JP3994232B2 - Porous lightweight ceramic product and manufacturing method thereof - Google Patents

Porous lightweight ceramic product and manufacturing method thereof Download PDF

Info

Publication number
JP3994232B2
JP3994232B2 JP20509897A JP20509897A JP3994232B2 JP 3994232 B2 JP3994232 B2 JP 3994232B2 JP 20509897 A JP20509897 A JP 20509897A JP 20509897 A JP20509897 A JP 20509897A JP 3994232 B2 JP3994232 B2 JP 3994232B2
Authority
JP
Japan
Prior art keywords
porous
weight
coarse particles
parts
porous lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20509897A
Other languages
Japanese (ja)
Other versions
JPH1149582A (en
Inventor
孝資 田口
光宏 松下
信昭 宮尾
Original Assignee
孝資 田口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孝資 田口 filed Critical 孝資 田口
Priority to JP20509897A priority Critical patent/JP3994232B2/en
Publication of JPH1149582A publication Critical patent/JPH1149582A/en
Application granted granted Critical
Publication of JP3994232B2 publication Critical patent/JP3994232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • C04B14/24Glass ; Devitrified glass porous, e.g. foamed glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0051Water-absorbing polymers, hydrophilic polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Description

【0001】
【発明の属する技術分野】
本発明は多孔質軽量セラミック製品に関するものであり、特に非常に空隙率の高くかつ強度の大きな多孔質軽量セラミック製品及びその製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来の多孔質セラミック製品の製造法には、発泡性未焼成セラミック粉体に結合材を混合し、成形後、焼成する方法や、主原料として黒曜石やシラス等の火山噴出物を用い、これらに粘土や結合材を混合して、成形後、焼成する方法等がある。
しかしながら、それら方法により得られた多孔質セラミック製品は、嵩比重が十分に低くなく、かつ空隙率が十分に多くないものであった。
【0003】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意研究の結果、火山噴出物として多量に産出する黒曜石、シラス等の加熱発泡球状体粗粒子、すなわち火山噴出物発泡球状粗粒子、例えばパーライトを主原料とし、あるいは人工発泡ガラス質球状粗粒子、例えばスラグの加熱発泡球状粗粒子を主原料とし、これに火力発電所から大量に排出されるフライアッシュの相当量及び吸水膨潤した高吸水性ポリマーを均質に含有する未焼成セラミック粉体を含む結合材とが混合された混合物を成形し、乾燥した後、750〜1200℃で焼成することによって、非常に軽量化された多孔質セラミックを提供することに成功した。すなわち本発明は、下記構成の多孔質軽量セラミック製品及びその製造方法である。
(1)多数のガラス質中空球状粗粒子の間をフライアッシュを含む多孔質セラミックマトリックス焼結体が結合充填してなり、かつ前記多孔質セラミツクマトリックス焼結体中の多孔質空隙部が吸水膨潤した高吸水性ポリマーの消失孔である多孔質軽量セラミック製品であって、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、多孔質セラミックマトリックス焼結体5〜80重量部が均質混在した焼結体であり、該製品の物理特性が、嵩比重0.15〜1.5、圧縮強度:5.0〜50kgf/cm 2 、曲げ強度:0.5〜5.0kgf/cm 2 であることを特徴とする多孔質軽量セラミック製品。
(2)ガラス質中空球状粗粒子が、天然ガラス質発泡体粗粒子であることを特徴とする(1)項記載の多孔質軽量セラミック製品。
(3)ガラス質中空球状粗粒子が、人工発泡ガラス質粗粒子であることを特徴とする(1)項記載の多孔質軽量セラミック製品。
【0004】
(4)粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、粒径が10〜2000μmの吸水膨潤した高吸水性ポリマー30〜70重量%を均質に含有する未焼成セラミック粉体を含む結合材60〜450重量部とが混合された混合物を成形し、乾燥した後、750〜1200℃で焼成して、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、多孔質セラミックマトリックス焼結体5〜80重量部が均質混在した焼結体であり、その物理特性が、嵩比重0.15〜1.5、圧縮強度:5.0〜50kgf/cm 2 、曲げ強度:0.5〜5.0kgf/cm 2 である多孔質軽量セラミック製品を得ることを特徴とする多孔質軽量セラミック製品の製造方法。
(5)結合材中に占める未焼成セラミック粉体が40〜70重量%であることを特徴とする(4)項記載の多孔質軽量セラミック製品の製造方法。
(6)結合材が、無機結合材を含むことを特徴とする請求項(4)又は(5)項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。
(7)結合材が、ガラス質粉体を含むことを特徴とする(4)項ないし(6)項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。
(8)結合材が、粘土鉱物を含むことを特徴とする(4)項ないし(7)項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。
(9)結合材が、有機質結合材を含むことを特徴とする(4)(8)項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。
(10)結合材が、水溶性のアルカリ金属ケイ酸塩を含むことを特徴とする(4)(9)項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。
【0005】
【発明の実施の形態】
本願発明の実施の形態を以下に説明する。
まず、本願発明で主原料として用いらるガラス質中空球状粗粒子としては、例えば天然ガラス質発泡粗粒子である黒曜石細片や真珠岩細片等の高温加熱による発泡粗粒子であるパーライト、人工ガラス質粗粒子である水砕スラグ細片やシリカ細片の高温加熱発泡粗粒子であるスラグバルーンやシリカバルーン等が挙げられ、高温加熱発泡ガラス質中空球状粗粒子の粒径は0.5〜5.0mmであるものが好ましい。
その嵩密度は0.1/cm〜1.0/cmのものが好ましい。
【0006】
次に、本願発明で主原料として使用されるフライアッシュは、石炭や石油ピッチ等を燃焼させたあとに出る残渣灰であり、火力発電所等から大量に排出されるものであって、現在、その利用技術、利用量が少ないために、各分野にてその利用が鋭意検討されているものである。
フライアッシュの成分組成は、例えばSiO:50〜68%,Al3:20〜35%、Fe3:2〜7%,CaO:0.6〜7%、MgO:0.2〜2%,NaO:0.1〜2%、KO:0.3〜1.5%,Ig.loss:2〜4%からなり、非晶質であり、かつ各フライアッシュ粒子は粒径5〜20μmの球状体で内部が中空となっているものである。
よって、フライアッシュ粒子は、転動性、充填性が良好で、前記多数のガラス質中空球状粗粒子間に容易に隈無く充填される。
【0007】
本願発明は、多くのガラス質中空球状粗粒子間にフライアッシュと多孔質セラミックマトリックス焼結体が焼結充填された状態の多孔質軽量セラミック製品を提供するものであるが、その製造においては、まず成形性を付与させるため、ガラス質中空球状粗粒子とフライアッシュと吸水膨潤された高吸水性ポリマー粒子を混有させた未焼成セラミックマトリックス生成材料(結合材)との均質混合物を加水あるいは可塑化材を添加混合して、生地となし、それを一定形状に成形し、乾燥した後、焼成することが好ましい。
前記未焼成セラミックマトリックス生成材料中に混有させる吸水膨潤した高吸水性ポリマー粒子は、100℃前後の加熱により大量の膨潤水が容易に蒸散、消失するものであり、高吸水性ポリマーとしては、具体的には、デンプン系(デンプン−アクリロニトリルグラフト重合体加水分解物等)、セルロース系(セルロース−アクリロニトリルグラフト重合体)、タンパク質(コラーゲン等)多糖類系(ピアルロン酸等)等の天然高分子類、ポリピニルアルコール系(ポリピニルアルコール架橋重合体等)、アクリル系(ポリアクリル酸ナトリウム架橋体等)、付加重合体(無水マレイン酸系共重合体等)、ポリエーテル系(ポリエチレングリコール・ジアクリレート架橋重合体等)、縮合系ポリマー(エステル系ポリマー等)等の合成高分子類が挙げられるが、アクリル酸ナトリウム系重合体の架橋物が工業的に生産が容易で低コストのため好ましい。
【0008】
また、焼成によりセラミックスマトリックスを生成する未焼成セラミックとしては、例えば長石、陶土、粘土鉱物等のケイ酸アルミニウム系無機材料が挙げられ、それらには焼結剤としてのアルカリ金属・アルカリ土類金属ケイ酸塩、ガラス粉、釉薬粉等を添加することが好ましく、さらに無機系粘結材の水溶性アルカリケイ酸塩(水ガラス)や有機質粘結材のコーンスターチ、CMC等を添加したものが好ましい。
なお、成形のための可塑性付与材としては、通常有機系のもの、例えば前記粘結材と同じコーンスターチ、CMCやアルギン酸ソーダー、PVA、ポリアクリル系エマルジン、多価アルコール系ワックス等を添加使用することができる。
なお、水溶性アルカリケイ酸塩(水ガラス)は成形用及び焼結用に共用される可塑性付与材兼焼結剤として好ましいものである。
【0009】
本願発明においては、さらに耐熱性補強材を加配することもできる。このような耐熱性補強材としては、例えば鉱滓、シャモット等が採用でき、これら耐熱性補強材を加配し、焼結して得られた多孔質軽量セラミック製品は、高い機械的強度及び耐熱性を備えたものとなる。
さらに、本発明の多孔質軽量セラミック製品中の多孔空隙を生成させるため、未焼成セラミック粉体を含む結合材中に有機物細粒を混有させることもできる。
有機質微細物としては、高温加熱により揮発焼失するもので、例えば木材・竹材・穀類等の植物微細物、脂肪微細物、プランクトン等の動物微細物、ポリスチロール、ポリエチレン、ポリプロピレン等の合成樹脂微細物が挙げられる。さらに、有機質短繊維、例えばナイロン短繊維、ポリプロピレン短繊維等も使用できる。米細粒、うどん細粒、籾がら粉等も使用できる。
それら、有機物細粒部は焼成時に酸化焼失して焼失孔となる。
【0010】
上記のようなガラス質中空球状粗粒子に、フライアッシュ及び吸水膨潤された高吸水性ポリマー粒子を含む結合材を均質に混合した混合物を所要形状に成形した後、乾燥し、750〜1200℃程度の焼成温度域において焼結させることにより、多孔質軽量セラミック製品を得ることができる。
【0011】
上記発明のセラミックス製品の配合組成において、ガラス質中空球状粗粒子を用いるのは、該粗粒子は黒曜石、真珠岩等の天然ガラス等を原料にして多量に生産され価格も安価で、内部が中空で軽量であり、かつ一定の強度も備えているため、これを主要構成材料とすることにより製品の軽量化及びある程度の強度向上に寄与するためであり、さらにそれがガラス質であるから、その周りに接触充填されるフライアッシュ、セラミックマトリックスとの焼結接合が容易であり、その結果焼成製品はガラス質球状粗粒子表層とセラミックマトリックスが強固に結合して、全体強度が向上するのである。
そして、主原料としてガラス質中空球状粗粒子とフライアッシュを用いたことにより、製品の空隙率を多大に確保し、かつ吸水膨潤された高吸水性ポリマー粒子及び未焼成セラミックセラミックを含む結合材を使用したことによりに、製品の空隙率を最大に確保することができるのである。
なお、該セラミック製品中には、素材中の各ガラス質中空球状粗粒子同士の接触部分(以下、第1点接触部分という)間に形成される大きな空隙部(以下、第1空隙部という)、及び第1空隙部内に充填されたフライアッシュの各粒子同士の接触部分(以下、第2点接触部分という)間に形成される小さな空隙部(以下、第2空隙部という)、さらにセラミックマトリックス内の吸水膨潤された高吸水性ポリマー粒子の消失孔である空隙部(以下、第3空隙部という)の3種の多量の空隙部が存在するため、全体の空隙率が高く、かつ第1,第2、第3空隙部が接続状態となって連通する結果、軽量化及び良好な通気性・通液性が確保される。
さらに、ガラス質中空球状粗粒子は、750〜1200℃に加熱された際に、高温部(約1000〜1200℃)の加熱領域で加熱されると、各粗粒子は、熔融、発泡して所々に部分的に発泡穴が形成されたものとなり、各粗粒子自体がその球状壁の所々に貫通穴を備えるものとなる結果、より良好な通気性・通液性が実現される。
よって、本発明の多孔質軽量セラミック製品は、下記のような材料として利用できる。
軽量タイル、軽量壁板パネル、断熱材料、吸音材料、濾過材料、触媒を担持させた触媒、微生物を利用する排水処理に使用される各種バクテリア、細菌類を担持した微生物担持排水処理材料、遠赤外線放射材料、各種フェライトなどを組成物素材とした電波吸収性パネル等。
【0012】
【実施例】
本願発明の実施例を以下に説明する。
[実施例1]
ガラス質球状粗粒子(粒径1〜2mm)
(パーライト) 100重量部
フライアッシュ粉末 50重量部
上記の混合物に、下記組成の結合材を20重量部を添加混合した。
ケイ酸ソーダ(3号) 40重量%
蛍石粉末 15重量%
陶石粉末 20重量%
吸水膨潤された高吸水性ポリマー粒子 10重量%
メトローズ 5重量%
水 10重量%
得られた上記混合配合物を型枠に投入し低圧成形してタイル状成形体を得た後、乾燥し、その後970℃の焼成帯で、90分間焼結させた。
この結果、得られた多孔質軽量セラミックス製品はカサ比重が1以下であり、圧縮強度20〜30kg/cm、高温耐熱性(1000℃以上)・耐熱衝撃性に優れ、かつ通気性・通水性に優れ吸音率も高いものであった。
【0013】
[実施例2]
ガラス質球状粗粒子(粒径1〜2mm)
(パーライト) 100重量部
フライアッシュ粉末 100重量部
上記の混合物に、下記組成の結合材を30重量部を添加混合した。
蛍石粉末 15重量%
ガラス粉末 20重量%
カオリン粉末 20重量%
吸水膨潤された高吸水性ポリマー粒子 10重量%
メトローズ 5重量%
水 30重量%
上記混合物を型枠に入れてタイル状成形体にした後、1000℃の焼成帯で、60分間焼結させた。
この結果、得られた多孔質軽量セラミックス製品はカサ比重が1以下であり、圧縮強度10〜40kg/cm、高温耐熱性(1000℃以上)・耐熱衝撃性に優れ、かつ通気性・通水性に優れ吸音率も高いものであった。
なお、上記実施例において、高吸水性ポリマーとしては、大阪有機化学工業社製吸水性ポリマー商品名BL−100(吸水前平均粒度70〜150μm、吸水後の粒度300〜700μm)を使用した。「メトローズ」(商品名:信越化学工業社製)はメチルセルロースである。
【0014】
【発明の効果】
以上の本願発明によれば下記のような優れた作用効果が得られる。
主原料としてガラス質中空球状粗粒子とフライアッシュを用いたことにより、製品の空隙率を多大に確保し、かつ吸水膨潤された高吸水性ポリマー粒子及び未焼成セラミックセラミックを含む結合材を使用したことによりに、製品の空隙率を最大に確保することができる。
なお、該セラミック製品は、素材中の各フライアッシュ粒子が中空であるため軽量であり、かつ粒子同士の接触部分は点接触で連結され、また吸水膨潤された高吸水性ポリマー粒子の焼失孔が残存するため、マトリックス部分が連通多孔質となっていて、気液通過性が良好となる。
本発明の多孔質軽量セラミック製品は、安価なガラス質中空球状粗粒子及びフライアッシュを主原料とするため、製品製造コストが低く、かつ火力発電所等より大量に発生され、その処分が問題となっているフライアッシュの有効活用に寄与するものでもある。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous lightweight ceramic product, and more particularly to a porous lightweight ceramic product having a very high porosity and a high strength, and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventional methods for producing porous ceramic products include a method in which a binder is mixed with foamable unfired ceramic powder and then fired after molding, and volcanic ejecta such as obsidian and shirasu are used as the main raw materials. There is a method in which clay and a binder are mixed and fired after molding.
However, the porous ceramic products obtained by these methods have a bulk specific gravity that is not sufficiently low and a porosity is not sufficiently high.
[0003]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventor mainly uses heated foamed spherical coarse particles such as obsidian and shirasu produced in large quantities as volcanic ejecta, that is, volcanic ejected foamed coarse spherical particles such as perlite. Alternatively, artificial foamed glassy spherical coarse particles, such as heated spherical spherical coarse particles of slag, are used as the main raw material, and a considerable amount of fly ash discharged from a thermal power plant and a highly water-absorbing polymer with water absorption and swelling are homogenized. Succeeded in providing a very lightweight porous ceramic by molding a mixture containing a binder containing unsintered ceramic powder and drying it, followed by firing at 750 to 1200 ° C. did. That is, this invention is the porous lightweight ceramic product of the following structure, and its manufacturing method.
(1) A porous ceramic matrix sintered body containing fly ash is bonded and filled between a large number of glassy hollow spherical coarse particles, and the porous voids in the porous ceramic matrix sintered body absorb water and swell. Porous lightweight ceramic product which is a disappearance hole of the superabsorbent polymer, and 15 to 350 parts by weight of fly ash with respect to 100 parts by weight of glassy hollow spherical coarse particles having a particle diameter of 0.5 to 5.0 mm , A sintered body in which 5 to 80 parts by weight of a porous ceramic matrix sintered body is homogeneously mixed. The physical properties of the product are a bulk specific gravity of 0.15 to 1.5, and a compressive strength of 5.0 to 50 kgf / cm. 2. Bending strength: 0.5 to 5.0 kgf / cm 2
(2) The porous lightweight ceramic product as described in (1) , wherein the vitreous hollow spherical coarse particles are natural vitreous foam coarse particles.
(3) The porous lightweight ceramic product according to (1) , wherein the vitreous hollow spherical coarse particles are artificial foamed vitreous coarse particles.
[0004]
(4) 15 to 350 parts by weight of fly ash with respect to 100 parts by weight of vitreous hollow spherical coarse particles having a particle size of 0.5 to 5.0 mm, and a superabsorbent polymer 30 with a water absorption and swelling of 10 to 2000 μm. A mixture in which 60 to 450 parts by weight of a binder containing unfired ceramic powder containing ˜70% by weight uniformly is formed, dried, fired at 750 to 1200 ° C., and a particle size of 0. It is a sintered body in which 15 to 350 parts by weight of fly ash and 5 to 80 parts by weight of a porous ceramic matrix sintered body are homogeneously mixed with respect to 100 parts by weight of glassy hollow spherical coarse particles of 5 to 5.0 mm, To obtain a porous lightweight ceramic product having physical properties of a bulk specific gravity of 0.15 to 1.5, a compressive strength of 5.0 to 50 kgf / cm 2 , and a bending strength of 0.5 to 5.0 kgf / cm 2. Multi-characteristic Manufacturing method of porous lightweight ceramic products.
(5) The method for producing a porous lightweight ceramic product according to (4), wherein the unfired ceramic powder in the binder is 40 to 70% by weight.
(6) The method for producing a porous lightweight ceramic product according to any one of (4) and (5) , wherein the binder includes an inorganic binder.
(7) The method for producing a porous lightweight ceramic product according to any one of (4) to (6) , wherein the binding material contains glassy powder.
(8) The method for producing a porous lightweight ceramic product according to any one of (4) to (7) , wherein the binder contains a clay mineral.
(9) The method for producing a porous lightweight ceramic product according to any one of (4) to (8), wherein the binder includes an organic binder.
(10) The method for producing a porous lightweight ceramic product according to any one of (4) to (9) , wherein the binder contains a water-soluble alkali metal silicate.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, as the vitreous hollow spherical coarse particles used as the main raw material in the present invention, for example, perlite, which is a coarse foamed particle by heating at a high temperature, such as obsidian fine pieces and nacreous fine pieces which are natural vitreous foam coarse particles, artificial Examples include high-temperature heated foamed coarse particles of granulated slag fine particles and silica fine particles that are glassy coarse particles, silica balloons, and the like. What is 5.0 mm is preferable.
The bulk density is preferably 0.1 / cm 3 to 1.0 / cm 3 .
[0006]
Next, fly ash used as the main raw material in the present invention is residual ash that is produced after burning coal, petroleum pitch, etc., and is discharged in large quantities from thermal power plants, etc. Due to its small utilization technology and amount, its use has been intensively studied in various fields.
The component composition of fly ash is, for example, SiO 2 : 50 to 68%, Al 2 O 3 : 20 to 35%, Fe 2 O 3 : 2 to 7%, CaO: 0.6 to 7%, MgO: 0.2 ~2%, Na 2 O: 0.1~2 %, K 2 O: 0.3~1.5%, Ig. loss: 2 to 4%, which is amorphous, and each fly ash particle is a spherical body having a particle size of 5 to 20 μm and hollow inside.
Therefore, the fly ash particles have good rolling properties and filling properties, and are easily filled without any problem between the numerous glassy hollow spherical coarse particles.
[0007]
The present invention provides a porous lightweight ceramic product in which fly ash and a porous ceramic matrix sintered body are sintered and filled between many glassy hollow spherical coarse particles. In the production thereof, First, in order to give formability, a homogeneous mixture of vitreous hollow spherical coarse particles, fly ash, and a non-fired ceramic matrix-forming material (binder) mixed with water-absorbing and swollen superabsorbent polymer particles is added to water or plastic. It is preferable to add and mix chemicals to form a dough, shape it into a certain shape, dry it, and fire it.
The water-absorbing and swollen superabsorbent polymer particles mixed in the unfired ceramic matrix-forming material are those in which a large amount of swollen water easily evaporates and disappears by heating at around 100 ° C. As the superabsorbent polymer, Specifically, natural polymers such as starch-based (starch-acrylonitrile graft polymer hydrolyzate, etc.), cellulose-based (cellulose-acrylonitrile graft polymer), protein (collagen, etc.) polysaccharide-based (pealuronic acid, etc.), etc. , Polypinyl alcohol (polypinyl alcohol crosslinked polymer, etc.), acrylic (polyacrylic acid sodium crosslinked, etc.), addition polymer (maleic anhydride copolymer, etc.), polyether (polyethylene glycol, Diacrylate cross-linked polymers, etc.), condensation polymers (ester polymers, etc.), etc. Although s and the like, cross-linked product of sodium acrylate-based polymers are preferred because of low cost easily produced industrially.
[0008]
Examples of the unfired ceramic that forms a ceramic matrix by firing include aluminum silicate-based inorganic materials such as feldspar, porcelain clay, and clay minerals. These include alkali metal and alkaline earth metal silica as a sintering agent. It is preferable to add acid salt, glass powder, glaze powder, etc., and further, water-soluble alkali silicate (water glass) of an inorganic binder, corn starch of organic binder, CMC, etc. are preferably added.
In addition, as a plasticity imparting material for molding, usually an organic material, for example, the same corn starch, CMC, sodium alginate, PVA, polyacrylic emeraldine, polyhydric alcohol wax and the like as the above-mentioned caking additive should be used. Can do.
Water-soluble alkali silicate (water glass) is preferable as a plasticizer and a sintering agent shared for molding and sintering.
[0009]
In the present invention, a heat-resistant reinforcing material can be further distributed. As such a heat-resistant reinforcing material, for example, iron ore, chamotte, etc. can be adopted, and porous lightweight ceramic products obtained by adding and sintering these heat-resistant reinforcing materials have high mechanical strength and heat resistance. It will be prepared.
Furthermore, in order to generate porous voids in the porous lightweight ceramic product of the present invention, organic fine particles can be mixed in the binder containing the unfired ceramic powder.
Organic fines are those that volatilize and burn out when heated at high temperatures, for example, plant fines such as wood, bamboo, and grains, fat fines, animal fines such as plankton, synthetic resin fines such as polystyrene, polyethylene, and polypropylene. Is mentioned. Further, organic short fibers such as nylon short fibers and polypropylene short fibers can also be used. Rice fine grains, udon fine grains, rice bran flour, etc. can also be used.
These organic fine-grained portions are oxidized and burned during firing to become burned pores.
[0010]
A mixture obtained by uniformly mixing a binder containing fly ash and water-absorbed and swollen superabsorbent polymer particles with the glassy hollow spherical coarse particles as described above is formed into a required shape, and then dried, and is about 750 to 1200 ° C. A porous lightweight ceramic product can be obtained by sintering in the firing temperature range.
[0011]
In the compounding composition of the ceramic product of the present invention, glassy hollow spherical coarse particles are used because the coarse particles are produced in large quantities from natural glass such as obsidian and pearlite, and the price is low and the interior is hollow. Because it is lightweight and also has a certain strength, it is intended to contribute to weight reduction of the product and a certain degree of strength improvement by making it a main constituent material, and since it is glassy, It is easy to sinter and join the fly ash and the ceramic matrix which are contact-filled around. As a result, in the sintered product, the vitreous spherical coarse particle surface layer and the ceramic matrix are firmly bonded, and the overall strength is improved.
And, by using vitreous hollow spherical coarse particles and fly ash as the main raw materials, a bonding material containing highly water-absorbing polymer particles swollen with water and unfired ceramic ceramic is ensured with a large porosity of the product. By using it, the porosity of the product can be ensured to the maximum.
In the ceramic product, a large void portion (hereinafter referred to as a first void portion) formed between contact portions (hereinafter referred to as first point contact portions) between the vitreous hollow spherical coarse particles in the raw material. , And a small void portion (hereinafter referred to as the second void portion) formed between the contact portions (hereinafter referred to as second point contact portions) of the particles of fly ash filled in the first void portion, and further a ceramic matrix Since there are three types of large voids, which are voids (hereinafter referred to as “third voids”), which are disappearing pores of the water-absorbing and highly water-absorbing polymer particles, the overall void ratio is high and the first As a result of the communication between the second and third gaps in a connected state, weight reduction and good air permeability and liquid permeability are ensured.
Furthermore, when the vitreous hollow spherical coarse particles are heated to 750 to 1200 ° C. and heated in a heating region of a high temperature part (about 1000 to 1200 ° C.), the coarse particles are melted and foamed in some places. As a result, each of the coarse particles itself has through holes in the spherical walls, so that better air permeability and liquid permeability are realized.
Therefore, the porous lightweight ceramic product of the present invention can be used as the following materials.
Lightweight tiles, lightweight wall panels, heat insulation materials, sound absorbing materials, filtration materials, catalysts carrying catalysts, various bacteria used in wastewater treatment using microorganisms, microorganisms carrying wastewater treatment materials carrying bacteria, far infrared rays Radio wave absorptive panels made of radiating materials and various ferrites as composition materials.
[0012]
【Example】
Examples of the present invention will be described below.
[Example 1]
Glassy spherical coarse particles (particle size 1-2mm)
(Perlite) 100 parts by weight fly ash powder 50 parts by weight 20 parts by weight of a binder having the following composition was added to and mixed with the above mixture.
Sodium silicate (No.3) 40% by weight
Fluorite powder 15% by weight
20% by weight of porcelain stone powder
10% by weight of water-absorbing polymer particles with high water absorption
Metroz 5% by weight
10% by weight of water
The obtained mixed composition was put into a mold and subjected to low-pressure molding to obtain a tile-shaped molded body, which was then dried and then sintered in a 970 ° C. firing zone for 90 minutes.
As a result, the obtained porous lightweight ceramic product has a specific gravity of 1 or less, a compressive strength of 20 to 30 kg / cm 2 , excellent high temperature heat resistance (1000 ° C. or higher) and thermal shock resistance, and breathability and water permeability. Excellent sound absorption coefficient.
[0013]
[Example 2]
Glassy spherical coarse particles (particle size 1-2mm)
(Perlite) 100 parts by weight Fly ash powder 100 parts by weight 30 parts by weight of a binder having the following composition was added to and mixed with the above mixture.
Fluorite powder 15% by weight
Glass powder 20% by weight
Kaolin powder 20% by weight
10% by weight of water-absorbing polymer particles with high water absorption
Metroz 5% by weight
30% water
The mixture was put into a mold to form a tile-shaped molded body, and then sintered in a firing zone at 1000 ° C. for 60 minutes.
As a result, the obtained porous lightweight ceramic product has a specific gravity of 1 or less, a compressive strength of 10 to 40 kg / cm 2 , excellent high temperature heat resistance (1000 ° C. or higher) and thermal shock resistance, and breathability and water permeability. Excellent sound absorption coefficient.
In addition, in the said Example, Osaka Organic Chemical Industry Co., Ltd. water-absorbing polymer brand name BL-100 (The average particle size before water absorption 70-150 micrometers, the particle size 300-700 micrometers after water absorption) was used as a highly water-absorbing polymer. “Metroze” (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is methylcellulose.
[0014]
【The invention's effect】
According to the present invention described above, the following excellent effects can be obtained.
By using glassy hollow spherical coarse particles and fly ash as the main raw materials, the porosity of the product was greatly secured, and a binder containing high water absorption polymer particles swollen with water and unfired ceramic ceramic was used. Thus, it is possible to ensure the maximum porosity of the product.
The ceramic product is lightweight because each fly ash particle in the material is hollow, and the contact portion between the particles is connected by point contact, and the water-absorbed and swollen highly water-absorbing polymer particles have burned out pores. Since it remains, the matrix portion is communicated with the porous material, and the gas-liquid permeability is good.
Since the porous lightweight ceramic product of the present invention is mainly made of inexpensive glassy hollow spherical coarse particles and fly ash, the product manufacturing cost is low, and it is generated in large quantities from thermal power plants, etc., and its disposal is a problem. It also contributes to the effective use of fly ash.

Claims (10)

多数のガラス質中空球状粗粒子の間をフライアッシュを含む多孔質セラミックマトリックス焼結体が結合充填してなり、かつ前記多孔質セラミツクマトリックス焼結体中の多孔質空隙部が吸水膨潤した高吸水性ポリマーの消失孔である多孔質軽量セラミック製品であって、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、多孔質セラミックマトリックス焼結体5〜80重量部が均質混在した焼結体であり、その物理特性が、嵩比重0.15〜1.5、圧縮強度:5.0〜50kgf/cm 2 、曲げ強度:0.5〜5.0kgf/cm 2 であることを特徴とする多孔質軽量セラミック製品。A porous ceramic matrix sintered body containing fly ash is bonded and filled between a large number of glassy hollow spherical coarse particles, and the porous voids in the porous ceramic matrix sintered body absorb and swell water. Porous lightweight ceramic product which is a disappearance hole of a conductive polymer, and 15 to 350 parts by weight of fly ash with respect to 100 parts by weight of glassy hollow spherical coarse particles having a particle diameter of 0.5 to 5.0 mm, and porous The ceramic matrix sintered body is a sintered body in which 5 to 80 parts by weight are homogeneously mixed, and the physical properties thereof are a bulk specific gravity of 0.15 to 1.5, a compressive strength: 5.0 to 50 kgf / cm 2 , and a bending strength: A porous lightweight ceramic product characterized by being 0.5 to 5.0 kgf / cm 2 . ガラス質中空球状粗粒子が、天然ガラス質発泡体粗粒子であることを特徴とする請求項1記載の多孔質軽量セラミック製品。Glassy hollow spheres coarse particles, porous lightweight ceramic article according to claim 1 Symbol mounting characterized in that it is a natural vitreous foam coarse particles. ガラス質中空球状粗粒子が、人工発泡ガラス質粗粒子であることを特徴とする請求項1記載の多孔質軽量セラミック製品。Glassy hollow spheres coarse particles, porous lightweight ceramic article according to claim 1 Symbol mounting, characterized in that an artificial foamed glassy coarse particles. 粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、粒径が10〜2000μmの吸水膨潤した高吸水性ポリマー30〜70重量%を均質に含有する未焼成セラミック粉体を含む結合材60〜450重量部とが混合された混合物を成形し、乾燥した後、750〜1200℃で焼成して、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、フライアッシュ15〜350重量部と、多孔質セラミックマトリックス焼結体5〜80重量部が均質混在した焼結体であり、その物理特性が、嵩比重0.15〜1.5、圧縮強度:5.0〜50kgf/cm 2 、曲げ強度:0.5〜5.0kgf/cm 2 である多孔質軽量セラミック製品を得ることを特徴とする多孔質軽量セラミック製品の製造方法。15 to 350 parts by weight of fly ash with respect to 100 parts by weight of vitreous hollow spherical coarse particles having a particle diameter of 0.5 to 5.0 mm, and 30 to 70 weights of superabsorbent polymer with water absorption and swelling having a particle diameter of 10 to 2000 μm. %, A mixture containing 60 to 450 parts by weight of a binder containing an unfired ceramic powder containing homogeneously is molded, dried, and then fired at 750 to 1200 ° C. to obtain a particle size of 0.5 to 5 A sintered body in which 15 to 350 parts by weight of fly ash and 5 to 80 parts by weight of a porous ceramic matrix sintered body are homogeneously mixed with 100 parts by weight of glassy hollow spherical coarse particles of 0.0 mm, and its physical characteristics Is characterized by obtaining a porous lightweight ceramic product having a bulk specific gravity of 0.15 to 1.5, a compressive strength of 5.0 to 50 kgf / cm 2 , and a bending strength of 0.5 to 5.0 kgf / cm 2. Porous light Manufacturing method for ceramic products. 結合材中に占める未焼成セラミック粉体が40〜70重量%であることを特徴とする請求項記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to claim 4, wherein the unfired ceramic powder in the binder is 40 to 70% by weight. 結合材が、無機結合材を含むことを特徴とする請求項4又は5のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to claim 4 , wherein the binder includes an inorganic binder. 結合材が、ガラス質粉体を含むことを特徴とする請求項ないしのいずれか1項に記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to any one of claims 4 to 6 , wherein the binder contains a vitreous powder. 結合材が、粘土鉱物を含むことを特徴とする請求項ないしのいずれか1項に記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to any one of claims 4 to 7 , wherein the binder contains a clay mineral. 結合材が、有機質結合材を含むことを特徴とする請求項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to any one of claims 4 to 8 , wherein the binder contains an organic binder. 結合材が、水溶性のアルカリ金属ケイ酸塩を含むことを特徴とする請求項のいずれか1項に記載の多孔質軽量セラミック製品の製造方法。The method for producing a porous lightweight ceramic product according to any one of claims 4 to 9 , wherein the binder contains a water-soluble alkali metal silicate.
JP20509897A 1997-07-30 1997-07-30 Porous lightweight ceramic product and manufacturing method thereof Expired - Fee Related JP3994232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20509897A JP3994232B2 (en) 1997-07-30 1997-07-30 Porous lightweight ceramic product and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20509897A JP3994232B2 (en) 1997-07-30 1997-07-30 Porous lightweight ceramic product and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1149582A JPH1149582A (en) 1999-02-23
JP3994232B2 true JP3994232B2 (en) 2007-10-17

Family

ID=16501397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20509897A Expired - Fee Related JP3994232B2 (en) 1997-07-30 1997-07-30 Porous lightweight ceramic product and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3994232B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386881B1 (en) * 1999-10-12 2003-06-09 손명모 Manufactory method of discharge ceramic light weight with inorganic matter a high strength
FR3041630B1 (en) * 2015-09-25 2020-10-16 Commissariat Energie Atomique SUPER-ABSORBENT POLYMER GEOPOLYMER, ITS PREPARATION PROCESS AND ITS USES
CN112919892B (en) * 2021-02-05 2023-01-24 江西陶瓷工艺美术职业技术学院 Inorganic ceramic membrane support material and preparation method thereof
CN116120087B (en) * 2022-12-16 2024-04-12 浙江浙能科技环保集团股份有限公司 Light foamed ceramic synthesized by using fly ash and preparation method thereof

Also Published As

Publication number Publication date
JPH1149582A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
RU2277075C2 (en) Porous sound-absorbing ceramic article and method of production of such article (versions)
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
CN102311274B (en) Light heat-insulating honeycomb ceramic and preparation method thereof
JP3994233B2 (en) Porous ceramic product and manufacturing method thereof
JP4446144B2 (en) Method for producing porous sound-absorbing ceramic molded body
JP4460916B2 (en) Ceramic sintered body having pores of binary structure and manufacturing method thereof
JP4448565B2 (en) Porous lightweight ceramic product and manufacturing method thereof
JP3994232B2 (en) Porous lightweight ceramic product and manufacturing method thereof
JPH10130073A (en) Porous lightweight ceramic base
JPS6116753B2 (en)
JP4448564B2 (en) Porous ceramic product and manufacturing method thereof
JPH10202082A (en) Production of granulated body
JP2517225B2 (en) Manufacturing method of porous inorganic material molded plate
CN1107038C (en) Light ceramic product and manufacturing method thereof
JP3411242B2 (en) Lightweight porcelain product and method of manufacturing the same
JPH04240168A (en) Production of sound-absorbing lightweight ceramic plate
JPS60231475A (en) Inorganic lightweight porous body
JPS61136974A (en) Manufacture of lightweght ceramic
JP2001317134A (en) Sound absorbing/humidity conditioning material and its manufacturing method
JPH01305873A (en) Manufacture of porous ceramic block
JP2007246348A (en) Method for manufacturing hollow ceramic grain, hollow ceramic grain, and hollow ceramic grain-using article using the hollow ceramic grain
JPS61197432A (en) Production of foamed glass
JP2000247709A (en) Lightweight tile
JPS62296939A (en) Heat insulating material for steel making
JPS6217084A (en) Foamed body ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees