JP3994233B2 - Porous ceramic product and manufacturing method thereof - Google Patents
Porous ceramic product and manufacturing method thereof Download PDFInfo
- Publication number
- JP3994233B2 JP3994233B2 JP20509997A JP20509997A JP3994233B2 JP 3994233 B2 JP3994233 B2 JP 3994233B2 JP 20509997 A JP20509997 A JP 20509997A JP 20509997 A JP20509997 A JP 20509997A JP 3994233 B2 JP3994233 B2 JP 3994233B2
- Authority
- JP
- Japan
- Prior art keywords
- porous ceramic
- weight
- coarse particles
- binder
- ceramic product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/08—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/22—Glass ; Devitrified glass
- C04B14/24—Glass ; Devitrified glass porous, e.g. foamed glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0051—Water-absorbing polymers, hydrophilic polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は多孔質セラミック製品に関するものであり、特に非常に空隙率の高くかつ強度の大きな多孔質セラミック製品及びその製造方法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来の多孔質セラミック製品の製造法には、発泡性未焼成セラミック粉体に結合材を混合し、成形後、焼成する方法や、主原料として黒曜石やシラス等の火山噴出物を用い、これらに粘土や結合材を混合して、成形後、焼成する方法等がある。
しかしながら、それら方法により得られた多孔質セラミック製品は、嵩比重が十分に低くなく、かつ空隙率が十分に多くないものであった。
【0003】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意研究の結果、火山噴出物として多量に産出する黒曜石、シラス等の加熱発泡球状体粗粒子、すなわち火山噴出物発泡球状粗粒子、例えばパーライトを主原料とし、あるいは人工発泡ガラス質球状粗粒子、例えばスラグの加熱発泡球状粗粒子を主原料とし、これに吸水膨潤した高吸水性ポリマーを均質に含有する未焼成セラミック粉体を含む結合材とが混合された混合物を成形し、乾燥した後、750〜1200℃で焼成することによって、軽量化された多孔質セラミックを提供することに成功した。すなわち本発明は、下記構成の多孔質セラミック製品及びその製造方法である。
(1)多数のガラス質中空球状粗粒子の間を多孔質セラミックマトリックス焼結体が結合充填してなり、かつ前記多孔質セラミツクマトリックス焼結体中の多孔質空隙部が吸水膨潤した高吸水性ポリマーの消失孔である多孔質セラミック製品であって、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、多孔質セラミックマトリックス焼結体10〜500重量部が均質混在した焼結体であり、該製品の物理特性が、嵩比重0.2〜1.5、圧縮強度:5.0〜80kgf/cm 2 、曲げ強度:0.5〜8.0kgf/cm 2 であることを特徴とする多孔質セラミック製品。
(2)ガラス質中空球状粗粒子が、天然ガラス質発泡体粗粒子であることを特徴とする(1)項記載の多孔質セラミック製品。
(3)ガラス質中空球状粗粒子が、人工発泡ガラス質粗粒子であることを特徴とする(1)項記載の多孔質セラミック製品。
【0004】
(4)粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、粒径が10〜2000μmの吸水膨潤した高吸水性ポリマー30〜70重量%を均質に含有する未焼成セラミック粉体を含む結合材50〜800重量部とが混合された混合物を成形し、乾燥した後、750〜1200℃で焼成して、粒径0.5〜5.0mmのガラス質中空球状粗粒子100重量部に対して、多孔質セラミックマトリックス焼結体10〜500重量部が均質混在した焼結体であり、その物理特性が、嵩比重0.2〜1.5、圧縮強度:5.0〜80kgf/cm 2 、曲げ強度:0.5〜8.0kgf/cm 2 である多孔質セラミック製品を得ることを特徴とする多孔質セラミック製品の製造方法。
(5)結合材中に占める未焼成セラミック粉体が40〜70重量%であることを特徴とする(4)項記載の多孔質セラミック製品の製造方法。
(6)結合材が、ガラス質粉体を含むことを特徴とする(4)項又は(5)項のいずれか1項に記載の多孔質セラミック製品の製造方法。
(7)結合材が、粘土鉱物を含むことを特徴とする(4)項ないし(6)項のいずれか1項に記載の多孔質セラミック製品の製造方法。
(8)結合材が、無機結合材を含むことを特徴とする(4)〜(7)項のいずれか1項に記載の多孔質セラミック製品の製造方法。
(9)結合材が、有機物細粒を含むことを特徴とする(4)〜(8)項のいずれか1項に記載の多孔質セラミック製品の製造方法。
(10)結合材が、有機質結合材を含むことを特徴とする(4)〜(9)項のいずれか1項に記載の多孔質セラミック製品の製造方法。
【0005】
【発明の実施の形態】
本願発明の実施の形態を以下に説明する。
まず、本願発明で主原料として用いらるガラス質中空球状粗粒子としては、例えば天然ガラス質発泡粗粒子である黒曜石細片や真珠岩細片等の高温加熱による発泡粗粒子であるパーライト、人工ガラス質粗粒子である水砕スラグ細片やシリカ細片の高温加熱発泡粗粒子であるスラグバルーンやシリカバルーン等が挙げられ、高温加熱発泡ガラス質中空球状粗粒子の粒径は0.5〜5.0mmであるものが好ましい。
その嵩密度は0.1/cm3〜1.0/cm3のものが好ましい。
【0006】
本願発明は、多くのガラス質中空球状粗粒子間に多孔質セラミックマトリックス焼結体が焼結充填された状態の多孔質セラミック製品を提供するものであるが、その製造においては、まず成形性を付与させるため、ガラス質中空球状粗粒子と吸水膨潤された高吸水性ポリマー粒子を分散混合させた未焼成セラミックマトリックス生成材料(結合材)との均質混合物を加水あるいは可塑化材を添加混合して、生地となし、それを一定形状に成形し、乾燥した後、焼成することが好ましい。
前記未焼成セラミックマトリックス生成材料中に混有させる吸水膨潤した高吸水性ポリマー粒子は、100℃前後の加熱により大量の膨潤水が容易に蒸散、消失するものであり、高吸水性ポリマーとしては、具体的には、デンプン系(デンプン−アクリロニトリルグラフト重合体加水分解物等)、セルロース系(セルロース−アクリロニトリルグラフト重合体)、タンパク質(コラーゲン等)多糖類系(ピアルロン酸等)等の天然高分子類、ポリピニルアルコール系(ポリピニルアルコール架橋重合体等)、アクリル系(ポリアクリル酸ナトリウム架橋体等)、付加重合体(無水マレイン酸系共重合体等)、ポリエーテル系(ポリエチレングリコール・ジアクリレート架橋重合体等)、縮合系ポリマー(エステル系ポリマー等)等の合成高分子類が挙げられるが、アクリル酸ナトリウム系重合体の架橋物が工業的に生産が容易で低コストのため好ましい。
【0007】
また、焼成によりセラミックスマトリックスを生成する未焼成セラミックとしては、例えば長石、陶土、粘土鉱物等のケイ酸アルミニウム系無機材料が挙げられ、それらには焼結剤としてのアルカリ金属・アルカリ土類金属ケイ酸塩、ガラス粉、釉薬粉等を添加することが好ましく、さらに無機系粘結材の水溶性アルカリケイ酸塩(水ガラス)や有機質粘結材のコーンスターチ、CMC等を添加したものが好ましい。
なお、成形のための可塑性付与材としては、通常有機系のもの、例えば前記粘結材と同じコーンスターチ、CMCやアルギン酸ソーダー、PVA、ポリアクリル系エマルジン、多価アルコール系ワックス等を添加使用することができる。
なお、水溶性アルカリケイ酸塩(水ガラス)は成形用及び焼結用に共用される可塑性付与材兼焼結剤として好ましいものである。
【0008】
本願発明においては、さらに耐熱性補強材を加配することもできる。このような耐熱性補強材としては、例えば鉱滓、シャモット等が採用でき、これら耐熱性補強材を加配し、焼結して得られた多孔質セラミック製品は、高い機械的強度及び耐熱性を備えたものとなる。
さらに、本発明の多孔質セラミック製品中の多孔空隙を生成させるため、未焼成セラミック粉体を含む結合材中に有機物細粒を混有させることもできる。 有機質微細物としては、高温加熱により揮発焼失するもので、例えば木材・竹材・穀類等の植物微細物、脂肪微細物、プランクトン等の動物微細物、ポリスチロール、ポリエチレン、ポリプロピレン等の合成樹脂微細物が挙げられる。さらに、有機質短繊維、例えばナイロン短繊維、ポリプロピレン短繊維等も使用できる。米細粒、うどん細粒、籾がら粉等も使用できる。
それら、有機物細粒部は焼成時に酸化焼失して焼失孔となる。
【0009】
上記のようなガラス質中空球状粗粒子に、フライアッシュ及び吸水膨潤された高吸水性ポリマー粒子を含む結合材を均質に混合した混合物を所要形状に成形した後、乾燥し、750〜1200℃程度の焼成温度域において焼結させることにより、多孔質セラミック製品を得ることができる。
【0010】
上記発明のセラミックス製品の配合組成において、ガラス質中空球状粗粒子を用いるのは、該粗粒子は黒曜石、真珠岩等の天然ガラス等を原料にして多量に生産され価格も安価で、内部が中空で軽量であり、かつ一定の強度も備えているため、これを主要構成材料とすることにより製品の軽量化及びある程度の強度向上に寄与するためであり、さらにそれがガラス質であるから、その周りに接触充填されるセラミックマトリックスとの焼結接合が容易であり、その結果焼成製品はガラス質球状粗粒子表層とセラミックマトリックスが強固に結合して、全体強度が向上するのである。
そして、主原料としてガラス質中空球状粗粒子と吸水膨潤された高吸水性ポリマー粒子及び未焼成セラミックセラミックを含む結合材を使用したことによりに、製品の空隙率を多大に確保することができるのである。
なお、該セラミック製品中には、素材中の各ガラス質中空球状粗粒子同士の接触部分(以下、第1点接触部分という)間に形成される大きな空隙部(以下、第1空隙部という)、及び第1空隙部内に充填されたセラミックマトリックス内の吸水膨潤された高吸水性ポリマー粒子の消失孔である空隙部(以下、第2空隙部という)の2種の多量の空隙部が存在するため、全体の空隙率が高く、かつ第1,第2空隙部が接続状態となって連通する結果、軽量化及び良好な通気性・通液性が確保される。
さらに、ガラス質中空球状粗粒子は、750〜1200℃に加熱された際に、高温部(約1000〜1200℃)の加熱領域で加熱されると、各粗粒子は、熔融、発泡して所々に部分的に発泡穴が形成されたものとなり、各粗粒子自体がその球状壁の所々に貫通穴を備えるものとなる結果、より良好な通気性・通液性が実現される。
よって、本発明の多孔質セラミック製品は、下記のような材料として利用できる。
軽量タイル、軽量壁板パネル、断熱材料、吸音材料、濾過材料、触媒を担持させた触媒、微生物を利用する排水処理に使用される各種バクテリア、細菌類を担持した微生物担持排水処理材料、遠赤外線放射材料、各種フェライトなどを組成物素材とした電波吸収性パネル等。
【0011】
【実施例】
本願発明の実施例を以下に説明する。
[実施例1]
ガラス質球状粗粒子(粒径1〜2mm)
(パーライト) 100重量部
上記の混合物に、下記組成の結合材を70重量部を添加混合した。
ケイ酸ソーダ(3号) 40重量%
蛍石粉末 15重量%
陶石粉末 20重量%
吸水膨潤された高吸水性ポリマー粒子 10重量%
メトローズ 5重量%
水 10重量%
得られた上記混合配合物を型枠に投入し低圧成形してタイル状成形体を得た後、乾燥し、その後970℃の焼成帯で、90分間焼結させた。
この結果、得られた多孔質セラミックス製品はカサ比重が1程度であり、圧縮強度20〜50kg/cm2、高温耐熱性(1000℃以上)・耐熱衝撃性に優れ、かつ通気性・通水性に優れ吸音率も高いものであった。
【0012】
[実施例2]
ガラス質球状粗粒子(粒径1〜2mm)
(パーライト) 100重量部
上記の混合物に、下記組成の結合材を130重量部を添加混合した。
蛍石粉末 15重量%
ガラス粉末 20重量%
カオリン粉末 20重量%
吸水膨潤された高吸水性ポリマー粒子 10重量%
メトローズ 5重量%
水 30重量%
上記混合物を型枠に入れてタイル状成形体にした後、1000℃の焼成帯で、60分間焼結させた。
この結果、得られた多孔質セラミックス製品はカサ比重が1程度であり、圧縮強度20〜60kg/cm2、高温耐熱性(1000℃以上)・耐熱衝撃性に優れ、かつ通気性・通水性に優れ吸音率も高いものであった。
なお、上記実施例において、高吸水性ポリマーとしては、大阪有機化学工業社製吸水性ポリマー商品名BL−100(吸水前平均粒度70〜150μm、吸水後の粒度300〜700μm)を使用した。「メトローズ」(商品名:信越化学工業社製)はメチルセルロースである。
【0013】
【発明の効果】
以上の本願発明によれば下記のような優れた作用効果が得られる。
主原料としてガラス質中空球状粗粒子と吸水膨潤された高吸水性ポリマー粒子と未焼成セラミックセラミックを含む結合材を使用したことによりに、製品の空隙率を多大に確保することができる。
なお、該セラミック製品は、素材中の吸水膨潤された高吸水性ポリマー粒子の焼失孔が残存するため、マトリックス部分が連通多孔質となっていて、気液通過性が良好となる。
本発明の多孔質セラミック製品は、安価なガラス質中空球状粗粒子を主原料とするため、製品製造コストが低く、軽量建材等として有用となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous ceramic product, and more particularly to a porous ceramic product having a very high porosity and a high strength and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventional methods for producing porous ceramic products include a method in which a binder is mixed with foamable unfired ceramic powder and then fired after molding, and volcanic ejecta such as obsidian and shirasu are used as the main raw materials. There is a method in which clay and a binder are mixed and fired after molding.
However, the porous ceramic products obtained by these methods have a bulk specific gravity that is not sufficiently low and a porosity is not sufficiently high.
[0003]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventor mainly uses heated foamed spherical coarse particles such as obsidian and shirasu that are produced in large quantities as volcanic ejecta, that is, volcanic ejected foamed coarse spherical particles such as perlite. Alternatively, artificial foamed vitreous spherical coarse particles, for example, heated foamed spherical coarse particles of slag, are mixed with a binder containing unfired ceramic powder that contains water-absorbed and swollen superabsorbent polymer homogeneously. The resulting mixture was shaped, dried, and then fired at 750 to 1200 ° C., thereby succeeding in providing a lightweight porous ceramic. That is, this invention is the porous ceramic product of the following structure, and its manufacturing method.
(1) A high water absorption property in which a porous ceramic matrix sintered body is bonded and filled between a large number of glassy hollow spherical coarse particles, and the porous voids in the porous ceramic matrix sintered body absorb water and swell. 10 to 500 parts by weight of a porous ceramic matrix sintered body with respect to 100 parts by weight of vitreous hollow spherical coarse particles having a particle diameter of 0.5 to 5.0 mm. It is a sintered body that is homogeneously mixed, and the physical properties of the product are as follows: bulk specific gravity 0.2-1.5, compressive strength: 5.0-80 kgf / cm 2 , bending strength: 0.5-8.0 kgf / cm porous ceramic product which is a 2.
(2) The porous ceramic product according to (1), wherein the vitreous hollow spherical coarse particles are natural vitreous foam coarse particles.
(3) The porous ceramic product according to (1 ), wherein the glassy hollow spherical coarse particles are artificial foamed vitreous coarse particles.
[0004]
(4) To 100 parts by weight of vitreous hollow spherical coarse particles having a particle diameter of 0.5 to 5.0 mm, 30 to 70% by weight of a water-absorbing and swollen superabsorbent polymer having a particle diameter of 10 to 2000 μm is uniformly contained. A mixture containing 50 to 800 parts by weight of a binder containing unfired ceramic powder is molded, dried, fired at 750 to 1200 ° C., and glassy hollow having a particle size of 0.5 to 5.0 mm It is a sintered body in which 10 to 500 parts by weight of a porous ceramic matrix sintered body is homogeneously mixed with respect to 100 parts by weight of spherical coarse particles, and its physical properties are a bulk specific gravity of 0.2 to 1.5, and a compressive strength: A method for producing a porous ceramic product comprising obtaining a porous ceramic product having a bending strength of 5.0 to 80 kgf / cm 2 and a bending strength of 0.5 to 8.0 kgf / cm 2 .
(5) The method for producing a porous ceramic product according to (4), wherein the unfired ceramic powder in the binder is 40 to 70% by weight.
(6) The method for producing a porous ceramic product according to any one of (4) or (5) , wherein the binder contains glassy powder.
(7) The method for producing a porous ceramic product according to any one of (4) to (6) , wherein the binder contains a clay mineral.
(8) The method for producing a porous ceramic product according to any one of (4) to (7) , wherein the binder includes an inorganic binder.
(9) The method for producing a porous ceramic product according to any one of (4) to (8) , wherein the binder contains organic fine particles.
(10) The method for producing a porous ceramic product according to any one of (4) to (9), wherein the binder includes an organic binder.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, as the vitreous hollow spherical coarse particles used as the main raw material in the present invention, for example, perlite, which is a coarse foamed particle by heating at a high temperature, such as obsidian fine pieces and nacreous fine pieces which are natural vitreous foam coarse particles, artificial Examples include high-temperature heated foamed coarse particles of granulated slag fine particles and silica fine particles that are glassy coarse particles, silica balloons, and the like. What is 5.0 mm is preferable.
The bulk density is preferably 0.1 / cm 3 to 1.0 / cm 3 .
[0006]
The present invention provides a porous ceramic product in which a porous ceramic matrix sintered body is sintered and filled between a large number of vitreous hollow spherical coarse particles. In order to impart, a homogeneous mixture of a vitreous hollow spherical coarse particle and a water-absorbed and swollen superabsorbent polymer particle dispersed and mixed with an unfired ceramic matrix-forming material (binding material) is mixed with water or a plasticizer. It is preferable to form a dough, shape it into a certain shape, dry it, and then fire it.
The water-absorbing and swollen superabsorbent polymer particles mixed in the unfired ceramic matrix-forming material are those in which a large amount of swollen water easily evaporates and disappears by heating at around 100 ° C. As the superabsorbent polymer, Specifically, natural polymers such as starch-based (starch-acrylonitrile graft polymer hydrolyzate, etc.), cellulose-based (cellulose-acrylonitrile graft polymer), protein (collagen, etc.) polysaccharide-based (pealuronic acid, etc.), etc. , Polypinyl alcohol (polypinyl alcohol crosslinked polymer, etc.), acrylic (polyacrylic acid sodium crosslinked, etc.), addition polymer (maleic anhydride copolymer, etc.), polyether (polyethylene glycol, Diacrylate cross-linked polymers, etc.), condensation polymers (ester polymers, etc.), etc. Although s and the like, cross-linked product of sodium acrylate-based polymers are preferred because of low cost easily produced industrially.
[0007]
Examples of the unfired ceramic that forms a ceramic matrix by firing include aluminum silicate-based inorganic materials such as feldspar, porcelain clay, and clay minerals. These include alkali metal and alkaline earth metal silica as a sintering agent. It is preferable to add acid salt, glass powder, glaze powder, etc., and further, water-soluble alkali silicate (water glass) of an inorganic binder, corn starch of organic binder, CMC, etc. are preferably added.
In addition, as a plasticity imparting material for molding, usually an organic material, for example, the same corn starch, CMC, sodium alginate, PVA, polyacrylic emeraldine, polyhydric alcohol wax and the like as the above-mentioned caking additive should be used. Can do.
Water-soluble alkali silicate (water glass) is preferable as a plasticizer and a sintering agent shared for molding and sintering.
[0008]
In the present invention, a heat-resistant reinforcing material can be further distributed. As such a heat-resistant reinforcing material, for example, iron ore, chamotte, etc. can be adopted. Porous ceramic products obtained by adding and sintering these heat-resistant reinforcing materials have high mechanical strength and heat resistance. It will be.
Furthermore, in order to generate porous voids in the porous ceramic product of the present invention, organic fine particles can be mixed in the binder containing the unfired ceramic powder. Organic fines are those that volatilize and burn out when heated at high temperatures, for example, plant fines such as wood, bamboo, and grains, fat fines, animal fines such as plankton, synthetic resin fines such as polystyrene, polyethylene, and polypropylene. Is mentioned. Further, organic short fibers such as nylon short fibers and polypropylene short fibers can also be used. Rice fine grains, udon fine grains, rice bran flour, etc. can also be used.
These organic fine-grained portions are oxidized and burned during firing to become burned pores.
[0009]
A mixture obtained by uniformly mixing a binder containing fly ash and water-absorbing swollen superabsorbent polymer particles into the glassy hollow spherical coarse particles as described above is formed into a required shape, and then dried, and is about 750 to 1200 ° C. A porous ceramic product can be obtained by sintering in the firing temperature range.
[0010]
In the compounding composition of the ceramic product of the present invention, glassy hollow spherical coarse particles are used because the coarse particles are produced in large quantities from natural glass such as obsidian and pearlite, and the price is low, and the interior is hollow. Because it is lightweight and has a certain strength, it is intended to contribute to weight reduction of the product and a certain degree of strength improvement by making it a main constituent material, and since it is glassy, It is easy to sinter and bond with a ceramic matrix that is contact-filled around. As a result, in the sintered product, the vitreous spherical coarse particle surface layer and the ceramic matrix are firmly bonded to improve the overall strength.
And, by using a binder containing vitreous hollow spherical coarse particles, water-absorbing and highly water-absorbing polymer particles and unfired ceramic ceramic as the main raw material, the porosity of the product can be greatly secured. is there.
In the ceramic product, a large void portion (hereinafter referred to as a first void portion) formed between contact portions (hereinafter referred to as first point contact portions) between the vitreous hollow spherical coarse particles in the raw material. And a large amount of two types of voids, which are voids (hereinafter referred to as second voids) which are disappearance holes of the water-absorbing and swollen superabsorbent polymer particles in the ceramic matrix filled in the first voids. Therefore, the overall porosity is high, and the first and second gap portions are connected to communicate with each other. As a result, weight reduction and good air permeability and liquid permeability are ensured.
Furthermore, when the vitreous hollow spherical coarse particles are heated to 750 to 1200 ° C. and heated in a heating region of a high temperature part (about 1000 to 1200 ° C.), the coarse particles are melted and foamed in some places. As a result, each of the coarse particles itself has through holes in the spherical walls, so that better air permeability and liquid permeability are realized.
Therefore, the porous ceramic product of the present invention can be used as the following material.
Lightweight tiles, lightweight wall panels, heat insulation materials, sound absorbing materials, filtration materials, catalysts carrying catalysts, various bacteria used in wastewater treatment using microorganisms, microorganisms carrying wastewater treatment materials carrying bacteria, far infrared rays Radio wave absorptive panels made of radiating materials and various ferrites as composition materials.
[0011]
【Example】
Examples of the present invention will be described below.
[Example 1]
Glassy spherical coarse particles (particle size 1-2mm)
(Pearlite) 100 parts by weight 70 parts by weight of a binder having the following composition was added to and mixed with the above mixture.
Sodium silicate (No.3) 40% by weight
Fluorite powder 15% by weight
20% by weight of porcelain stone powder
10% by weight of water-absorbing polymer particles with high water absorption
Metroz 5% by weight
10% by weight of water
The obtained mixed composition was put into a mold and subjected to low-pressure molding to obtain a tile-shaped molded body, which was then dried and then sintered in a 970 ° C. firing zone for 90 minutes.
As a result, the obtained porous ceramic product has a bulk specific gravity of about 1, a compressive strength of 20 to 50 kg / cm 2 , excellent high temperature heat resistance (over 1000 ° C.) and thermal shock resistance, and breathability and water permeability. Excellent sound absorption rate was also high.
[0012]
[Example 2]
Glassy spherical coarse particles (particle size 1-2mm)
(Perlite) 100 parts by weight 130 parts by weight of a binder having the following composition was added to and mixed with the above mixture.
Fluorite powder 15% by weight
Glass powder 20% by weight
Kaolin powder 20% by weight
10% by weight of water-absorbing polymer particles with high water absorption
Metroz 5% by weight
30% water
The mixture was put into a mold to form a tile-shaped molded body, and then sintered in a firing zone at 1000 ° C. for 60 minutes.
As a result, the obtained porous ceramic product has a bulk specific gravity of about 1, a compressive strength of 20 to 60 kg / cm 2 , excellent high temperature heat resistance (over 1000 ° C.) and thermal shock resistance, and breathability and water permeability. Excellent sound absorption rate was also high.
In addition, in the said Example, Osaka Organic Chemical Industry Co., Ltd. water-absorbing polymer brand name BL-100 (The average particle size before water absorption 70-150 micrometers, the particle size 300-700 micrometers after water absorption) was used as a highly water-absorbing polymer. “Metroze” (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is methylcellulose.
[0013]
【The invention's effect】
According to the present invention described above, the following excellent effects can be obtained.
By using a binder containing glassy hollow spherical coarse particles, water-absorbing and highly water-absorbing polymer particles and unfired ceramic ceramic as the main raw material, a large porosity of the product can be secured.
In the ceramic product, burnout holes of the water-absorbing and swollen superabsorbent polymer particles in the material remain, so that the matrix portion is continuous porous and the gas-liquid permeability is good.
Since the porous ceramic product of the present invention uses inexpensive glassy hollow spherical coarse particles as the main raw material, the production cost of the product is low and it is useful as a lightweight building material.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509997A JP3994233B2 (en) | 1997-07-30 | 1997-07-30 | Porous ceramic product and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20509997A JP3994233B2 (en) | 1997-07-30 | 1997-07-30 | Porous ceramic product and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1149583A JPH1149583A (en) | 1999-02-23 |
JP3994233B2 true JP3994233B2 (en) | 2007-10-17 |
Family
ID=16501409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20509997A Expired - Fee Related JP3994233B2 (en) | 1997-07-30 | 1997-07-30 | Porous ceramic product and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3994233B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1479881B1 (en) * | 2002-02-05 | 2017-05-10 | Ibiden Co., Ltd. | Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination |
KR100687695B1 (en) * | 2003-02-12 | 2007-02-27 | 도아고세이가부시키가이샤 | Method for producing porous ceramic |
JP4627498B2 (en) * | 2003-12-26 | 2011-02-09 | 日本碍子株式会社 | Manufacturing method of honeycomb structure |
JP2010522106A (en) * | 2007-03-20 | 2010-07-01 | コーニング インコーポレイテッド | Low-shrinkage plugging mixture for ceramic filters, plugged honeycomb filter and manufacturing method thereof |
KR100873021B1 (en) | 2008-04-22 | 2008-12-09 | (주)정상 엔지니어링 | Water cut-off layer composition and water cut-off layer holding the heavy metal absorption and self-healing function |
JP5959832B2 (en) * | 2011-11-25 | 2016-08-02 | 学校法人近畿大学 | Porous ceramic using volcanic ash as raw material and method for producing the same |
CN113402290B (en) * | 2020-03-17 | 2022-05-20 | 西南科技大学 | Method for preparing porous ceramic material by utilizing spodumene flotation tailings through low-temperature sintering |
-
1997
- 1997-07-30 JP JP20509997A patent/JP3994233B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1149583A (en) | 1999-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2277075C2 (en) | Porous sound-absorbing ceramic article and method of production of such article (versions) | |
CN101885620B (en) | Ceramic material with multi-stage duct structure and manufacture method thereof | |
JP3994233B2 (en) | Porous ceramic product and manufacturing method thereof | |
JP4446144B2 (en) | Method for producing porous sound-absorbing ceramic molded body | |
JP4448565B2 (en) | Porous lightweight ceramic product and manufacturing method thereof | |
JP2005239467A (en) | Ceramic sintered compact with binary structure pores and its production method | |
JP3994232B2 (en) | Porous lightweight ceramic product and manufacturing method thereof | |
JP4448564B2 (en) | Porous ceramic product and manufacturing method thereof | |
JPS6116753B2 (en) | ||
JPH10202082A (en) | Production of granulated body | |
JPS58176181A (en) | Castable composition | |
JP2517225B2 (en) | Manufacturing method of porous inorganic material molded plate | |
JPH04240168A (en) | Production of sound-absorbing lightweight ceramic plate | |
CN1107038C (en) | Light ceramic product and manufacturing method thereof | |
JP3411242B2 (en) | Lightweight porcelain product and method of manufacturing the same | |
JPH10167856A (en) | Porous ceramic and its production | |
JP3276850B2 (en) | Lightweight material and method of manufacturing the same | |
JPS60231475A (en) | Inorganic lightweight porous body | |
JPH01305873A (en) | Manufacture of porous ceramic block | |
JP2001317134A (en) | Sound absorbing/humidity conditioning material and its manufacturing method | |
JPH10317641A (en) | Lightweight tile | |
JP2002145679A (en) | Method of producing porous ceramic | |
JPS61136974A (en) | Manufacture of lightweght ceramic | |
JPS62296939A (en) | Heat insulating material for steel making | |
JPH092881A (en) | Foamed ceramic molded plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070404 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070717 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |