method of uniform closed pore nanometer addition foam glass

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4850868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees