JPH1146066A - Multilayered printed wiring board - Google Patents

Multilayered printed wiring board

Info

Publication number
JPH1146066A
JPH1146066A JP21707597A JP21707597A JPH1146066A JP H1146066 A JPH1146066 A JP H1146066A JP 21707597 A JP21707597 A JP 21707597A JP 21707597 A JP21707597 A JP 21707597A JP H1146066 A JPH1146066 A JP H1146066A
Authority
JP
Japan
Prior art keywords
layer
via hole
insulating layer
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21707597A
Other languages
Japanese (ja)
Inventor
Yasuji Hiramatsu
靖二 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP21707597A priority Critical patent/JPH1146066A/en
Publication of JPH1146066A publication Critical patent/JPH1146066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered printed wiring board of a structure, wherein a via hole is hardly peeled from a conductor circuit on the lower layer, which is the layer under an upper layer of a bonding agent layer. SOLUTION: A board 20 formed with an opening 36 for via hole formation use is dipped in a chromic acid for one minute and epoxy resin particles (the mean particle diameter in the 7.2 pts.wt. of 1.0 μm, and the mean particle diameter in the 3.09 pts.wt. of 0.5 μm.) in the surface of a bonding agent layer 34 are removed by dissolving. Moreover, by removing through dissolving epoxy resin particles (the mean particle diameter in the 14.49 pts.wt. of 0.5 μm.) in the surface of an insulating agent layer 32, which is the layer under this layer 34, the insulating agent layer 32, which has a mean particle diameter smaller than that in the layer 34 on the side of the upper layer, on the side of the lower layer is made to erode more than the layer 34 and the sidewall 36a of this opening 36 is made to bend toward the inside of the opening 36. After that, an electroless copper-plated film 40 and an electrolytic copper-plated film 44 are formed, whereby a via hole 47 is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、上層と下層の導
体回路が層間絶縁層により絶縁され、両者がバイアホー
ルで接続されてなる多層プリント配線板に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board in which upper and lower conductive circuits are insulated by an interlayer insulating layer and both are connected by via holes.

【0002】[0002]

【従来の技術】従来技術に係るバイアホールの形成方法
について、図8を参照して説明する。図8(A)は、基
板120に形成された下層導体回路124の上に層間絶
縁層138が形成された状態を示している。該層間絶縁
層138は、後の行程で形成される上層導体回路を該下
層導体回路124から絶縁する。ここで、図8(A)に
示す層間絶縁層138を形成した基板120に、黒円の
印刷されたフォトマスクフィルム(図示せず)を密着さ
せ、超高圧水銀灯により露光する。これを溶液でスプレ
ー現像し、さらに、当該基板120を超高圧水銀灯によ
り露光し、その後、加熱処理(ポストベーク)をするこ
とにより、フォトマスクフィルムの黒円に相当するバイ
アホール形成用開口136を形成する(図8(B)参
照)。
2. Description of the Related Art A conventional method for forming a via hole will be described with reference to FIG. FIG. 8A shows a state in which an interlayer insulating layer 138 is formed on the lower conductive circuit 124 formed on the substrate 120. The interlayer insulating layer 138 insulates an upper conductor circuit formed in a later step from the lower conductor circuit 124. Here, a photomask film (not shown) on which a black circle is printed is brought into close contact with the substrate 120 on which the interlayer insulating layer 138 shown in FIG. 8A is formed, and is exposed with an ultrahigh pressure mercury lamp. This is spray-developed with a solution, and the substrate 120 is exposed with an ultra-high pressure mercury lamp, and then subjected to a heat treatment (post-baking) to form a via hole forming opening 136 corresponding to a black circle of the photomask film. (See FIG. 8B).

【0003】開口136が形成された基板20の表面
に、パラジウム触媒を付与することにより、層間樹脂絶
縁層138の表面およびバイアホール用開口36の内の
壁面に触媒核を付ける。そして、無電解銅めっき浴中に
基板120を浸漬して、全体に無電解銅めっき膜140
を形成する(図8(C)参照)。
By applying a palladium catalyst to the surface of the substrate 20 having the openings 136 formed thereon, catalyst nuclei are formed on the surface of the interlayer resin insulation layer 138 and the inner wall surfaces of the via hole openings 36. Then, the substrate 120 is immersed in an electroless copper plating bath to entirely cover the electroless copper plating film 140.
Is formed (see FIG. 8C).

【0004】図8(C)に示す基板120の無電解銅め
っき膜40上に感光性ドライフィルムを張り付け、マス
クを載置して、レジスト142を設ける。そこ後、レジ
スト非形成部分に電解銅めっきを施し、電解銅めっき膜
144を形成することで、バイアホール147を完成す
る。
[0004] A photosensitive dry film is stuck on the electroless copper plating film 40 of the substrate 120 shown in FIG. 8 (C), a mask is placed, and a resist 142 is provided. Thereafter, electrolytic copper plating is performed on the non-resist forming portion to form an electrolytic copper plating film 144, thereby completing the via hole 147.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術に係るバイアホールは、図8(B)に示すよ
うに層間絶縁層に形成されるバイアホール形成用開口1
36の側壁136aは、ほぼ垂直で、且つ、直線状に形
成されていた。ここで、樹脂からなる層間絶縁層138
と、銅からなるめっき膜140、144とは、熱膨張率
の違いが大きく、該多層プリント配線板の使用中に加熱
・冷却を繰り返すことにより上方への応力が加わり、該
めっき膜140、144が、下層導体回路124から剥
離して、バイアホール147内で断線が生じることがあ
った。
However, as shown in FIG. 8B, the via hole according to the prior art described above has a via hole forming opening 1 formed in an interlayer insulating layer.
The side wall 136a of the thirty-six was formed almost vertically and linearly. Here, interlayer insulating layer 138 made of resin
And the plating films 140 and 144 made of copper have a large difference in the coefficient of thermal expansion. When the heating and cooling are repeated during use of the multilayer printed wiring board, an upward stress is applied to the plating films 140 and 144. However, there was a case where the wire was peeled off from the lower-layer conductor circuit 124 to cause a disconnection in the via hole 147.

【0006】本発明は、上述した課題を解決するために
なされたものであり、その目的とするところは、バイア
ホールが下層の導体回路から剥離し難い多層プリント配
線板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a multilayer printed wiring board in which via holes are hardly peeled off from a lower conductive circuit.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、請求項1では、上層と下層の導体回路が層
間絶縁層により絶縁され、両者がバイアホールで接続さ
れてなる多層プリント配線板において、前記バイアホー
ルは、層間絶縁層に設けられた開口部の側壁が内側へ向
けて屈曲してなり、その側壁、底面が導体膜で被覆され
て形成されてなることを技術的特徴とする。
According to the present invention, in order to achieve the above object, according to the first aspect of the present invention, a multilayer printed circuit in which upper and lower conductive circuits are insulated by an interlayer insulating layer and both are connected by via holes. In the wiring board, the via hole is formed such that a side wall of an opening provided in an interlayer insulating layer is bent inward, and a side wall and a bottom surface are covered with a conductive film. And

【0008】請求項2では、上層と下層の導体回路が下
層と上層から成る層間絶縁層により絶縁され、両者がバ
イアホールで接続されてなる多層プリント配線板におい
て、前記バイアホールは、下層の層間絶縁層に設けられ
た開口部の側壁が内側へ向けて屈曲してなり、その側
壁、底面が導体膜で被覆されて形成されてなることを技
術的特徴とする。
According to a second aspect of the present invention, in the multilayer printed wiring board in which the upper and lower conductive circuits are insulated by an interlayer insulating layer including the lower layer and the upper layer, and both are connected by via holes, the via hole is formed in the lower interlayer. A technical feature is that the side wall of the opening provided in the insulating layer is bent inward, and the side wall and the bottom surface are formed by being covered with a conductive film.

【0009】請求項3では、上層と下層の導体回路が層
間絶縁層により絶縁され、両者がバイアホールで接続さ
れてなる多層プリント配線板において、前記バイアホー
ルは、層間絶縁層に設けられた開口部の側壁が内側へ屈
曲してなり、そのバイアホール内が導体にて充填されて
なることを技術的特徴とする。
According to a third aspect of the present invention, in the multilayer printed wiring board in which the upper and lower conductive circuits are insulated by an interlayer insulating layer and both are connected by via holes, the via holes are formed in the interlayer insulating layer. The technical feature is that the side wall of the portion is bent inward, and the inside of the via hole is filled with a conductor.

【0010】請求項4では、上層と下層の導体回路と下
層と上層からなる層間絶縁層によって絶縁され、両者が
バイアホールで接続されてなる多層プリント配線板にお
いて、前記バイアホールは、下層の層間絶縁層に設けら
れた開口部の側壁が内側へ屈曲してなり、そのバイアホ
ール内が導体にて充填されてなることを技術的特徴とす
る。
According to a fourth aspect of the present invention, in the multilayer printed wiring board insulated by the upper and lower conductive circuits and the interlayer insulating layer including the lower and upper layers, and the both are connected by via holes, the via hole is formed in the lower interlayer. The technical feature is that the side wall of the opening provided in the insulating layer is bent inward, and the inside of the via hole is filled with a conductor.

【0011】請求項5の発明は、請求項2又は4におい
て、前記下層の層間絶縁層に化成処理により、溶解除去
可能な粒子が含まれてなることを技術的特徴とする。
A fifth aspect of the present invention is characterized in that, in the second or fourth aspect, the lower interlayer insulating layer contains particles that can be dissolved and removed by a chemical conversion treatment.

【0012】請求項1又は3の多層プリント配線板にお
いて、バイアホールが、側壁を内側へ向けて屈曲させた
開口部に形成してあるため、加熱−冷却のヒートサイク
ルを繰り返しても剥離し難い。
In the multilayer printed wiring board according to the first or third aspect, since the via hole is formed in the opening whose side wall is bent inward, the via hole is hardly peeled off even when the heat cycle of heating and cooling is repeated. .

【0013】請求項2又は4の多層プリント配線板で
は、上層と下層の導体回路を下層と上層から成る2層の
層間絶縁層により絶縁する。バイアホールが、側壁を内
側へ向けて屈曲させた開口部に形成してあるため、加熱
−冷却のヒートサイクルを繰り返しても剥離し難い。こ
こで、層間絶縁層を2層に分けてあるので、下層の層間
絶縁層を上層の層間絶縁層よりも酸或いは酸化剤に対し
て溶解し易くすることで、下層の層間絶縁層に設けられ
る開口部の側壁を内側へ向けて屈曲させることが容易に
行える。
In the multilayer printed wiring board according to the second or fourth aspect, the upper and lower conductive circuits are insulated by two interlayer insulating layers including a lower layer and an upper layer. Since the via hole is formed in the opening with the side wall bent inward, it is difficult to peel off even when the heat cycle of heating and cooling is repeated. Here, since the interlayer insulating layer is divided into two layers, the lower interlayer insulating layer is provided in the lower interlayer insulating layer by making it easier to dissolve in an acid or an oxidizing agent than the upper interlayer insulating layer. The side wall of the opening can be easily bent inward.

【0014】請求項5の多層プリント配線板では、下層
の層間絶縁層に化成処理(例えば酸又は酸化剤による処
理)に対して溶解性の平均粒子径0.1〜2.0μmの
微細粒子を含ませてあるため、バイアホール用の開口部
を溶剤にて形成する際に、下層の層間絶縁層に設けられ
る開口部の側壁を内側へ向けて屈曲させることが容易に
行える。
In the multilayer printed wiring board according to the present invention, fine particles having an average particle diameter of 0.1 to 2.0 μm which are soluble in a chemical conversion treatment (for example, a treatment with an acid or an oxidizing agent) are formed in the lower interlayer insulating layer. Since it is included, when forming the opening for the via hole with a solvent, the side wall of the opening provided in the lower interlayer insulating layer can be easily bent inward.

【0015】このような、微細粒子としては、エポキシ
樹脂粒子(アミン系硬化剤で硬化させたエポキシ樹
脂)、アミノ樹脂(メラミン樹脂、尿素樹脂、グアナミ
ン樹脂)粒子が望ましい。また、請求項3、4の多層プ
リント配線板ではバイアホール内に導体が充填されてな
るため、表面の平坦性に優れ、またバイアホールの直上
にさらにバイアホールを配置することができるため、高
密度化を達成できる。
As such fine particles, epoxy resin particles (epoxy resin cured with an amine-based curing agent) and amino resin (melamine resin, urea resin, guanamine resin) particles are desirable. Further, in the multilayer printed wiring board according to the third and fourth aspects, the conductor is filled in the via hole, so that the surface is excellent in flatness. Further, the via hole can be further disposed immediately above the via hole, thereby increasing the height. Densification can be achieved.

【0016】[0016]

【発明の実施の形態】以下、本発明の第1実施形態に係
る多層プリント配線板の製造方法について図を参照して
説明する。図1〜図6は、本発明の第1実施態様に係る
多層プリント配線板の製造工程を示している。ここで
は、銅張積層板をエッチング処理して製造したコア基材
あるいは、ビルドアップ多層基板を得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a multilayer printed wiring board according to a first embodiment of the present invention will be described below with reference to the drawings. 1 to 6 show a manufacturing process of the multilayer printed wiring board according to the first embodiment of the present invention. Here, a core base material or a build-up multilayer substrate manufactured by etching a copper-clad laminate is obtained.

【0017】図1(A)に示すように厚さ1mmのガラス
エポキシ又はBT(ビスマレイミドトリアジン)から成
る基板20の両面に18μmの銅箔22がラミネートさ
れて成る銅張積層板20aを出発材料とし、その銅箔2
2を常法に従いパターン状にエッチングすることによ
り、基板20の両面に内層銅パターン24aを形成す
る。更に、スルーホール用貫通孔27を穿設し、銅めっ
き25を施すことによりスルーホール28を形成する。
その後、図1(B)に示すように該内層銅パターン24
a及び銅メッキ25に、黒化(酸化)−還元処理により
粗化処理を施す。
As shown in FIG. 1A, a starting material is a copper-clad laminate 20a in which 18 μm copper foil 22 is laminated on both sides of a substrate 20 made of glass epoxy or BT (bismaleimide triazine) having a thickness of 1 mm. And the copper foil 2
2 is etched in a pattern according to a conventional method to form inner layer copper patterns 24 a on both surfaces of the substrate 20. Further, a through hole 27 for a through hole is formed, and a copper plating 25 is applied to form a through hole 28.
Thereafter, as shown in FIG.
a and the copper plating 25 are subjected to a roughening treatment by a blackening (oxidation) -reduction treatment.

【0018】一方、ビスフェノールF系エポキシモノマ
ー(油化シェルエポキシ製:分子量310:商品名E−
807)を100重量部、イミダゾール硬化剤(四国化
成製:商品名2E4MZ−CN)6重量部、さらに、こ
の混合物に対し、SiO2 球状粒子の平均径1.6μm
(ここで、最大粒は後述する内層銅パターン24aの厚
みの15μm以下とする)を170重量部を混合し、3
本ロールにて混練して、23±1°Cで粘度55±10
Pa・s のフラット化のための樹脂を用意する。この樹
脂は、無溶剤である。もし溶剤入りの樹脂を使用すると
層間剤を塗布して加熱・乾燥させるとフラット化のため
の樹脂層から溶剤が揮発して、フラット化のための樹脂
層と層間材との間で剥離が発生するからである。
On the other hand, a bisphenol F-based epoxy monomer (manufactured by Yuka Shell Epoxy; molecular weight 310: trade name E-
807), 6 parts by weight of an imidazole curing agent (trade name: 2E4MZ-CN, manufactured by Shikoku Chemicals), and an average diameter of 1.6 μm of SiO2 spherical particles based on this mixture.
(Here, the maximum grain is 15 μm or less of the thickness of the inner layer copper pattern 24a described later), and 170 parts by weight are mixed.
Knead with this roll, viscosity at 23 ± 1 ° C 55 ± 10
Prepare resin for flattening Pa · s. This resin is solvent-free. If a resin containing a solvent is used, if an interlayer agent is applied and heated and dried, the solvent will evaporate from the resin layer for flattening, and peeling will occur between the resin layer for flattening and the interlayer material. Because you do.

【0019】ここで、基板20に、図1(C)に示すよ
うにロールコータにて上記樹脂を塗布して、導体回路
(内層銅パターン24a)間、スルーホール28内を充
填する。その後、150°Cで、30分加熱して硬化さ
せる。この加熱処理の後、上述した充填樹脂30は、1
50°Cで、3時間加熱することによりほぼ完全に架橋
して高い硬度となるが、ここでは、後述するようにベル
トサンダー研磨又はバフ研磨が可能なような範囲でのみ
硬化させることにより、研磨作業を容易に行えるように
しておく。この工程により、充填樹脂30が内層銅パタ
ーン24aの間に充填される。
Here, as shown in FIG. 1C, the resin is applied to the substrate 20 by a roll coater to fill the through holes 28 between the conductor circuits (inner copper patterns 24a). Then, it is cured by heating at 150 ° C. for 30 minutes. After this heat treatment, the above-mentioned resin 30
By heating at 50 ° C. for 3 hours, the film is almost completely crosslinked and has a high hardness. However, as described later, the polishing is performed by curing only in a range where belt sander polishing or buffing is possible. Make the work easy. By this step, the filling resin 30 is filled between the inner layer copper patterns 24a.

【0020】引き続き、基板20を、ベルトサンダーに
て#600のベルト研磨紙(三共理化学製)を用いて片
面を研磨する。このとき、内層銅パターン24aやスル
ーホール28のランド28a上に充填樹脂30が残らな
いように研磨を行う。その後、ベルトサンダーによる傷
を取り除くためバフ研磨を行う。そして、他方の面も同
様に研磨して、図1(D)に示すように両面のフラット
な基板20を形成する。その後、150°Cで3時間加
熱することにより充填樹脂30を完全に架橋させる。
Subsequently, one side of the substrate 20 is polished with a belt sander using # 600 belt polishing paper (manufactured by Sankyo Rikagaku). At this time, polishing is performed so that the filling resin 30 does not remain on the inner layer copper pattern 24a and the land 28a of the through hole 28. Thereafter, buffing is performed to remove the scratches caused by the belt sander. Then, the other surface is similarly polished to form a flat substrate 20 on both surfaces as shown in FIG. Thereafter, by heating at 150 ° C. for 3 hours, the filling resin 30 is completely crosslinked.

【0021】この上述した組成に係るSiO2 球状粒子
を含むフラット化樹脂は、硬化収縮が小さくなるため、
基板20に反りを発生させることがない。また、線熱膨
張係数が小さくなるため、ヒートサイクルに対する耐性
にも優れている。
The flattened resin containing the SiO2 spherical particles according to the above-described composition has a small curing shrinkage,
The substrate 20 does not warp. Further, since the coefficient of linear thermal expansion is reduced, the resistance to heat cycles is excellent.

【0022】図1(D)を参照して上述した研磨工程を
終えた基板20を水洗いし、乾燥した後、その基板20
を酸性脱脂してソフトエッチングして、塩化パラジウム
と有機酸からなる触媒溶液で処理して、Pd触媒を付与
し、活性化を行い、無電解めっき浴にてめっきを施し、
銅導電体(銅パターン)24aとバイアホールパッド2
8aの表面にNi−P−Cu合金の厚さ2.5μmの凹
凸層(粗化面)を形成する(図2(E)参照)。そし
て、水洗いし、その基板20をホウふっ化スズーチオ尿
素液からなる無電解スズめっき浴に50°Cで1時間浸
漬し、Ni−Cu−P合金粗化面の表面に厚さ0.3μ
mのスズ置換めっき層を形成する(図示せず)。
The substrate 20 that has been subjected to the polishing step described above with reference to FIG.
Is acid degreased and soft-etched, treated with a catalyst solution composed of palladium chloride and an organic acid, a Pd catalyst is applied, activated, plated in an electroless plating bath,
Copper conductor (copper pattern) 24a and via hole pad 2
An uneven layer (roughened surface) of a 2.5 μm-thick Ni—P—Cu alloy is formed on the surface of 8a (see FIG. 2E). After washing with water, the substrate 20 is immersed in an electroless tin plating bath composed of a tin borofluoride-thiourea solution at 50 ° C. for 1 hour, and a thickness of 0.3 μm is applied to the surface of the roughened surface of the Ni—Cu—P alloy.
Then, a tin-substituted plating layer of m is formed (not shown).

【0023】次に、上記基板20に塗布するための上層
用感光性接着剤を用意する。ここでは、DMDG(ジエ
チレングリコールジメチルエーテル)に溶解した濃度8
0mol%のクレゾールノボラック型エポキシ樹脂(日
本化薬製、分子量2500)の25%アクリル化物を3
5重量部、ポリエーテルスルフォン(PES)12重量
部、イミダゾール硬化剤(四国化成製、2E4MZ−C
N)2重量部、感光性モノマー(東亜合成製、アロニッ
クスM315)4重量部、光開始剤(チバガイギー製、
イルガキュアI−907)2重量部、光増感剤(日本化
薬製、DETX−S)0.2重量部を混合し、これらの
混合物に対し、エポキシ樹脂粒子(三洋化成製、ポリマ
ーポール)の平均粒径1.0μmのものを7.2重量
部、平均粒径0.5μmのものを3.09重量部、消泡
剤(サンノプコ製、S−65)0.5重量部を混合した
後、さらにNMP30重量部を添加しながら混合して粘
度7Pa・sの感光性接着剤(上層用)を得る。
Next, an upper layer photosensitive adhesive to be applied to the substrate 20 is prepared. Here, a concentration of 8 dissolved in DMDG (diethylene glycol dimethyl ether) was used.
A 25% acrylate of 0 mol% cresol novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., molecular weight 2500) was added to 3
5 parts by weight, 12 parts by weight of polyether sulfone (PES), imidazole curing agent (2E4MZ-C manufactured by Shikoku Chemicals)
N) 2 parts by weight, photosensitive monomer (Toa Gosei Co., Aronix M315) 4 parts by weight, photoinitiator (Ciba Geigy,
2 parts by weight of Irgacure I-907) and 0.2 part by weight of a photosensitizer (DETX-S, manufactured by Nippon Kayaku Co., Ltd.), and the mixture was mixed with epoxy resin particles (Polymer Pole, manufactured by Sanyo Chemical Industries, Ltd.). After mixing 7.2 parts by weight with an average particle diameter of 1.0 μm, 3.09 parts by weight with an average particle diameter of 0.5 μm, and 0.5 part by weight of an antifoaming agent (manufactured by San Nopco, S-65) The mixture is further mixed while adding 30 parts by weight of NMP to obtain a photosensitive adhesive having a viscosity of 7 Pa · s (for the upper layer).

【0024】一方、上記基板20に塗布するための下層
用感光性接着剤を用意する。ここでは、DMDG(ジエ
チレングリコールジメチルエーテル)に溶解した濃度8
0mol%クレゾールノボラック型エポキシ樹脂(日本
化薬製、分子量2500)の25%アクリル化物を35
重量部、ポリエーテルスルフォン(PES)12重量
部、イミダゾール硬化剤(四国化成製、2E4MZ−C
N)2重量部、感光性モノマー(東亜合成製、アロニッ
クスM315)4重量部、光開始剤(チバガイギー製、
イルガキュアl−907)2重量部、光増感剤(日本化
薬製、DETX−S)0.2重量部を混合し、これらの
混合物に対し、エポキシ樹脂粒子(三洋化成製、ポリマ
ーポール)の平均粒径0.5μmのものを14.49重
量部、消泡剤(サンノプコ製、S−65)0.5重量部
を混合した後、さらにNMP30重量部を添加しながら
混合して粘度1.5Pa・sの層間樹脂絶縁剤(下層
用)を得る。
On the other hand, a lower layer photosensitive adhesive to be applied to the substrate 20 is prepared. Here, a concentration of 8 dissolved in DMDG (diethylene glycol dimethyl ether) was used.
35% of a 25% acrylate of 0 mol% cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500)
Parts by weight, 12 parts by weight of polyether sulfone (PES), imidazole curing agent (2E4MZ-C manufactured by Shikoku Chemicals)
N) 2 parts by weight, photosensitive monomer (Toa Gosei Co., Aronix M315) 4 parts by weight, photoinitiator (Ciba Geigy,
2 parts by weight of Irgacure 1-907) and 0.2 part by weight of a photosensitizer (DETX-S, manufactured by Nippon Kayaku Co., Ltd.) were mixed, and the mixture was mixed with epoxy resin particles (Polymer Pole, manufactured by Sanyo Chemical Industries, Ltd.). After mixing 14.49 parts by weight of an average particle diameter of 0.5 μm and 0.5 parts by weight of an antifoaming agent (manufactured by San Nopco, S-65), the mixture was further mixed while adding 30 parts by weight of NMP to obtain a viscosity of 1. An interlayer resin insulating agent (for lower layer) of 5 Pa · s is obtained.

【0025】基板20の両面に、粘度1.5Pa・sの
上記層間樹脂絶縁剤(下層用)をロールコータで塗布
し、水平状態で20分間放置してから、60℃で30分
の乾燥(プリベーク)を行い、絶縁剤層32を形成す
る。
The above-mentioned interlayer resin insulating material (for lower layer) having a viscosity of 1.5 Pa · s is applied to both surfaces of the substrate 20 by a roll coater, left in a horizontal state for 20 minutes, and then dried at 60 ° C. for 30 minutes ( Pre-bake) is performed to form the insulating agent layer 32.

【0026】さらにこの絶縁剤層32の上に、上述した
粘度7Pa・sの感光性接着剤(上層用)をロールコー
タを用いて塗布し、水平状態で20分間放置してから、
60℃で30分の乾燥を行い、接着剤層34を形成ずる
(図2(F)参照)。
Further, the above-mentioned photosensitive adhesive (for upper layer) having a viscosity of 7 Pa · s is applied on the insulating layer 32 by using a roll coater, and left in a horizontal state for 20 minutes.
Drying is performed at 60 ° C. for 30 minutes to form the adhesive layer 34 (see FIG. 2F).

【0027】図2(F)に示す絶縁剤層32および接着
剤層34を形成した基板の両面に、100μmφの黒円
が印刷されたフォトマスクフィルムを密着させ、超高圧
水銀灯により500mJ/cm2 で露光する。これをD
MDG溶液でスプレー現像し、さらに、当該基板を超高
圧水銀灯により3000mJ/cm2 で露光し、100
℃で1時間、その後150℃で5時間の加熱処理(ポス
トベーク)をすることにより、フォトマスクフィルムに
相当する寸法精度に優れた100μmφの開口(バイア
ホール形成用開口36)を有する厚さ35μmの層間樹
脂絶縁層(絶縁剤層32と接着剤層34との2層構造)
38を形成する(図2(G)参照)。該バイアホール形
成用の開口部36を拡大して図7(G)に示す。なお、
バイアホールとなる開口36には、スズめっき層を部分
的に露出させた。
A photomask film on which a black circle of 100 μmφ is printed is brought into close contact with both surfaces of the substrate on which the insulating layer 32 and the adhesive layer 34 shown in FIG. 2 (F) are formed, and is applied with an ultrahigh pressure mercury lamp at 500 mJ / cm 2. Expose. This is D
The substrate was spray-developed with an MDG solution, and the substrate was exposed at 3000 mJ / cm2 with an ultra-high pressure mercury lamp.
By performing a heat treatment (post-baking) at 150 ° C. for 1 hour and then at 150 ° C. for 5 hours, a thickness of 35 μm having a 100 μm φ opening (via hole forming opening 36) having excellent dimensional accuracy equivalent to a photomask film. Interlayer resin insulating layer (two-layer structure of insulating layer 32 and adhesive layer 34)
38 are formed (see FIG. 2G). FIG. 7G is an enlarged view of the opening 36 for forming the via hole. In addition,
The tin plating layer was partially exposed in the opening 36 serving as a via hole.

【0028】開口36が形成された基板20を、クロム
酸に1分間浸漬し、接着剤層34の表面のエポキシ樹脂
粒子(7.2重量部−平均粒径1.0μm、3.09重
量部−平均粒径0.5μm)を溶解除去することによ
り、層間樹脂絶縁層38の表面を粗面とし、また、該接
着剤層34の下層の絶縁剤層32のエポキシ樹脂粒子
(14.49重量部−平均粒径0.5μm)を溶解除去
することによって、図2(H)に示すように、上層側の
接着剤層34よりも平均粒子径の小さな下層側の絶縁剤
層32をより大きく浸食させ、該バイアホール形成用開
口36の側壁36aを内側へ向けて屈曲させる。即ち、
該開口36の上部(表面側)の直径よりも下部(内部
側)の直径が大きくなるようにする。この状態を拡大し
て図7(H)に示す。その後、中和溶液(シプレイ社
製)に浸漬してから水洗いする。
The substrate 20 in which the openings 36 are formed is immersed in chromic acid for one minute, and the epoxy resin particles (7.2 parts by weight—average particle size 1.0 μm, 3.09 parts by weight) on the surface of the adhesive layer 34 are immersed. By dissolving and removing the average particle size of 0.5 μm, the surface of the interlayer resin insulating layer 38 is roughened, and the epoxy resin particles (14.49 weight%) of the insulating layer 32 below the adhesive layer 34 are formed. 2H, the lower insulating layer 32 having a smaller average particle diameter than the upper adhesive layer 34 is made larger, as shown in FIG. 2H. Erosion is performed, and the side wall 36a of the via hole forming opening 36 is bent inward. That is,
The diameter of the lower part (inner side) is made larger than the diameter of the upper part (front side) of the opening 36. FIG. 7H is an enlarged view of this state. Then, it is immersed in a neutralizing solution (manufactured by Shipley) and then washed with water.

【0029】さらに、粗面化処理した該基板20の表面
に、パラジウム触媒(アトテック製)を付与することに
より、層間樹脂絶縁層38の表面およびバイアホール用
開口36の内壁面に触媒核を付ける。
Further, by applying a palladium catalyst (manufactured by Atotech) to the surface of the roughened substrate 20, a catalyst nucleus is attached to the surface of the interlayer resin insulation layer 38 and the inner wall surface of the via hole opening 36. .

【0030】以下の組成の無電解銅めっき浴中に基板を
浸漬して、粗面全体に厚さ1.6μmの無電解銅めっき
膜40を形成する(図3(I)参照)。 〔無電解めっき液〕 EDTA 150 g/l 硫酸銅 20 g/l HCHO 30ml/l NaOH 40 g/l α、α’−ビピリジル 80mg/l PEG 0.1 g/l 〔無電解めっき条件〕70℃の液温度で30分
The substrate is immersed in an electroless copper plating bath having the following composition to form an electroless copper plating film 40 having a thickness of 1.6 μm on the entire rough surface (see FIG. 3I). [Electroless plating solution] EDTA 150 g / l Copper sulfate 20 g / l HCHO 30 ml / l NaOH 40 g / l α, α'-bipyridyl 80 mg / l PEG 0.1 g / l [Electroless plating conditions] 70 ° C. 30 minutes at liquid temperature

【0031】図3(I)に示す基板20の無電解銅めっ
き膜40上に市販の感光性ドライフィルムを張り付け、
マスクを載置して、100mJ/cm2 で露光、0.8
%炭酸ナトリウムで現像処理し、厚さ15μmのめっき
レジスト42を設ける(図3(J)参照)。
A commercially available photosensitive dry film is stuck on the electroless copper plating film 40 of the substrate 20 shown in FIG.
Place a mask and expose at 100 mJ / cm2, 0.8
% Of sodium carbonate to provide a plating resist 42 having a thickness of 15 μm (see FIG. 3 (J)).

【0032】ついで、レジスト非形成部分に以下の条件
で電解銅めっきを施し、厚さ15μmの電解銅めっき膜
44を形成する(図3(K)参照)。この際、図9に示
すようにバイアホール内をめっきで充填してもよい。 〔電解めっき液〕 硫酸銅 180 g/l 硫酸銅 80 g/l 添加剤(アトテックジャパン製、カパラシドGL) 1 ml/l 〔電解めっき条件〕 電流密度 1A/dm2 時間 30分 温度 室温
Next, electrolytic copper plating is applied to the non-resist forming portion under the following conditions to form an electrolytic copper plating film 44 having a thickness of 15 μm (see FIG. 3K). At this time, the via holes may be filled with plating as shown in FIG. [Electroplating solution] Copper sulfate 180 g / l Copper sulfate 80 g / l Additive (Capparaside GL, manufactured by Atotech Japan) 1 ml / l [Electroplating conditions] Current density 1 A / dm2 hour 30 minutes temperature room temperature

【0033】めっきレジスト42を5%KOHで剥離除
去した後、そのめっきレジスト42下の無電解めっき膜
40を硫酸と過酸化水素の混合液でエッチング処理して
溶解除去し、無電解銅めっき膜40と電解銅めっき膜4
4からなる厚さ18μmの導体回路46及びバイアホー
ル47を形成する(図4(L)参照)。形成されたバイ
アホール47を拡大して図7(H)に示す。バイアホー
ル47は、内側へ向けて屈曲した側壁36aに形成され
ているため、加熱−冷却のヒートサイクルを繰り返して
も内層銅パターン(導体回路)24aから剥離し難い。
その後、その基板を800g/lのクロム酸中に3分間
浸漬して粗化面上に残留しているパラジウム触媒核を除
去する。
After stripping and removing the plating resist 42 with 5% KOH, the electroless plating film 40 under the plating resist 42 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide, and the electroless copper plating film is removed. 40 and electrolytic copper plating film 4
Then, a conductor circuit 46 and a via hole 47 each having a thickness of 18 μm and made of 4 are formed (see FIG. 4L). FIG. 7H is an enlarged view of the via hole 47 thus formed. Since the via hole 47 is formed on the side wall 36a bent inward, it is difficult to peel off from the inner layer copper pattern (conductor circuit) 24a even if the heat cycle of heating and cooling is repeated.
Then, the substrate is immersed in 800 g / l chromic acid for 3 minutes to remove the palladium catalyst nuclei remaining on the roughened surface.

【0034】導体回路46を形成した基板を、硫酸銅8
g/l、硫酸ニッケル0.6g/l、クエン酸15g/
l、次亜リン酸ナトリウム29g/l、ホウ酸31g/
l、界面活性剤0.1g/lからなるpH=9の無電解
めっき液に浸漬し、該導体回路46の表面に厚さ3μm
の銅−ニッケル−リンからなる粗化層48を形成する
(図4(M)参照)。
The substrate on which the conductor circuit 46 is formed is made of copper sulfate 8
g / l, nickel sulfate 0.6 g / l, citric acid 15 g /
1, sodium hypophosphite 29 g / l, boric acid 31 g /
l, immersed in an electroless plating solution containing 0.1 g / l of a surfactant and having a pH of 9 to form a 3 μm thick film on the surface of the conductor circuit 46.
(See FIG. 4 (M)).

【0035】このとき、形成した粗化層48をEPMA
(蛍光X線分析装置)で分析したところ、Cu:98m
ol%、Ni:1.5mol%、P:0.5mol%の
組成比であった。さらに、ホウフッ化スズ0.1mol
/l、チオ尿素1.0mol/l、温度50℃、pH=
1.2の条件でCu−Sn置換反応を行い、前記粗化層
48の表面に厚さ0.3μmのSn層を設けた(Sn層
については図示しない)。
At this time, the formed roughened layer 48 is
(X-ray fluorescence analyzer), Cu: 98m
ol%, Ni: 1.5 mol%, and P: 0.5 mol%. Further, 0.1 mol of tin borofluoride
/ L, thiourea 1.0 mol / l, temperature 50 ° C, pH =
A Cu—Sn substitution reaction was performed under the conditions of 1.2, and a 0.3 μm thick Sn layer was provided on the surface of the roughened layer 48 (the Sn layer is not shown).

【0036】図2(F)〜図4(M)を参照して上述し
た工程を繰り返すことにより、さらに上層の導体回路を
形成し、多層プリント配線板を得る。即ち、層間絶縁層
38を形成し(図4(N)参照)、該層間絶縁層38に
バイアホール用開口36を穿設する(図5(O)参
照)。その後、該基板20の表面均一に無電解めっき膜
40を析出させ(図5(P)参照)、めっきレジスト4
2を形成した後、電解メッキ膜44を形成する(図5
(Q))。そして、該めっきレジストを剥離することで
導体回路46、バイアホール47を構成し(図6(R)
参照)、該導体回路46、バイアホール47の表面を粗
化して粗化層48を形成する(図6(S)参照)。な
お、上述したビルトアップの際に、Sn置換は行わな
い。
By repeating the steps described above with reference to FIGS. 2 (F) to 4 (M), a further upper layer conductive circuit is formed to obtain a multilayer printed wiring board. That is, an interlayer insulating layer 38 is formed (see FIG. 4N), and a via hole opening 36 is formed in the interlayer insulating layer 38 (see FIG. 5O). Thereafter, an electroless plating film 40 is deposited uniformly on the surface of the substrate 20 (see FIG. 5 (P)).
2 is formed, and then an electrolytic plating film 44 is formed.
(Q)). Then, by removing the plating resist, a conductor circuit 46 and a via hole 47 are formed (FIG. 6 (R)).
The surface of the conductive circuit 46 and the surface of the via hole 47 are roughened to form a roughened layer 48 (see FIG. 6 (S)). Note that Sn replacement is not performed during the above-described build-up.

【0037】一方、DMDGに溶解させた60重量%の
クレゾールノボラック型エポキシ樹脂(日本化薬製)の
エポキシ基50%をアクリル化した感光性付与のオリゴ
マー(分子量4000)を46.67g、メチルエチル
ケトンに溶解させた80重量%のビスフェノールA型エ
ポキシ樹脂(油化シェル製、エピコート1001)1
5.0g、イミダゾール硬化剤(四国化成製、2E4M
Z−CN)1.6g、感光性モノマーである多価アクリ
ルモノマー(日本化薬製、R604)3g、同じく多価
アクリルモノマー(共栄社化学製、DPE6A)1.5
g、分散系消泡剤(サンノプコ社製、S−65)0.7
1gを混合し、さらにこれらの混合物に対し、光開始剤
としてのベンゾフェノン(関東化学製)を2g、光増感
剤としてのミヒラーケトン(関東化学製)を0.2g加
えて、粘度を25℃で2.0Pa・sに調整したソルダ
ーレジスト組成物を得る。なお、粘度測定は、B型粘度
計(東京計器、DVL−B型)で60rpmの場合はロ
ーターNo.4、6rpmの場合はローターNo.3に
よった。
On the other hand, 46.67 g of a photosensitizing oligomer (molecular weight 4000) obtained by acrylizing 50% of an epoxy group of a 60% by weight cresol novolak type epoxy resin (manufactured by Nippon Kayaku) dissolved in DMDG was added to methyl ethyl ketone. Dissolved 80% by weight bisphenol A type epoxy resin (manufactured by Yuka Shell, Epicoat 1001) 1
5.0 g, imidazole curing agent (2E4M manufactured by Shikoku Chemicals)
1.6 g of Z-CN), 3 g of a polyvalent acrylic monomer (R604, manufactured by Nippon Kayaku) as a photosensitive monomer, and 1.5 g of a polyvalent acrylic monomer (DPE6A, manufactured by Kyoeisha Chemical)
g, dispersed antifoaming agent (S-65, manufactured by San Nopco) 0.7
1 g, and 2 g of benzophenone (manufactured by Kanto Kagaku) as a photoinitiator and 0.2 g of Michler's ketone (manufactured by Kanto Kagaku) as a photosensitizer were added to the mixture. A solder resist composition adjusted to 2.0 Pa · s is obtained. The viscosity was measured using a B-type viscometer (Tokyo Keiki, DVL-B type) at 60 rpm with a rotor No. In the case of 4, 6 rpm, the rotor No. According to 3.

【0038】図6(S)に示す配線板20の両面に、上
記ソルダーレジスト組成物を20μmの厚さで塗布す
る。次いで、70℃で20分間、70℃で30分間の乾
燥処理を行った後、円パターン(マスクパターン)が描
画された厚さ5mmのフォトマスクフィルムを密着させ
て載置し、1000mJ/cm2 の紫外線で露光し、D
MTG現像処理する。そしてさらに、80℃で1時間、
100℃で1時間、120℃で1時間、150℃で3時
間の条件で加熱処理し、はんだパッド部分(バイアホー
ルとそのランド部分を含む)が開口した(開口径200
μm)ソルダーレジスト層(厚み20μm)49を形成
する。
The solder resist composition is applied to both sides of the wiring board 20 shown in FIG. 6 (S) with a thickness of 20 μm. Next, after performing a drying process at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, a 5 mm-thick photomask film on which a circular pattern (mask pattern) is drawn is placed in close contact with the film, and a 1000 mJ / cm 2 is applied. Exposure with UV light, D
Perform MTG development processing. And further at 80 ° C. for one hour,
Heat treatment was performed at 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to open a solder pad portion (including a via hole and its land portion) (opening diameter: 200).
μm) A solder resist layer (thickness: 20 μm) 49 is formed.

【0039】次に、ソルダーレジスト層49を形成した
基板を、塩化ニッケル30g/l、次亜リン酸ナトリウ
ム10g/l、クエン酸ナトリウム10g/lからなる
pH=5の無電解ニッケルめっき液に20分間浸漬し
て、開口部に厚さ5μmのニッケルめっき層50を形成
した。さらに、その基板を、シアン化金カリウム2g/
l、塩化アンモニウム75g/l、クエン酸ナトリウム
50g/l、次亜リン酸ナトリウム10g/lからなる
無電解金めっき液に93℃の条件で23秒間浸漬して、
ニッケルめっき層上に厚さ0.03μmの金めっき層5
2を形成した。
Next, the substrate on which the solder resist layer 49 was formed was treated with an electroless nickel plating solution having a pH of 5 consisting of 30 g / l of nickel chloride, 10 g / l of sodium hypophosphite, and 10 g / l of sodium citrate. For 5 minutes, a nickel plating layer 50 having a thickness of 5 μm was formed in the opening. Further, the substrate was treated with 2 g of potassium potassium cyanide /
l, 75 g / l ammonium chloride, 50 g / l sodium citrate, and 10 g / l sodium hypophosphite in an electroless gold plating solution at 93 ° C. for 23 seconds.
0.03 μm thick gold plating layer 5 on nickel plating layer
2 was formed.

【0040】そして、ソルダーレジスト層48の開口部
に、はんだペーストを印刷して200℃でリフローする
ことによりはんだバンプ54を形成する。以上の行程に
よりはんだバンプを有するプリント配線板を製造した
(図6(T)参照)。
Then, a solder paste is printed on the opening of the solder resist layer 48 and reflowed at 200 ° C. to form a solder bump 54. Through the above steps, a printed wiring board having solder bumps was manufactured (see FIG. 6 (T)).

【0041】上述した実施態様では、接着剤層34の下
層の絶縁剤層32のエポキシ樹脂粒子として平均粒径
0.5μmのものを用いたが、平均粒径として0.1〜
2.0μm程度であれば種々の粒径のものを用いること
ができる。但し、該絶縁剤層32の上層の接着剤層に
は、該絶縁剤層32側のエポキシ樹脂粒子よりも平均粒
径が大きいものを用いることが、バイアホール形成用開
口36の側壁36aを内側へ向けて屈曲させるために好
適である。なおここで、平均粒径が大きいとは、上述し
た実施態様のように、絶縁剤層32のエポキシ樹脂粒子
と同等の平均粒径0.5μmに、粒径の大きなもの(平
均粒径1.0μm)を混合して用いることをも意味す
る。
In the above-described embodiment, the epoxy resin particles having an average particle size of 0.5 μm are used for the insulating layer 32 under the adhesive layer 34, but the average particle size is 0.1 to 0.1 μm.
If it is about 2.0 μm, those having various particle sizes can be used. However, an adhesive layer having an average particle size larger than that of the epoxy resin particles on the side of the insulating layer 32 is preferably used as the upper adhesive layer of the insulating layer 32 so that the side wall 36a of the via hole forming opening 36 is located inside. It is suitable for bending toward. Here, the phrase “the average particle size is large” means that the average particle size is 0.5 μm, which is equivalent to the epoxy resin particles of the insulating agent layer 32, and the average particle size is large (the average particle size is 1.0 μm). 0 μm).

【0042】なお、上述した実施態様では、下層の絶縁
剤層32と上層の接着剤層34とに平均粒径の異なるエ
ポキシ樹脂粒子を用いたが、下層の絶縁剤層32のみに
エポキシ樹脂粒子を用いることにより、バイアホール形
成用開口36の側壁36aを内側へ向けて屈曲させるこ
とも可能である。更に、下層の絶縁剤層32と上層の接
着剤層34とに異なる粒子、即ち、下層の絶縁剤層32
側へ溶剤に溶融し易い粒子を混入することも可能であ
る。また更に、該下層の絶縁剤層32と上層の接着剤層
34と組成を変え、即ち、下層の絶縁剤層32の組成を
上層の接着剤層34の組成よりも溶剤に溶融し易いよう
に設定することで、バイアホール形成用開口36の側壁
36aを内側へ向けて屈曲させることも可能である。
In the above-described embodiment, epoxy resin particles having different average particle sizes are used for the lower insulating layer 32 and the upper adhesive layer 34. However, only the lower insulating layer 32 has epoxy resin particles. , The side wall 36a of the via hole forming opening 36 can be bent inward. Further, different particles are formed in the lower insulating layer 32 and the upper adhesive layer 34, that is, the lower insulating layer 32
It is also possible to mix particles which easily melt in the solvent on the side. Further, the composition of the lower insulating layer 32 and the composition of the upper adhesive layer 34 are changed, that is, the composition of the lower insulating layer 32 is more easily dissolved in the solvent than the composition of the upper adhesive layer 34. By setting, the side wall 36a of the via hole forming opening 36 can be bent inward.

【0043】[0043]

【発明の効果】以上のように、本発明によれば、バイア
ホールが、内側へ向けて屈曲させた開口部の側壁に沿っ
て形成してあるため、加熱−冷却のヒートサイクルを繰
り返しても剥離し難い。従って、バイアホールの接続信
頼性に優れた多層プリント配線板を提供することができ
る。
As described above, according to the present invention, since the via hole is formed along the side wall of the opening bent inward, even if the heating-cooling heat cycle is repeated. Difficult to peel off. Accordingly, it is possible to provide a multilayer printed wiring board having excellent via hole connection reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 1 is a manufacturing process diagram of a multilayer printed wiring board according to a first embodiment of the present invention.

【図2】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 2 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【図3】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 3 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【図4】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 4 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【図5】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 5 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【図6】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 6 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【図7】図7(G)は、図2(G)バイアホールの拡大
して示す説明図であり、図7(H)は、図2(H)バイ
アホールの拡大して示す説明図であり、図7(L)は、
図4(L)バイアホールの拡大して示す説明図である。
7 (G) is an explanatory diagram showing an enlarged view of the via hole in FIG. 2 (G), and FIG. 7 (H) is an enlarged explanatory diagram showing the via hole in FIG. 2 (H). Yes, FIG. 7 (L)
FIG. 4 (L) is an explanatory diagram showing an enlarged view of a via hole.

【図8】図8(A)、図8(B)、図8(C)、図8
(D)は、従来技術に係る多層プリント配線板の製造工
程図である。
8 (A), 8 (B), 8 (C), 8
(D) is a manufacturing process diagram of the multilayer printed wiring board according to the conventional technique.

【図9】本発明の第1実施形態に係る多層プリント配線
板の製造工程図である。
FIG. 9 is a manufacturing process diagram of the multilayer printed wiring board according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 基板 24a 内層銅パターン 32 絶縁剤層 34 接着剤層 36 バイアホール形成用開口 36a 側壁 38 層間樹脂絶縁層 40 無電解めっき膜 44 電解めっき膜 47 バイアホール 54 バンプ Reference Signs List 20 substrate 24a inner copper pattern 32 insulating layer 34 adhesive layer 36 opening for via hole formation 36a side wall 38 interlayer resin insulating layer 40 electroless plating film 44 electrolytic plating film 47 via hole 54 bump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 上層と下層の導体回路が層間絶縁層によ
り絶縁され、両者がバイアホールで接続されてなる多層
プリント配線板において、 前記バイアホールは、層間絶縁層に設けられた開口部の
側壁が内側へ向けて屈曲してなり、その側壁、底面が導
体膜で被覆されて形成されてなることを特徴とする多層
プリント配線板。
1. A multilayer printed wiring board in which upper and lower conductive circuits are insulated by an interlayer insulating layer and both are connected by a via hole, wherein the via hole is a side wall of an opening provided in the interlayer insulating layer. Are bent inward, and the side walls and the bottom surface thereof are covered with a conductive film to form a multilayer printed wiring board.
【請求項2】 上層と下層の導体回路が下層と上層から
成る層間絶縁層により絶縁され、両者がバイアホールで
接続されてなる多層プリント配線板において、 前記バイアホールは、下層の層間絶縁層に設けられた開
口部の側壁が内側へ向けて屈曲してなり、その側壁、底
面が導体膜で被覆されて形成されてなることを特徴とす
る多層プリント配線板。
2. A multilayer printed wiring board in which upper and lower conductive circuits are insulated by an interlayer insulating layer composed of a lower layer and an upper layer, and both are connected by via holes, wherein the via holes are formed in a lower interlayer insulating layer. A multilayer printed wiring board, wherein a side wall of an opening provided is bent inward, and a side wall and a bottom surface thereof are covered with a conductive film.
【請求項3】 上層と下層の導体回路が層間絶縁層によ
り絶縁され、両者がバイアホールで接続されてなる多層
プリント配線板において、 前記バイアホールは、層間絶縁層に設けられた開口部の
側壁が内側へ屈曲してなり、そのバイアホール内が導体
にて充填されてなることを特徴とする多層プリント配線
板。
3. A multilayer printed wiring board in which upper and lower conductive circuits are insulated by an interlayer insulating layer and both are connected by a via hole, wherein the via hole is a side wall of an opening provided in the interlayer insulating layer. Is bent inward, and the via hole is filled with a conductor.
【請求項4】 上層と下層の導体回路と下層と上層から
なる層間絶縁層によって絶縁され、両者がバイアホール
で接続されてなる多層プリント配線板において、 前記バイアホールは、下層の層間絶縁層に設けられた開
口部の側壁が内側へ屈曲してなり、そのバイアホール内
が導体にて充填されてなることを特徴とする多層プリン
ト配線板。
4. A multilayer printed wiring board insulated by upper and lower conductive circuits and an interlayer insulating layer composed of a lower layer and an upper layer, and both are connected by via holes, wherein the via holes are formed in the lower interlayer insulating layer. A multilayer printed wiring board, characterized in that the side wall of the provided opening is bent inward, and the via hole is filled with a conductor.
【請求項5】 前記下層の層間絶縁層に化成処理によ
り、溶解除去可能な粒子が含まれてなる請求頃2又は4
に記載の多層プリント配線板。
5. The method according to claim 2, wherein the lower interlayer insulating layer contains particles that can be dissolved and removed by a chemical conversion treatment.
2. The multilayer printed wiring board according to item 1.
JP21707597A 1997-07-28 1997-07-28 Multilayered printed wiring board Pending JPH1146066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21707597A JPH1146066A (en) 1997-07-28 1997-07-28 Multilayered printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21707597A JPH1146066A (en) 1997-07-28 1997-07-28 Multilayered printed wiring board

Publications (1)

Publication Number Publication Date
JPH1146066A true JPH1146066A (en) 1999-02-16

Family

ID=16698449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21707597A Pending JPH1146066A (en) 1997-07-28 1997-07-28 Multilayered printed wiring board

Country Status (1)

Country Link
JP (1) JPH1146066A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202980A (en) * 2005-01-20 2006-08-03 Hitachi Chem Co Ltd Multilayer interconnection board and its manufacturing method
JP2006253189A (en) * 2005-03-08 2006-09-21 Fujitsu Ltd Multilayer substrate and manufacturing method thereof
WO2009069791A1 (en) * 2007-11-28 2009-06-04 Kyocera Corporation Wiring substrate, mounting structure, and method for manufacturing the wiring substrate
JP2009182082A (en) * 2008-01-30 2009-08-13 Kyocera Corp Interconnection board and its manufacturing method, and mounting structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202980A (en) * 2005-01-20 2006-08-03 Hitachi Chem Co Ltd Multilayer interconnection board and its manufacturing method
JP2006253189A (en) * 2005-03-08 2006-09-21 Fujitsu Ltd Multilayer substrate and manufacturing method thereof
WO2009069791A1 (en) * 2007-11-28 2009-06-04 Kyocera Corporation Wiring substrate, mounting structure, and method for manufacturing the wiring substrate
JP5066192B2 (en) * 2007-11-28 2012-11-07 京セラ株式会社 Wiring board and mounting structure
US8431832B2 (en) 2007-11-28 2013-04-30 Kyocera Corporation Circuit board, mounting structure, and method for manufacturing circuit board
JP2009182082A (en) * 2008-01-30 2009-08-13 Kyocera Corp Interconnection board and its manufacturing method, and mounting structure

Similar Documents

Publication Publication Date Title
JP2003023252A (en) Multilayered printed wiring board
JP2003023253A (en) Multilayered printed wiring board
JP2000165046A (en) Multilayer built-up wiring board
JP2003023251A (en) Multilayered printed wiring board
JPH1098271A (en) Interlayer insulating agent and multilayered printed wiring board
JPH11307687A (en) Package board
JPH1117345A (en) Multilayer printed wiring board
JPH1146066A (en) Multilayered printed wiring board
JP4282127B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP4159136B2 (en) Multilayer printed wiring board
JP3126331B2 (en) Package substrate
JP4374683B2 (en) Method for manufacturing printed wiring board
JP3261314B2 (en) Method of manufacturing multilayer printed wiring board and multilayer printed wiring board
JPH10284835A (en) Manufacture of printed wiring board
JP2000133941A (en) Multilayer build-up wiring board
JP3126330B2 (en) Package substrate
JP2000294929A (en) Manufacture of multilayer printed wiring board and the multilayer printed wiring board
JP4557334B2 (en) Insulating layer forming resin composition, method for producing printed wiring board using the same, and printed wiring board
JP2000101246A (en) Multilayer built-up wiring board and its manufacture
JPH11163529A (en) Multilayer printed board and its manufacture
JPH11307938A (en) Core board, its manufacturing method, and multi-layer printed circuit board
JP2000178754A (en) Formation of metallic film and production of printed circuit board
JPH11307933A (en) Manufacture of multi-layer printed circuit board
JPH11284339A (en) Manufacture of multi-layer printed circuit board
JP4215872B2 (en) Multilayer printed wiring board, object to be processed, and method for manufacturing multilayer printed wiring board