JPH10167856A - Porous ceramic and its production - Google Patents

Porous ceramic and its production

Info

Publication number
JPH10167856A
JPH10167856A JP35302196A JP35302196A JPH10167856A JP H10167856 A JPH10167856 A JP H10167856A JP 35302196 A JP35302196 A JP 35302196A JP 35302196 A JP35302196 A JP 35302196A JP H10167856 A JPH10167856 A JP H10167856A
Authority
JP
Japan
Prior art keywords
water
gel
ceramic
porous ceramic
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35302196A
Other languages
Japanese (ja)
Inventor
Yukio Zenitani
幸雄 銭谷
Yoji Fujiura
洋二 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP35302196A priority Critical patent/JPH10167856A/en
Publication of JPH10167856A publication Critical patent/JPH10167856A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0051Water-absorbing polymers, hydrophilic polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To steadily produce high-strength porous ceramic. SOLUTION: Water is absorbed in fine particles of a water-swellable water- absorbing resin having >=10,000dyn/cm<2> gel strength to form gel. This gel is mixed with ceramic powder and compacted. The resultant compact is fired to obtain the objective porous ceramic having >=40% porosity and bending strength corresponding to >=15% of that of dense ceramic made of the same material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多孔質セラミック及
びその製造方法に属する。この方法は、センサ素子、触
媒担体、不燃性建材、断熱材、防音材、衝撃吸収剤等に
用いられる多孔質セラミックの製造に好適である。
The present invention relates to a porous ceramic and a method for producing the same. This method is suitable for producing a porous ceramic used for a sensor element, a catalyst carrier, a non-combustible building material, a heat insulating material, a soundproofing material, a shock absorber and the like.

【0002】[0002]

【従来の技術】従来、多孔質セラミックの製造法とし
て、(a)ひる石、パーライト等の骨格自身が多孔性で
ある軽量物質を利用する方法、(b)セラミック原料に
発泡剤を添加する方法、(c)セラミック原料に吸水性
樹脂を混ぜる方法が知られている。いずれも原料粉末を
所定形状に成形した後、炉内で焼成することにより、焼
結体としての多孔質セラミックを得る方法である。
2. Description of the Related Art Conventionally, as a method for producing a porous ceramic, (a) a method of using a light-weight substance whose skeleton itself such as vermiculite or pearlite is porous, and (b) a method of adding a foaming agent to a ceramic raw material. And (c) a method of mixing a water-absorbent resin with a ceramic raw material is known. In each case, after the raw material powder is formed into a predetermined shape, it is fired in a furnace to obtain a porous ceramic as a sintered body.

【0003】これらの方法のうち、(a)は原料の種類
に制限を受ける、(b)は気孔量及び気孔径の安定化が
困難のため、同一品質の製品を安定して得ることができ
ない、等の問題があるのに対して、(c)はそのような
問題のない改善方法として提案されている(特開昭57
−47757号、特開昭62−212274号、特開昭
62−226874号)。
[0003] Of these methods, (a) is limited by the type of raw material, and (b) is difficult to stabilize the porosity and pore size, so that products of the same quality cannot be stably obtained. (C) has been proposed as an improvement method free from such problems (Japanese Patent Laid-Open No.
-47775, JP-A-62-212274, JP-A-62-222674).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来知られて
いる(c)方法でも成形後、焼成完了までの間に成形体
が変形する、製品の強度が低いという問題があった。そ
れ故、本発明の目的は、高強度の多孔質セラミックを安
定して製造することのできる方法を提供することにあ
る。
However, the conventional method (c) has a problem in that the molded body is deformed after the molding and before the firing is completed, and the strength of the product is low. Therefore, an object of the present invention is to provide a method capable of stably producing a high-strength porous ceramic.

【0005】[0005]

【課題を解決するための手段】その目的を達成するため
に、本発明の多孔質セラミックの製造方法は、ゲル強度
が10,000ダイン/cm2以上である水膨潤性吸水
性樹脂の微粒子に水を吸わせてゲルにする工程と、吸水
したゲル及びセラミック粉末を混合し成形する工程と、
成形体を焼成する工程とを経ることを特徴とする。この
方法により、気孔率40%以上で、同一成分からなる緻
密質セラミックの曲げ強度の15%以上の曲げ強度を有
する多孔質セラミックが得られる。
In order to achieve the object, a method for producing a porous ceramic according to the present invention is directed to a method for producing fine particles of a water-swellable water-absorbent resin having a gel strength of 10,000 dynes / cm 2 or more. A step of forming a gel by absorbing water, a step of mixing and molding the gel and ceramic powder that have absorbed water,
And firing the molded body. According to this method, a porous ceramic having a porosity of 40% or more and a bending strength of 15% or more of the bending strength of the dense ceramic made of the same component can be obtained.

【0006】[0006]

【作用】本発明では、セラミック粉末の成形に際して、
セラミック粉末に予め水膨潤性吸水性樹脂微粒子の吸水
ゲルを添加しておく。この水膨潤性吸水性樹脂の吸水ゲ
ルは表面に粘着性がある。しかも吸水性樹脂は微粒子で
あるため吸水ゲルには糊のような粘性がある。このた
め、水で練っても粘りのでない原料であっても、この吸
水ゲルの粘着性及び粘性が作用して、練ると粘り、可塑
性が付与され成形性が向上する。
According to the present invention, in molding the ceramic powder,
A water-absorbing gel of water-swellable water-absorbent resin fine particles is added to the ceramic powder in advance. The water-absorbing gel of the water-swellable water-absorbing resin has a sticky surface. Moreover, since the water-absorbing resin is fine particles, the water-absorbing gel has a viscosity like glue. For this reason, even if the raw material is not sticky even when kneaded with water, the tackiness and viscosity of the water-absorbing gel acts, and when kneaded, stickiness and plasticity are imparted, and the moldability is improved.

【0007】また、この吸水性樹脂粒子の吸水ゲルは、
水溶性樹脂とは異なり、水を吸ってゲル状となった粒子
の内部に水を保持する作用を有するものである。即ち、
成形後の含水率が同じであっても多くの水分はこの水に
膨潤し水には溶解しない吸水ゲルの中に取り込まれてい
る。
The water-absorbing gel of the water-absorbing resin particles is
Unlike a water-soluble resin, it has a function of retaining water inside the gelled particles by absorbing water. That is,
Even if the water content after molding is the same, much water is swelled in this water and is taken into the water-absorbing gel which does not dissolve in water.

【0008】このように吸水ゲルが水を取り込んでいる
ので、成形体の含水率が従来と同程度の範囲であっても
原料粒子の間隙に存在する水の量は少ない。しかも成形
体の機械的強度を支配しているゲルの強度は10,00
0ダイン/cm2以上である。従って、成形体は十分な
剛性を備えており、焼結するまで変形することはない。
好ましいゲル強度は、15,000〜50,000ダイ
ン/cm2である。成形体の強度が高いので、(吸水し
たゲル/セラミック粉末)混合比は、重量基準で0.2
〜2.4という広範囲から選択することができる。但
し、上記多孔質セラミックを得るために混合比は0.6
以上が好ましい。
[0008] Since the water-absorbing gel takes in water as described above, the amount of water existing in the gaps between the raw material particles is small even if the water content of the molded body is in the same range as the conventional one. In addition, the gel which governs the mechanical strength of the molded product has a strength of 10,000
0 dyne / cm 2 or more. Therefore, the compact has sufficient rigidity and does not deform until it is sintered.
Preferred gel strength is 15,000 to 50,000 dynes / cm 2 . Since the strength of the molded body is high, the mixing ratio of the (water-absorbed gel / ceramic powder) is 0.2% by weight.
It can be selected from a wide range of ~ 2.4. However, in order to obtain the above porous ceramic, the mixing ratio is 0.6.
The above is preferred.

【0009】なお、本発明においてゲル強度は次に示す
方法により測定して得られる値とする。 <ゲル強度測定法>生理食塩水に対する飽和吸液量がM
g/gの吸水性樹脂を用い、M×0.75gの生理食塩
水を1gの吸水性樹脂に吸収させて得られる吸水ゲル
に、常温下、直径3mmの円板を介して200gの荷重
を降下速度0.36cm/secで加えたときの反発応
力。
In the present invention, the gel strength is a value obtained by measuring by the following method. <Measurement method of gel strength>
g / g of a water-absorbent resin, a water-absorbent gel obtained by absorbing M × 0.75 g of physiological saline in 1 g of a water-absorbent resin is applied with a load of 200 g through a 3 mm-diameter disc at room temperature. Rebound stress when applied at a descent speed of 0.36 cm / sec.

【0010】更にこの水膨潤性吸水性樹脂微粒子は、吸
水とともにゲル状に膨潤するが水には溶解しないため、
成形体中に独立した粒子状で点在することになる。従っ
て、焼成後はこの吸水ゲル粒子が有った部分が独立気孔
となると考えられ、焼成後に得られるセラミックは多孔
質であるにも拘わらず高い強度を有する。そして、多孔
質であるから、従来のセラミックの強度等の物性は維持
しながらセラミックの軽量化を図ることも可能である。
Further, the water-swellable water-absorbent resin fine particles swell in a gel state with water absorption but do not dissolve in water.
It will be scattered in the form of independent particles in the compact. Therefore, it is considered that the portion having the water-absorbing gel particles after firing becomes independent pores, and the ceramic obtained after firing has a high strength despite being porous. And since it is porous, it is also possible to reduce the weight of the ceramic while maintaining the physical properties such as the strength of the conventional ceramic.

【0011】[0011]

【発明の実施の形態】上記水膨潤性吸水性樹脂として
は、以下のような吸水性能、平均粒径、ゲル強度などの
物性を備えるものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The water-swellable water-absorbing resin preferably has the following properties such as water-absorbing performance, average particle size and gel strength.

【0012】先ず、純水に対する吸水性能は、50g/
g以上であり、好ましくは100〜1,000g/gで
ある。吸水性能が50g/gより低いと、成形体の保形
性が不十分である。又、該水膨潤性吸水性樹脂は、粉末
状又は粒状であり、その平均粒径は、1000ミクロン
以下、好ましくは、5〜550ミクロンである。平均粒
径が1000ミクロンより大きいと、成形体の保形性が
不十分である。
First, the water absorption performance with respect to pure water is 50 g /
g or more, preferably 100 to 1,000 g / g. If the water absorption performance is lower than 50 g / g, the shape retention of the molded article is insufficient. The water-swellable water-absorbing resin is in the form of powder or granules, and has an average particle size of 1000 microns or less, preferably 5 to 550 microns. If the average particle size is larger than 1000 microns, the shape retention of the molded product is insufficient.

【0013】以上の物性を充足する水膨潤性吸水性樹脂
は、例えばデンプンまたはセルロースとカルボキシル
基、スルホン酸基などの親水基を含有する水溶性単量体
および/または加水分解により水溶性となる単量体と、
架橋剤とを必須成分として重合させ、必要により加水分
解を行うことにより得られる。この吸水性樹脂の製造法
及び具体例は、特開昭52−25886号、特公昭53
−46199号、特公昭53−46200号及び特公昭
55−21041号公報に記載されている。
The water-swellable water-absorbing resin satisfying the above physical properties becomes water-soluble by, for example, starch or cellulose and a water-soluble monomer containing a hydrophilic group such as a carboxyl group or a sulfonic acid group and / or by hydrolysis. Monomers and
It can be obtained by polymerizing a crosslinking agent as an essential component and, if necessary, performing hydrolysis. The production method and specific examples of this water-absorbent resin are described in JP-A-52-25886 and JP-B-53-1983.
-46199, JP-B-53-46200 and JP-B-55-21041.

【0014】水膨潤性吸水性樹脂の他の例としては、デ
ンプン−アクリロニトリルグラフト重合体の加水分解
物、セルロース−アクリロニトリルグラフト重合物の加
水分解物、カルボキシメチルセルロースの架橋物、架橋
ポリアクリルアミドの部分加水分解物、架橋されたアク
リル酸−アクリルアミド共重合体、架橋されたスルホン
化ポリスチレン、特開昭52−14689号及び特開昭
52−27455号公報で開示されているビニルエステ
ル−不飽和カルボン酸共重合体ケン化物、架橋されたポ
リアクリル酸(塩)、架橋されたアクリル酸−アクリル
酸エステル共重合体、架橋されたイソブチレン−無水マ
レイン酸共重合体及び架橋されたカルボン酸変性ポリビ
ニルアルコール、自己架橋型ポリアクリル酸塩などが挙
げられる。又、以上例示した吸水性樹脂は2種以上併用
してもよい。
Other examples of the water-swellable water-absorbing resin include a hydrolyzate of a starch-acrylonitrile graft polymer, a hydrolyzate of a cellulose-acrylonitrile graft polymer, a cross-linked product of carboxymethyl cellulose, and a partially hydrolyzed polyacrylamide. Decomposition products, cross-linked acrylic acid-acrylamide copolymers, cross-linked sulfonated polystyrene, vinyl ester-unsaturated carboxylic acid copolymers disclosed in JP-A-52-14689 and JP-A-52-27455. Saponified polymer, cross-linked polyacrylic acid (salt), cross-linked acrylic acid-acrylate copolymer, cross-linked isobutylene-maleic anhydride copolymer and cross-linked carboxylic acid-modified polyvinyl alcohol, Crosslinkable polyacrylates and the like can be mentioned. Further, two or more of the above-described water-absorbing resins may be used in combination.

【0015】本発明において、吸水ゲルは上記の吸水性
樹脂の微粒子に水を加えて膨潤させたものであり、この
膨潤倍率は特に限定されないが、吸水性樹脂の吸水性能
以上の水でゲル化させた状態のもの(飽和吸水ゲル)が
好ましい。
In the present invention, the water-absorbing gel is obtained by adding water to the fine particles of the water-absorbing resin described above, and the swelling ratio is not particularly limited. It is preferable to use a saturated state (saturated water absorbing gel).

【0016】吸水ゲルからなる成形助剤は、セラミック
の成形工程で、粘土等のセラミック原料とともに用いら
れるものであり、セラミック原料としては、従来セラミ
ック製造用として好適な粘土や可塑性セラミック粉末が
勿論使用できるが、セラミック製造用として適さなかっ
た非可塑性ないし可塑性の低い原料も単独又は可塑性の
原料と混ぜて使用できる。この様なセラミック原料とし
ては例えば次のようなものが挙げられる。
The molding aid composed of a water-absorbing gel is used together with a ceramic raw material such as clay in the ceramic molding process. As the ceramic raw material, clay or plastic ceramic powder which is conventionally suitable for ceramic production is of course used. It is possible to use non-plastic or low-plastic materials which are not suitable for ceramic production, either alone or in combination with plastic materials. Examples of such ceramic materials include the following.

【0017】(1)可塑性原料:カオリン、ロウ石、ベ
ントナイト、陶石等の粘土鉱物全般 (2)非可塑性ないし可塑性の低いセラミック原料:ア
ルミナ、チタニア、一度乾燥させて粉砕した蛙目粘土、
ケイ砂、マグネサイト、ケイ酸マグネシウム、一般窯業
製品の不良品を含む粉砕物、廃棄物焼却灰
(1) Plastic raw materials: Clay minerals such as kaolin, laurite, bentonite, pottery stone, etc. (2) Non-plastic or low-plastic ceramic raw materials: Alumina, titania, Frog-eye clay once dried and pulverized,
Silica sand, magnesite, magnesium silicate, pulverized material including waste products of general ceramics products, waste incineration ash

【実施例】以下の各実施例において、評価の基準は次の
通りである。
EXAMPLES In each of the following examples, the evaluation criteria are as follows.

【0018】[ゲル強度]あらかじめ吸水性樹脂の生理
食塩水に対する飽和吸液量(Mg/g)をティーバッグ
法(JIS K7223-1996)にて測定した。(M×0.75)
gの生理食塩水を100ccのビーカーに採り、600
rpsで撹拌しながら1gの吸水性樹脂(60〜100
メッシュ)を添加して均一に吸収させ、表面が平滑な吸
水ゲルを作製する。この吸水ゲルを25℃に保温し、下
記の条件で、ネオカードメーター(飯尾電機社製、M3
02型)を用いてゲル強度を測定した。 荷重 : 200g 感圧軸の直径 : 3mmφ 感圧軸の降下速度: 0.36cm/秒
[Gel Strength] The saturated liquid absorption (Mg / g) of the water-absorbent resin with respect to physiological saline was measured in advance by the tea bag method (JIS K7223-1996). (M × 0.75)
g of physiological saline in a 100 cc beaker, 600
1 g of the water-absorbing resin (60 to 100
(Mesh) to uniformly absorb the water, thereby producing a water-absorbing gel having a smooth surface. This water-absorbing gel was kept at 25 ° C., and under the following conditions, a neo card meter (M3, manufactured by Iio Electric Co., Ltd.)
(Type 02) was used to measure the gel strength. Load: 200 g Diameter of pressure-sensitive shaft: 3 mmφ Descent speed of pressure-sensitive shaft: 0.36 cm / sec

【0019】[成形体曲げ弾性]混練機による押し出し
後乾燥前の成形体に対し、スパン20cmで種々の大き
さの荷重を加え、加重30秒後の鉛直方向の最大変位量
を測定した。この変位量は成形体の保形性に依存する。 [成形体及び焼成体の曲げ強度]成形体又は焼成体に対
し、JIS R1601に準拠して曲げ強度を測定し
た。
[Bending Elasticity of Molded Body] Loads of various sizes with a span of 20 cm were applied to the molded body after extrusion by a kneader and before drying, and the maximum displacement in the vertical direction after a load of 30 seconds was measured. This displacement depends on the shape retention of the molded body. [Bending strength of formed body and fired body] The bending strength of the formed body or fired body was measured in accordance with JIS R1601.

【0020】−実施例1− 水膨潤性吸水性樹脂微粒子として、平均粒径100μ
m、吸水性能400g/g、ゲル強度20,000ダイ
ン/cm2の架橋されたデンプン−アクリル酸グラフト
系樹脂(三洋化成工業株式会社製サンウェットIM−2
800D)を準備した。樹脂の平均粒径は、粉砕後に篩
いに通すことによって調整された。この樹脂1g当たり
水370gを吸わせて吸水ゲルとした。
Example 1 As water-swellable water-absorbent resin fine particles, an average particle diameter of 100 μm was used.
m, water absorption capacity 400 g / g, gel strength of 20,000 dynes / cm 2 , crosslinked starch-acrylic acid graft resin (Sunwet IM-2 manufactured by Sanyo Chemical Industries, Ltd.)
800D) was prepared. The average particle size of the resin was adjusted by passing it through a sieve after grinding. 370 g of water was absorbed per 1 g of the resin to form a water-absorbing gel.

【0021】平均粒径0.5μm、純度99%のアルミ
ナ粉末をセラミック原料として準備した。真空混練機の
中にこのセラミック原料1680gと吸水ゲル1850
gとを入れ、混練した。混練物中の無機物質100重量
部に対する樹脂成分の量は、0.05重量部である。混
練物を断面4cm×2cmの口金を備えた押し出し成形
機に入れて、40cm/minの速度で押し出し成形す
ることによって、4×2×25cmの大きさの成形体を
得た。この成形体を試料No.1とする。成形体の含水
率は、計算上52%である。この成形体に関して、曲げ
弾性及び曲げ強度を測定した。
An alumina powder having an average particle size of 0.5 μm and a purity of 99% was prepared as a ceramic raw material. In a vacuum kneader, 1680 g of this ceramic material and 1850 of water-absorbing gel were added.
g and kneaded. The amount of the resin component is 0.05 part by weight based on 100 parts by weight of the inorganic substance in the kneaded material. The kneaded material was placed in an extruder equipped with a die having a cross section of 4 cm × 2 cm, and extruded at a speed of 40 cm / min to obtain a molded body having a size of 4 × 2 × 25 cm. This molded product was prepared as Sample No. Let it be 1. The water content of the molded body is calculated to be 52%. The bending elasticity and the bending strength of this molded body were measured.

【0022】次に成形体を自然乾燥し、含水率が12%
にまで低下した時点から電気炉に入れて50℃で加熱乾
燥し、続いて成形体を大気中、温度1500℃で焼成し
た。焼成体に関して嵩比重、気孔率、熱伝導率及び曲げ
強度を測定した。並行して、吸水性樹脂を加えることに
変えて少量の有機バインダーを添加し、加圧成形し、同
一条件で焼成することによって相対密度99.5%の焼
成体を得た。
Next, the molded body is air-dried, and the moisture content is 12%.
From the time when the temperature was lowered to 50 ° C., the resultant was placed in an electric furnace and dried by heating at 50 ° C., and then the molded body was fired in the air at a temperature of 1500 ° C. The bulk specific gravity, porosity, thermal conductivity, and bending strength of the fired body were measured. In parallel, instead of adding the water-absorbing resin, a small amount of an organic binder was added, and the mixture was molded under pressure and fired under the same conditions to obtain a fired body having a relative density of 99.5%.

【0023】−実施例2− 水膨潤性吸水性樹脂微粒子として、平均粒径100μ
m、吸水性能400g/g、ゲル強度30,000ダイ
ン/cm2の架橋されたポリアクリル系樹脂(三洋化成
工業株式会社製サンフレッシュST−500Dの粉砕
品)である以外は実施例1と同質のものを用い、実施例
1と同一条件で成形体及び焼成体を得た。成形体及び焼
成体の試料No.を2とする。
Example 2 Water-swellable water-absorbent resin fine particles having an average particle diameter of 100 μm
m, water absorption capacity 400 g / g, gel strength 30,000 dynes / cm 2 , except that it is a cross-linked polyacrylic resin (pulverized product of Sanfresh ST-500D manufactured by Sanyo Chemical Industry Co., Ltd.). And a fired body were obtained under the same conditions as in Example 1. Sample No. of the compact and the fired body Is set to 2.

【0024】−実施例3− 水膨潤性吸水性樹脂微粒子として、平均粒径100μ
m、吸水性能320g/g、ゲル強度50,000ダイ
ン/cm2の架橋されたアクリル樹脂(上記サンフレッ
シュST−500Dの100部にエチレングリコールジ
グリシジルエーテルの5%水溶液3部をスプレーして浸
透させ、その後150℃で乾燥したもの)である以外は
実施例1と同質のものを用い、実施例1と同一条件で成
形体及び焼成体を得た。成形体及び焼成体の試料No.
を3とする。
Example 3 Water-swellable water-absorbent resin fine particles having an average particle diameter of 100 μm
m, water absorption capacity 320 g / g, gel strength 50,000 dynes / cm 2 Crosslinked acrylic resin (3 parts of a 5% aqueous solution of ethylene glycol diglycidyl ether are sprayed into 100 parts of the above-mentioned Sun Fresh ST-500D and permeated. And then dried at 150 ° C.) to obtain a molded body and a fired body under the same conditions as in Example 1. Sample No. of the compact and the fired body
Is set to 3.

【0025】−比較例1− 水膨潤性吸水性樹脂微粒子として、平均粒径100μ
m、吸水性能900g/g、ゲル強度9,000ダイン
/cm2の架橋されたデンプン−アクリル酸グラフト系
樹脂(三洋化成工業株式会社製サンフレッシュST−1
00)である以外は実施例1と同質のものを用い、実施
例1と同一条件で成形体及び焼成体を得た。成形体及び
焼成体の試料No.をR1とする。
Comparative Example 1 The water-swellable water-absorbent resin fine particles had an average particle diameter of 100 μm.
m, water absorption performance 900 g / g, gel strength 9,000 dynes / cm 2, a crosslinked starch-acrylic acid graft resin (Sunfresh ST-1 manufactured by Sanyo Chemical Industry Co., Ltd.)
A molded product and a fired product were obtained under the same conditions as in Example 1 except that the same material as in Example 1 was used except for the case of (00). Sample No. of the compact and the fired body Is R1.

【0026】−実施例4− 樹脂1g当たりの水の投入量を420gとして、成形体
の含水率を計算上56%とした以外は、実施例2と同一
条件で成形体及び焼成体を得た。成形体及び焼成体の試
料No.を4とする。 −比較例2− 樹脂1g当たりの水の投入量を420gとして、成形体
の含水率を計算上56%とした以外は、比較例1と同一
条件で成形体及び焼成体を得た。成形体及び焼成体の試
料No.をR2とする。
Example 4 A molded body and a fired body were obtained under the same conditions as in Example 2, except that the amount of water per gram of resin was 420 g and the water content of the molded body was calculated to be 56%. . Sample No. of the compact and the fired body Is set to 4. Comparative Example 2 A molded body and a fired body were obtained under the same conditions as in Comparative Example 1 except that the amount of water per 1 g of resin was 420 g and the water content of the molded body was 56% in calculation. Sample No. of the compact and the fired body Is R2.

【0027】−実施例5− 混練物中の無機物質100重量部に対する樹脂成分の量
を0.1重量部とした以外は実施例2と同一条件で成形
体及び焼成体を得た。成形体及び焼成体の試料No.を
5とする。 −比較例3− 混練物中の無機物質100重量部に対する樹脂成分の量
を0.1重量部とした以外は比較例1と同一条件で成形
体及び焼成体を得た。成形体及び焼成体の試料No.を
R3とする。
Example 5 A molded product and a fired product were obtained under the same conditions as in Example 2 except that the amount of the resin component was changed to 0.1 part by weight based on 100 parts by weight of the inorganic substance in the kneaded material. Sample No. of the compact and the fired body Is set to 5. Comparative Example 3 A molded body and a fired body were obtained under the same conditions as in Comparative Example 1 except that the amount of the resin component was changed to 0.1 part by weight based on 100 parts by weight of the inorganic substance in the kneaded material. Sample No. of the compact and the fired body Is R3.

【0028】−実施例6− 水膨潤性吸水性樹脂微粒子として、平均粒径500μm
である以外は実施例2と同質のものを用い、実施例2と
同一条件で成形体及び焼成体を得た。成形体及び焼成体
の試料No.を6とする。以上の各実施例及び比較例で
得た成形体及び焼成体の製造条件及び物性測定値を表1
及び表2に示す。
Example 6 Water-swellable water-absorbent resin fine particles having an average particle diameter of 500 μm
A molded body and a fired body were obtained under the same conditions as in Example 2 except that they were the same as in Example 2. Sample No. of the compact and the fired body Is set to 6. Table 1 shows the production conditions and measured physical properties of the molded and fired bodies obtained in the above Examples and Comparative Examples.
And Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明によれば、セラミック原料の種類
に制限を受けることなく高強度の多孔質セラミックを安
定して得ることができる。
According to the present invention, a high-strength porous ceramic can be stably obtained without being limited by the type of ceramic raw material.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】気孔率40%以上で、同一成分からなる緻
密質セラミックの曲げ強度の15%以上の曲げ強度を有
する多孔質セラミック。
1. A porous ceramic having a porosity of 40% or more and a bending strength of 15% or more of the bending strength of a dense ceramic comprising the same component.
【請求項2】ゲル強度が10,000ダイン/cm2
上である水膨潤性吸水性樹脂の微粒子に水を吸わせてゲ
ルにする工程と、 吸水したゲル及びセラミック粉末を混合し成形する工程
と、 成形体を焼成する工程とを経ることを特徴とする多孔質
セラミックの製造方法。
2. A process in which water is absorbed into fine particles of a water-swellable water-absorbent resin having a gel strength of 10,000 dynes / cm 2 or more to form a gel, and a process in which the gel and ceramic powder mixed with water are mixed and molded. And a step of firing the formed body.
【請求項3】混合比(吸水したゲル/セラミック粉末)
が重量基準で0.2〜2.4である請求項2に記載の多
孔質セラミックの製造方法。
3. Mixing ratio (water-absorbed gel / ceramic powder)
Is from 0.2 to 2.4 on a weight basis.
【請求項4】水膨潤性吸水性樹脂の純水に対する吸水性
能が100〜1,000g/gである請求項2又は3に
記載の多孔質セラミックの製造方法。
4. The method for producing a porous ceramic according to claim 2, wherein the water-swellable water-absorbent resin has a water absorption performance of 100 to 1,000 g / g with respect to pure water.
【請求項5】水膨潤性吸水性樹脂微粒子の平均粒子径が
5〜550μmである請求項2〜4のいずれかに記載の
多孔質セラミックの製造方法。
5. The method for producing a porous ceramic according to claim 2, wherein the average particle diameter of the water-swellable water-absorbent resin fine particles is 5 to 550 μm.
【請求項6】ゲル化工程で水膨潤性吸水性樹脂微粒子を
飽和吸水ゲルとする請求項2〜5のいずれかに記載の多
孔質セラミックの製造方法。
6. The method for producing a porous ceramic according to claim 2, wherein the water-swellable water-absorbent resin fine particles are converted into a saturated water-absorbent gel in the gelling step.
JP35302196A 1996-12-12 1996-12-12 Porous ceramic and its production Pending JPH10167856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35302196A JPH10167856A (en) 1996-12-12 1996-12-12 Porous ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35302196A JPH10167856A (en) 1996-12-12 1996-12-12 Porous ceramic and its production

Publications (1)

Publication Number Publication Date
JPH10167856A true JPH10167856A (en) 1998-06-23

Family

ID=18428038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35302196A Pending JPH10167856A (en) 1996-12-12 1996-12-12 Porous ceramic and its production

Country Status (1)

Country Link
JP (1) JPH10167856A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071995A1 (en) * 2003-02-12 2004-08-26 Toagosei Co., Ltd. Method for producing porous ceramic
EP1452512A1 (en) * 2001-12-07 2004-09-01 Ngk Insulators, Ltd. Method for producing porous ceramic article
WO2005063360A1 (en) 2003-12-26 2005-07-14 Ngk Insulators, Ltd. Method of producing honeycomb structure body
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
JP7379745B1 (en) * 2023-03-30 2023-11-14 日本碍子株式会社 Method for manufacturing honeycomb structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452512A1 (en) * 2001-12-07 2004-09-01 Ngk Insulators, Ltd. Method for producing porous ceramic article
EP1452512A4 (en) * 2001-12-07 2007-06-06 Ngk Insulators Ltd Method for producing porous ceramic article
WO2004071995A1 (en) * 2003-02-12 2004-08-26 Toagosei Co., Ltd. Method for producing porous ceramic
KR100687695B1 (en) * 2003-02-12 2007-02-27 도아고세이가부시키가이샤 Method for producing porous ceramic
CN100347135C (en) * 2003-02-12 2007-11-07 东亚合成株式会社 Method of manufacturing porous ceramic
US7537716B2 (en) 2003-02-12 2009-05-26 Toagosei Co., Ltd. Method for producing porous ceramic
WO2005063360A1 (en) 2003-12-26 2005-07-14 Ngk Insulators, Ltd. Method of producing honeycomb structure body
JP2007001836A (en) * 2005-06-27 2007-01-11 Ngk Insulators Ltd Method of manufacturing honeycomb structure
JP7379745B1 (en) * 2023-03-30 2023-11-14 日本碍子株式会社 Method for manufacturing honeycomb structure

Similar Documents

Publication Publication Date Title
EP0360244B1 (en) Porous ceramic sinter and process for producing same
US7537716B2 (en) Method for producing porous ceramic
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
JPH10167856A (en) Porous ceramic and its production
JP2004262747A (en) Method of manufacturing porous ceramic
JP3058174B2 (en) Porous ceramics, dried body for producing the same, and methods for producing them
JPH03252304A (en) Production of porous ceramic grain
JP3994233B2 (en) Porous ceramic product and manufacturing method thereof
JPH10338510A (en) Production of ceramic spherical granule
JP3892504B2 (en) Tile manufacturing method
JP2517225B2 (en) Manufacturing method of porous inorganic material molded plate
JPS58176181A (en) Castable composition
JP3994232B2 (en) Porous lightweight ceramic product and manufacturing method thereof
JPH1171188A (en) Production of porous article
JPH01167271A (en) Production of ceramic granule
JP2899608B2 (en) Zeolite kneading composition for molding and zeolite molded product
JPH0151467B2 (en)
JPS5864255A (en) Manufacture of ceramic porous body
JP2002145679A (en) Method of producing porous ceramic
JPH0684268B2 (en) Lightweight extruded cement building material
JPH06293573A (en) Honeycomb molding having mesopore and its production
JPS637211B2 (en)
JP4448564B2 (en) Porous ceramic product and manufacturing method thereof
JPH061673A (en) Production of porous ceramic
JP2003327482A (en) Pore forming material for ceramic composition and hydrated pore forming material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060707

Free format text: JAPANESE INTERMEDIATE CODE: A02