JPH11307687A - Package board - Google Patents

Package board

Info

Publication number
JPH11307687A
JPH11307687A JP12294398A JP12294398A JPH11307687A JP H11307687 A JPH11307687 A JP H11307687A JP 12294398 A JP12294398 A JP 12294398A JP 12294398 A JP12294398 A JP 12294398A JP H11307687 A JPH11307687 A JP H11307687A
Authority
JP
Japan
Prior art keywords
integrated circuit
chip
layer
substrate
circuit chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12294398A
Other languages
Japanese (ja)
Inventor
Yasuji Hiramatsu
靖二 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP12294398A priority Critical patent/JPH11307687A/en
Publication of JPH11307687A publication Critical patent/JPH11307687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • H01L2924/30111Impedance matching

Abstract

PROBLEM TO BE SOLVED: To lower the inductance of a wiring to allow a high current to be fed instantaneously to an integrated circuit chip by mounting a chip capacitor directly beneath the integrated circuit chip at the surface of a lower face, to shorten the distance of a wiring from the chip capacitor to the integrated circuit chip. SOLUTION: This package board 10 a power chip capacitor C and a chip resistance for terminating an integrated circuit 90 directly beneath the integrated circuit chip 90 on the surface of the lower face of the package board 10, and vias 60U are connected directly to through-holes 16 for shortening the wiring length, whereby the wiring length from the chip capacitor C to the integrated circuit chip 90 mounted on the package board 10 becomes short, the inductance of the wiring can be lowered, a heavy current can be fed instantaneously to the integrated circuit chip 90 from the chip capacitor, reflections at the wiring can be suppressed and the impedance matching becomes easy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、上面に集積回路
チップを載置し、下面が基板側に取り付けられるパッケ
ージ基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package substrate having an integrated circuit chip mounted on an upper surface and a lower surface attached to the substrate.

【0002】[0002]

【従来の技術】CPU等の集積回路チップを載置するパ
ッケージを構成するパッケージ基板には、コンデンサが
設けられることがある。即ち、高速化に伴い、CPUが
瞬間的に大きな電流を必要とするために、パッケージ基
板にコンデンサを設け、該コンデンサに電荷を蓄えてお
き、大電流を供給できるようにしている。
2. Description of the Related Art A capacitor is sometimes provided on a package substrate constituting a package on which an integrated circuit chip such as a CPU is mounted. That is, a capacitor is provided on a package substrate, and an electric charge is stored in the capacitor so that a large current can be supplied in order for the CPU to instantaneously require a large current with the increase in speed.

【0003】ここで、セラミックの多層線板において
は、図8(A)に示すように絶縁層250の両面に導体
層252、254を形成することで、コンデンサとして
いた。一方、樹脂基板を用いるパッケージ基板において
は、図8(B)に示すように、パッケージ基板の上面に
チップコンデンサCを載置していた。これは、該パッケ
ージ基板は、樹脂基板にて構成してあり、樹脂の誘電率
がセラミックと比較して低いため、樹脂基板の上面と下
面に導体層を設けることでパッケージ基板内部にコンデ
ンサを形成しても、高い容量を得ることができないため
である。
Here, in a ceramic multilayer wire plate, a capacitor is formed by forming conductor layers 252 and 254 on both surfaces of an insulating layer 250 as shown in FIG. On the other hand, in a package substrate using a resin substrate, as shown in FIG. 8B, a chip capacitor C is mounted on the upper surface of the package substrate. This is because the package substrate is made of a resin substrate, and the dielectric constant of the resin is lower than that of ceramic. Therefore, a capacitor is formed inside the package substrate by providing conductor layers on the upper and lower surfaces of the resin substrate. This is because a high capacity cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図8
(B)に示すようにパッケージ基板の上面にチップコン
デンサCを配設すると、該チップコンデンサCから集積
回路チップ90への距離が離れ、該集積回路チップ90
までの配線のインダクタンス分が大きくなるため、集積
回路チップ90へ瞬間的に供給し得る電流量を大きくす
ることが困難であった。
However, FIG.
When the chip capacitor C is disposed on the upper surface of the package substrate as shown in FIG. 3B, the distance from the chip capacitor C to the integrated circuit chip 90 increases, and the distance between the chip capacitor C and the integrated circuit chip 90 increases.
Therefore, it is difficult to increase the amount of current that can be supplied to the integrated circuit chip 90 instantaneously.

【0005】このため、本発明者は、特願平9年227
232号にて、パッケージ基板の内部にチップコンデン
サを配設する技術を提案した。この技術では、集積回路
チップ90からコンデンサまでの距離を短くできるもの
の、製造が困難であった。
[0005] For this reason, the present inventor has filed Japanese Patent Application No.
No. 232 proposed a technique for disposing a chip capacitor inside a package substrate. According to this technique, although the distance from the integrated circuit chip 90 to the capacitor can be shortened, manufacturing is difficult.

【0006】本発明は、上述した課題を解決するために
なされたものであり、その目的とするところは、コンデ
ンサから瞬間的に大電流を供給することができるパッケ
ージ基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a package substrate capable of instantaneously supplying a large current from a capacitor.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するため、上面に集積回路チップを載置し、
下面が基板側に取り付けられるパッケージ基板におい
て、下面側の表面であって、集積回路チップの直下に実
装部品を取り付けたことを技術的特徴とする。
According to a first aspect of the present invention, an integrated circuit chip is mounted on an upper surface to achieve the above object.
In the package substrate having the lower surface attached to the substrate side, a technical feature is that a mounting component is attached to a surface on the lower surface side, directly below the integrated circuit chip.

【0008】また、請求項2では、上面に集積回路チッ
プを載置し、下面が基板側に取り付けられるパッケージ
基板であって、層間樹脂絶縁層と導体層とが交互に積層
され、各導体層間がバイアホールにて接続されたビルド
アップ配線層が、コア基板の両面に形成されてなるパッ
ケージ基板において、前記コア基板に形成されたスルー
ホールには、充填剤が充填されるとともに該充填剤のス
ルーホールからの露出面を覆う導体層が形成されてな
り、その導体層にはバイアホールが接続され、前記パッ
ケージ基板の下面側の表面であって、集積回路チップの
直下に実装部品を取り付けたことを技術的特徴とする。
According to a second aspect of the present invention, there is provided a package substrate on which an integrated circuit chip is mounted on an upper surface and a lower surface is mounted on a substrate side, wherein interlayer resin insulating layers and conductive layers are alternately laminated. In a package substrate in which build-up wiring layers connected by via holes are formed on both surfaces of a core substrate, a through-hole formed in the core substrate is filled with a filler and A conductor layer is formed to cover the exposed surface from the through hole, and a via hole is connected to the conductor layer, and a mounting component is mounted on the lower surface of the package substrate and directly below the integrated circuit chip. This is a technical feature.

【0009】また、請求項3では、請求項1又は2にお
いて、前記実装部品が、誘電材料としてセラミックを用
いるチップコンデンサであることを技術的特徴とする。
A third aspect of the present invention is characterized in that, in the first or second aspect, the mounted component is a chip capacitor using ceramic as a dielectric material.

【0010】請求項1では、下面側の表面であって集積
回路チップの直下に実装部品(チップコンデンサ)を実
装してあるので、該実装部品から集積回路チップまでの
配線の距離が短くなり、該配線のインダクタンス分を低
下させれるため、該集積回路チップへ瞬時に大電流を供
給することができる。
According to the first aspect of the present invention, since the mounting component (chip capacitor) is mounted on the lower surface side and immediately below the integrated circuit chip, the distance of the wiring from the mounting component to the integrated circuit chip becomes shorter. Since the inductance of the wiring can be reduced, a large current can be instantaneously supplied to the integrated circuit chip.

【0011】請求項2では、スルーホール直上に設けた
導体層を内層パッドとして機能せしめることで、当該バ
イアホールへバイアホールを直接接続し、スルーホール
とバイアホールとの配線距離を短くする。そして、集積
回路チップの直下に実装部品(チップコンデンサ)を実
装することで、該実装部品から集積回路チップまでの配
線の距離を短くし、該配線のインダクタンス分を低下さ
せ、該集積回路チップへ瞬時に大電流を供給することを
可能にする。
According to the second aspect, the via hole is directly connected to the via hole by making the conductor layer provided immediately above the through hole function as an inner layer pad, and the wiring distance between the through hole and the via hole is shortened. Then, by mounting a mounting component (chip capacitor) directly below the integrated circuit chip, the distance of the wiring from the mounting component to the integrated circuit chip is shortened, the inductance of the wiring is reduced, and the integrated circuit chip is mounted. It is possible to supply a large current instantaneously.

【0012】請求項3では、チップコンデンサの誘電材
料として高誘電率のセラミックを用いるため、高い容量
を得ることができる。
According to the third aspect, since a high dielectric constant ceramic is used as the dielectric material of the chip capacitor, a high capacitance can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の1実施形態に係る
パッケージ基板について図を参照して説明する。先ず、
パッケージ基板10の構成について、図6及び図7を参
照して説明する。図6は、集積回路チップ90搭載前の
パッケージ基板10の断面を示し、図7は、集積回路チ
ップ90を搭載した状態のパッケージ基板10の断面を
示している。図7に示すように、パッケージ基板10の
上面側には、集積回路チップ90が搭載され、下面側
は、ドータボード94へ接続されている。該パッケージ
基板の下面側の表面であって集積回路チップ90の直下
に電源用チップコンデンサC、及び、集積回路チップ9
0の終端用のチップ抵抗(図示せず)が実装されてい
る。該チップコンデンサCとしては、セラミックから成
る高容量のものが選択されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a package substrate according to an embodiment of the present invention will be described with reference to the drawings. First,
The configuration of the package substrate 10 will be described with reference to FIGS. FIG. 6 shows a cross section of the package substrate 10 before the integrated circuit chip 90 is mounted, and FIG. 7 shows a cross section of the package substrate 10 on which the integrated circuit chip 90 is mounted. As shown in FIG. 7, an integrated circuit chip 90 is mounted on the upper surface side of the package substrate 10, and the lower surface side is connected to the daughter board 94. A power supply chip capacitor C and an integrated circuit chip 9 are provided on the lower surface of the package substrate and directly below the integrated circuit chip 90.
A chip resistor (not shown) for termination of 0 is mounted. As the chip capacitor C, a high-capacity ceramic capacitor is selected.

【0014】図6を参照してパッケージ基板の構成につ
いて詳細に説明する。該パッケージ基板10では、多層
コア基板30の表面及び裏面にビルドアップ配線層80
A、80Bが形成されている。該ビルトアップ層80A
は、バイアホール60U及び導体回路58の形成された
層間樹脂絶縁層50と、バイアホール160U及び導体
回路158の形成された層間樹脂絶縁層150とからな
る。また、ビルドアップ配線層80Bは、バイアホール
60D及び導体回路58の形成された層間樹脂絶縁層5
0と、バイアホール160D及び導体回路158の形成
された層間樹脂絶縁層150とからなる。
The structure of the package substrate will be described in detail with reference to FIG. In the package substrate 10, the build-up wiring layers 80 are formed on the front and back surfaces of the multilayer core substrate 30.
A and 80B are formed. The built-up layer 80A
Is composed of an interlayer resin insulation layer 50 having via holes 60U and conductor circuits 58 formed therein, and an interlayer resin insulation layer 150 having via holes 160U and conductor circuits 158 formed therein. The build-up wiring layer 80B is formed of the interlayer resin insulation layer 5 having the via hole 60D and the conductor circuit 58 formed thereon.
0 and the interlayer resin insulating layer 150 in which the via hole 160D and the conductor circuit 158 are formed.

【0015】上面側には、集積回路チップ90のランド
92(図7参照)に接続するための半田バンプ76Uが
配設されている。該半田バンプ76Uは、バイアホール
160U及びバイアホール60Uを介してスルーホール
16へ接続されている。一方、下面側には、ドータボー
ド(サブボード)94のランド96(図7参照)に接続
するための半田バンプ76Dが配設されている。該半田
バンプ76Dは、バイアホール160D及びバイアホー
ル60Dを介してスルーホール16へ接続されている。
また、チップコンデンサCは、ドータボード94からの
電源ライン(図示せず)に接続され、集積回路チップ9
0にバイアホール160D、60D、スルーホール1
6、バイアホール60U、160Uを介してして電流を
供給するように構成されている。
On the upper surface side, solder bumps 76U for connection to lands 92 (see FIG. 7) of the integrated circuit chip 90 are provided. The solder bump 76U is connected to the through hole 16 via the via hole 160U and the via hole 60U. On the other hand, a solder bump 76D for connection to a land 96 (see FIG. 7) of the daughter board (sub-board) 94 is provided on the lower surface side. The solder bump 76D is connected to the through hole 16 via the via hole 160D and the via hole 60D.
The chip capacitor C is connected to a power supply line (not shown) from the daughter board 94, and
0 for via holes 160D, 60D, through hole 1
6. It is configured to supply current through via holes 60U and 160U.

【0016】該スルーホール16には充填剤22が充填
され、該充填剤22のスルーホール16からの露出面を
覆うように導体層26aが形成されている。該導体層2
6aは、円形に形成され、スルーホール16内の充填剤
22の上側及び下側に形成される。上層側の該導体層2
6aには、上記バイアホール60Uが直接接続され、下
層側の導体層26aには、上記バイアホール60Dが直
接接続されている。このようにバイアホールへバイアホ
ールを直接接続することで、従来技術のようにスルーホ
ールのランドにパッドを付加し、該パッドにバイアホー
ルを接続するのと比較して、スルーホール16とバイア
ホール60U、60Dとの配線長を短くしている。
The through hole 16 is filled with a filler 22, and a conductor layer 26a is formed so as to cover the exposed surface of the filler 22 from the through hole 16. The conductor layer 2
6 a is formed in a circular shape, and is formed above and below the filler 22 in the through hole 16. Upper conductor layer 2
The via hole 60U is directly connected to 6a, and the via hole 60D is directly connected to the lower conductor layer 26a. By directly connecting the via hole to the via hole, a pad is added to the land of the through hole and the via hole is connected to the pad as in the prior art. The wiring lengths to 60U and 60D are shortened.

【0017】この第1実施形態のパッケージ基板10
は、パッケージ基板の下面側の表面であって集積回路チ
ップ90の直下に電源用チップコンデンサC、及び、集
積回路チップ90の終端用のチップ抵抗(図示せず)が
実装されている。また、スルーホール16へバイアホー
ル60U、60Dを直接接続することで、配線長を短く
している。このため、チップコンデンサCから該パッケ
ージ基板に搭載される集積回路チップ90までの配線長
が短くなり、該配線のインダクタンス分を低下させれる
ので、該チップコンデンサCから集積回路チップ90へ
瞬時的に大電流を供給することができる。同様に図示し
ないチップ抵抗(終端抵抗)から集積回路チップ90ま
での距離が短くなるので、配線上での反射を抑えること
ができ、インピーダンス整合し易くなる。
The package substrate 10 of the first embodiment
A power supply chip capacitor C and a chip resistor (not shown) for terminating the integrated circuit chip 90 are mounted on the lower surface side of the package substrate and directly below the integrated circuit chip 90. Further, by directly connecting the via holes 60U and 60D to the through hole 16, the wiring length is shortened. As a result, the wiring length from the chip capacitor C to the integrated circuit chip 90 mounted on the package substrate is reduced, and the inductance of the wiring is reduced. A large current can be supplied. Similarly, since the distance from a chip resistor (termination resistor) (not shown) to the integrated circuit chip 90 is shortened, reflection on the wiring can be suppressed, and impedance matching can be easily performed.

【0018】引き続き、図6に示すパッケージ基板を製
造する方法について一例を挙げて具体的に説明する。な
お、以下に述べる方法は、セミアディティブ法によるパ
ッケージ基板の製造方法に関するものであるが、本発明
におけるパッケージ基板の製造方法では、フルアディテ
ィブ法やマルチラミネーション法、ピンラミネーション
法を採用することができる。 (1)厚さ0.5mmのガラスエポキシ樹脂またはBT
(ビスマレイミドトリアジン)樹脂からなるコア基板3
0の両面に18μmの銅箔12がラミネートされている
銅張積層板30Aを出発材料とする(図1(A)参
照)。この両面にエッチングレジストを設け、硫酸−過
酸化水素水溶液でエッチング処理し、導体回路14を有
するコア基板30を得た(図1(B))。
Subsequently, a method for manufacturing the package substrate shown in FIG. 6 will be specifically described by way of an example. The method described below relates to a method for manufacturing a package substrate by a semi-additive method. However, in the method for manufacturing a package substrate according to the present invention, a full additive method, a multi-lamination method, and a pin lamination method can be adopted. . (1) 0.5mm thick glass epoxy resin or BT
Core substrate 3 made of (bismaleimide triazine) resin
A copper-clad laminate 30A in which 18 μm copper foils 12 are laminated on both sides of the substrate is used as a starting material (see FIG. 1A). An etching resist was provided on both surfaces thereof, and etching treatment was performed with a sulfuric acid-hydrogen peroxide aqueous solution to obtain a core substrate 30 having the conductor circuit 14 (FIG. 1B).

【0019】(2)次に、コア基板30にピッチ間隔6
00μmで直径300μmの貫通孔16をドリルで削孔
し(図1(C)参照)、次いで、パラジウム−スズコロ
イドを付着させ、下記組成で無電解めっきを施して、基
板30の全面に2μmの無電解めっき膜18を形成した
(図1(D)参照)。 〔無電解めっき水溶液〕 EDTA 150 g/l 硫酸銅 20 g/l HCHO 30 ml/l NaOH 40 g/l α、α’−ビピリジル 80 mg/l PEG 0.1g/l 〔無電解めっき条件〕 70℃の液温度で30分
(2) Next, a pitch interval of 6
A through hole 16 having a diameter of 300 μm and a diameter of 300 μm is drilled with a drill (see FIG. 1C). Then, a palladium-tin colloid is adhered, and electroless plating is performed with the following composition. An electrolytic plating film 18 was formed (see FIG. 1D). [Electroless plating aqueous solution] EDTA 150 g / l Copper sulfate 20 g / l HCHO 30 ml / l NaOH 40 g / l α, α'-bipyridyl 80 mg / l PEG 0.1 g / l [Electroless plating conditions] 70 30 minutes at liquid temperature of ℃

【0020】(3)前記(2)で無電解銅めっき膜18
からなる導体(スルーホール16を含む)を形成した基
板30を、水洗いし、乾燥した後、NaOH(10g/
l)、NaClO2 (40g/l)、Na3 PO4 (6
g/l)を酸化浴(黒化浴)、NaOH(10g/
l)、NaBH4 (6g/l)を還元浴とする酸化還元
処理に供し、そのスルーホール16を含む導体18の全
表面に粗化層20を設けた(図1(E)参照)。
(3) In the above (2), the electroless copper plating film 18
The substrate 30 on which the conductor (including the through hole 16) formed of is formed is washed with water and dried, and then NaOH (10 g /
l), NaClO 2 (40 g / l), Na 3 PO 4 (6
g / l) in an oxidation bath (blackening bath), NaOH (10 g / l).
1) The substrate was subjected to an oxidation-reduction treatment using NaBH 4 (6 g / l) as a reducing bath, and a roughened layer 20 was provided on the entire surface of the conductor 18 including the through hole 16 (see FIG. 1E).

【0021】(4)次に、平均粒径10μmの銅粒子を
含む充填剤22(タツタ電線製の非導電性穴埋め銅ペー
スト、商品名:DDペースト)を、スルーホール16へ
スクリーン印刷によって充填し、乾燥、硬化させた(図
2(F))。そして、導体18上面の粗化層20および
スルーホール16からはみ出した充填剤22を、#60
0のベルト研磨紙(三共理化学製)を用いたベルトサン
ダー研磨により除去し、さらにこのベルトサンダー研磨
による傷を取り除くためのバフ研磨を行い、基板30の
表面を平坦化した(図2(G)参照)。このようにし
て、スルーホール16の内壁面と樹脂充填剤22とが粗
化層20を介して強固に密着した基板30を得る。
(4) Next, a filler 22 containing copper particles having an average particle diameter of 10 μm (non-conductive filled copper paste made by Tatsuta Electric Wire, trade name: DD paste) is filled into the through-hole 16 by screen printing. , Dried and cured (FIG. 2 (F)). Then, the filler 22 protruding from the roughened layer 20 and the through hole 16 on the upper surface of the conductor 18 is removed by # 60.
The surface of the substrate 30 was flattened by removing it by belt sanding using a belt sanding paper (manufactured by Sankyo Rikagaku Co., Ltd.) and further removing the scratches caused by the belt sanding (FIG. 2 (G)). reference). Thus, the substrate 30 in which the inner wall surface of the through hole 16 and the resin filler 22 are firmly adhered to each other via the roughened layer 20 is obtained.

【0022】(5)前記(4)で平坦化した基板30表
面に、パラジウム触媒(アトテック製)を付与し、前記
(2)の条件に従って無電解銅めっきを施すことによ
り、厚さ0.6μmの無電解銅めっき膜23を形成した
(図2(H)参照)。
(5) A palladium catalyst (manufactured by Atotech) is applied to the surface of the substrate 30 flattened in the above (4), and electroless copper plating is performed according to the conditions in the above (2) to obtain a thickness of 0.6 μm. Was formed (see FIG. 2H).

【0023】(6)ついで、以下の条件で電解銅めっき
を施し、厚さ15μmの電解銅めっき膜24を形成し、
導体回路14となる部分の厚付け、およびスルーホール
16に充填された充填剤22を覆う導体層(円形のスル
ーホールランドとなる)26aとなる部分を形成した
(図2(I))。 〔電解めっき水溶液〕 硫酸 180 g/l 硫酸銅 80 g/l 添加剤(アトテックジャパン製、商品名:カパラシドGL) 1 ml/l 〔電解めっき条件〕 電流密度 1A/dm2 時間 30分 温度 室温
(6) Next, electrolytic copper plating is performed under the following conditions to form an electrolytic copper plating film 24 having a thickness of 15 μm.
A portion serving as the conductor circuit 14 was formed, and a portion serving as a conductor layer (a circular through-hole land) 26a covering the filler 22 filled in the through-hole 16 was formed (FIG. 2 (I)). [Electroplating aqueous solution] Sulfuric acid 180 g / l Copper sulfate 80 g / l Additive (manufactured by Atotech Japan, trade name: Capparaside GL) 1 ml / l [Electroplating conditions] Current density 1 A / dm 2 hours 30 minutes Temperature Room temperature

【0024】(7)導体回路14および導体層26aと
なる部分を形成した基板30の両面に、市販の感光性ド
ライフィルムを張り付け、マスクを載置して、100m
J/cm2 で露光、0.8%炭酸ナトリウムで現像処理
し、厚さ15μmのエッチングレジスト25を形成した
(図2(J)参照)。
(7) A commercially available photosensitive dry film is adhered to both surfaces of the substrate 30 on which the portions to be the conductor circuits 14 and the conductor layers 26a are formed, and a mask is placed on the substrate 30 for 100 m.
Exposure was performed at J / cm 2 and development processing was performed using 0.8% sodium carbonate to form an etching resist 25 having a thickness of 15 μm (see FIG. 2 (J)).

【0025】(8)そして、エッチングレジスト25を
形成してない部分のめっき膜23、24を、硫酸と過酸
化水素の混合液を用いるエッチングにて溶解除去し、さ
らに、エッチングレジスト8を5%KOHで剥離除去し
て、独立した導体回路14aおよび充填剤22を覆う導
体層26aを形成した(図3(K)参照)。
(8) Then, portions of the plating films 23 and 24 where the etching resist 25 is not formed are dissolved and removed by etching using a mixed solution of sulfuric acid and hydrogen peroxide. By stripping off with KOH, a conductor layer 26a covering the independent conductor circuit 14a and the filler 22 was formed (see FIG. 3 (K)).

【0026】(9)次に、導体回路14aおよび充填剤
22を覆う導体層26aの表面にCu−Ni−P合金か
らなる厚さ2.5μmの粗化層(凹凸層)27を形成
し、さらにこの粗化層27の表面に厚さ0.3μmのS
n層を形成した(図3(L)参照、但し、Sn層につい
ては図示しない)。その形成方法は以下のようである。
即ち、基板30を酸性脱脂してソフトエッチングし、次
いで、塩化パラジウムと有機酸からなる触媒溶液で処理
して、Pd触媒を付与し、この触媒を活性化した後、硫
酸銅8g/l、硫酸ニッケル0.6g/l、クエン酸1
5g/l、次亜リン酸ナトリウム29g/l、ホウ酸3
1g/l、界面活性剤0.1g/l、pH=9からなる
無電解めっき浴にてめっきを施し、導体回路14aおよ
び充填剤22を覆う導体層26aの表面にCu−Ni−
P合金の粗化層27を設けた。ついで、ホウフッ化スズ
0.1mol/l、チオ尿素1.0mol/l、温度5
0℃、pH=1.2の条件でCu−Sn置換反応させ、
粗化層10の表面に厚さ0.3μmのSn層を設けた
(Sn層については図示しない)。
(9) Next, on the surface of the conductor layer 26a covering the conductor circuit 14a and the filler 22, a roughened layer (irregular layer) 27 made of a Cu-Ni-P alloy and having a thickness of 2.5 μm is formed. Furthermore, a 0.3 μm thick S
An n layer was formed (see FIG. 3 (L), but the Sn layer was not shown). The formation method is as follows.
That is, the substrate 30 is acid-degreased and soft-etched, and then treated with a catalyst solution comprising palladium chloride and an organic acid to provide a Pd catalyst. After activating this catalyst, copper sulfate 8 g / l, sulfuric acid Nickel 0.6g / l, citric acid 1
5 g / l, sodium hypophosphite 29 g / l, boric acid 3
Plating is performed in an electroless plating bath consisting of 1 g / l, surfactant 0.1 g / l, and pH = 9, and the surface of the conductor layer 26a covering the conductor circuit 14a and the filler 22 is Cu-Ni-
A roughened layer 27 of a P alloy was provided. Then, tin borofluoride 0.1 mol / l, thiourea 1.0 mol / l, temperature 5
Cu-Sn substitution reaction under the condition of 0 ° C. and pH = 1.2,
An Sn layer having a thickness of 0.3 μm was provided on the surface of the roughened layer 10 (the Sn layer is not shown).

【0027】なお、工程(9)に代えて、導体回路14
aおよび充填剤22を覆う導体層26aの表面にいわゆ
る黒化−還元層を形成し、導体回路間にビスフェノール
F型エポキシ樹脂などの樹脂を充填し、表面研磨、さら
に(9)のめっきによりCu−Ni−P合金の粗化層を
形成してもよい。(図6に断面を示すパッケージ断面図
は、この工程を使用して製造している)
It should be noted that, instead of the step (9), the conductor circuit 14
A so-called blackening-reducing layer is formed on the surface of the conductor layer 26a covering the a and the filler 22, and a resin such as bisphenol F type epoxy resin is filled between the conductor circuits, the surface is polished, and the Cu is plated by (9). A roughened layer of a -Ni-P alloy may be formed. (The package cross-sectional view shown in FIG. 6 is manufactured using this process.)

【0028】(10)基板表面を平滑化するための樹脂
充填剤を調整する。ここでは、ビスフェノールF型エポ
キシモノマー(油化シェル製、分子量310、YL98
3U)100重量部、イミダゾール硬化剤(四国化成
製、2E4MZ−CN)6重量部を混合し、これらの混
合物に対し、表面にシランカップリング剤がコーティン
グされた平均粒径1.6μmのSiO2 球状粒子(アド
マテック製、CRS1101−CE、ここで、最大粒子
の大きさは後述する導体回路14aの厚み以下とする)
170重量部、消泡剤(サンノプコ製、ペレノールS
4)0.5重量部を混合し、3本ロールにて混練するこ
とにより、その混合物の粘度を23±1℃で45, 00
0〜49,000cpsに調整して、樹脂充填剤を得
る。この樹脂充填剤は無溶剤である。もし溶剤入りの樹
脂充填剤を用いると、後工程において層間剤を塗布して
加熱・乾燥させる際に、樹脂充填剤の層から溶剤が揮発
して、樹脂充填剤の層と層間材との間で剥離が発生する
からである。
(10) A resin filler for smoothing the substrate surface is adjusted. Here, bisphenol F type epoxy monomer (manufactured by Yuka Shell, molecular weight 310, YL98
3U) 100 parts by weight and 6 parts by weight of an imidazole curing agent (2E4MZ-CN, manufactured by Shikoku Chemicals Co., Ltd.) were mixed, and the mixture was mixed with SiO 2 having an average particle diameter of 1.6 μm, the surface of which was coated with a silane coupling agent. Spherical particles (manufactured by Admatech, CRS1101-CE, where the size of the largest particles is not more than the thickness of the conductor circuit 14a described later)
170 parts by weight, defoamer (manufactured by San Nopco, Perenol S
4) 0.5 parts by weight are mixed and kneaded with a three-roll mill, so that the viscosity of the mixture is 450,000 at 23 ± 1 ° C.
Adjust to 0 to 49,000 cps to obtain a resin filler. This resin filler is solventless. If a resin filler containing a solvent is used, the solvent is volatilized from the resin filler layer when the interlayer agent is applied, heated and dried in a later step, so that a gap between the resin filler layer and the interlayer material is generated. This causes peeling.

【0029】(11)上記(10)で得た樹脂充填剤2
8を、基板30の両面にロールコータを用いて塗布する
ことにより、上面の導体層26a間に充填し、70℃,
20分間で乾燥させ、下面についても同様にして樹脂充
填剤30を導体層26a間あるいは導体回路14a間に
充填し、70℃,20分間で乾燥させる(図3(M)参
照)。
(11) Resin filler 2 obtained in (10) above
8 is applied to both surfaces of the substrate 30 using a roll coater to fill the space between the conductor layers 26a on the upper surface.
After drying for 20 minutes, the lower surface is filled with the resin filler 30 between the conductor layers 26a or between the conductor circuits 14a in the same manner, and dried at 70 ° C. for 20 minutes (see FIG. 3 (M)).

【0030】(12)上記(11)の処理を終えた基板
30の片面を、♯600のベルト研磨紙(三共理化学
製)を用いたベルトサンダー研磨により、導体層26a
の表面や導体回路14aの表面に樹脂充填剤28が残ら
ないように研磨し、次いで、上記ベルトサンダー研磨に
よる傷を取り除くためのバフ研磨を行う(図3(N)参
照)。次いで、100℃で1時間、120℃で3時間、
150℃で1時間、180℃で7時間の加熱処理を行っ
て樹脂充填剤28を硬化させる。
(12) One surface of the substrate 30 that has been subjected to the treatment of (11) is subjected to belt sander polishing using # 600 belt polishing paper (manufactured by Sankyo Rikagaku) to form a conductor layer 26a.
Is polished so that the resin filler 28 does not remain on the surface of the conductor circuit 14a, and then buffing is performed to remove the scratches caused by the belt sander polishing (see FIG. 3 (N)). Next, at 100 ° C. for 1 hour, at 120 ° C. for 3 hours,
The heat treatment is performed at 150 ° C. for 1 hour and at 180 ° C. for 7 hours to cure the resin filler 28.

【0031】このようにして、導体層26a、導体回路
14aの表面の粗化層27を除去して基板両面を平滑化
することで、樹脂充填剤28と導体層26a、導体回路
14aの側面とが粗化層27を介して強固に密着させ
る。
In this way, by removing the roughened layer 27 on the surface of the conductor layer 26a and the conductor circuit 14a and smoothing both surfaces of the substrate, the resin filler 28 and the conductor layer 26a and the side surfaces of the conductor circuit 14a are removed. Firmly adhere through the roughened layer 27.

【0032】(13)上記(12)の処理で露出した導
体層26a、導体回路14a上面に、厚さ2.5μmの
Cu−Ni−P合金からなる粗化層(凹凸層)29を形
成し、さらに、その粗化層29の表面に厚さ0.3μm
のSn層を設ける(図3(O)参照、但し、Sn層につ
いては図示しない)。その形成方法は以下のようであ
る。即ち、基板30を酸性脱脂してソフトエッチング
し、次いで、塩化パラジウムと有機酸からなる触媒溶液
で処理して、Pd触媒を付与し、この触媒を活性化した
後、硫酸銅8g/l、硫酸ニッケル0.6g/l、クエ
ン酸15g/l、次亜リン酸ナトリウム29g/l、ホ
ウ酸31g/l、界面活性剤0.1g/l、pH=9か
らなる無電解めっき浴にてめっきを施し、銅導体回路4
およびスルーホール9のランド上面にCu−Ni−P合
金の粗化層29を形成する。ついで、ホウフッ化スズ
0.1mol/l、チオ尿素1.0mol/l、温度5
0℃、pH=1.2の条件でCu−Sn置換反応させ、
粗化層29の表面に厚さ0.3μmのSn層を設ける
(Sn層については図示しない)。
(13) A roughened layer (concavo-convex layer) 29 made of a Cu-Ni-P alloy having a thickness of 2.5 μm is formed on the upper surface of the conductor layer 26a and the conductor circuit 14a exposed by the process (12). Further, the surface of the roughened layer 29 has a thickness of 0.3 μm.
(See FIG. 3 (O); however, the Sn layer is not shown). The formation method is as follows. That is, the substrate 30 is acid-degreased and soft-etched, then treated with a catalyst solution comprising palladium chloride and an organic acid to provide a Pd catalyst, and after activating this catalyst, copper sulfate 8 g / l, sulfuric acid Plating is carried out in an electroless plating bath consisting of nickel 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, surfactant 0.1 g / l, pH = 9. Allocation, copper conductor circuit 4
Then, a roughened layer 29 of a Cu—Ni—P alloy is formed on the land upper surface of the through hole 9. Then, tin borofluoride 0.1 mol / l, thiourea 1.0 mol / l, temperature 5
Cu-Sn substitution reaction under the condition of 0 ° C. and pH = 1.2,
An Sn layer having a thickness of 0.3 μm is provided on the surface of the roughened layer 29 (the Sn layer is not shown).

【0033】(14)層間樹脂絶縁層を形成する無電解
めっき用接着剤A、Bを以下の方法で調製した。 A.上層の無電解めっき用接着剤の調製 .クレゾールノボラック型エポキシ樹脂(日本化薬
製、分子量2500)の25%アクリル化物を35重量
部(固形分80%)、感光性モノマー(東亜合成製、ア
ロニックスM315)3.15重量部、消泡剤(サンノ
プコ製、S−65)0.5重量部、NMPを3.6重量
部を撹拌混合した。 .ポリエーテルスルフォン(PES)12重量部、エ
ポキシ樹脂粒子(三洋化成製、ポリマーポール)の平均
粒径1.0μmのものを7.2重量部、平均粒径0.5
μmのものを3.09重量部、を混合した後、さらにN
MP30重量部を添加し、ビーズミルで撹拌混合した。 .イミダゾール硬化剤(四国化成製、2E4MZ−C
N)2重量部、光開始剤(チバガイギー製、イルガキュ
ア I−907)2重量部、光増感剤(日本化薬製、D
ETX−S)0.2重量部、NMP1.5重量部を撹拌
混合した。これらを混合して無電解めっき用接着剤組成
物Aを調製した。
(14) Adhesives A and B for electroless plating for forming an interlayer resin insulating layer were prepared by the following method. A. Preparation of adhesive for electroless plating of upper layer. 35 parts by weight (solid content: 80%) of a 25% acrylate of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight: 2500), 3.15 parts by weight of a photosensitive monomer (manufactured by Toagosei Co., Aronix M315), an antifoaming agent 0.5 part by weight (manufactured by San Nopco, S-65) and 3.6 parts by weight of NMP were stirred and mixed. . 12 parts by weight of polyether sulfone (PES), 7.2 parts by weight of an epoxy resin particle (manufactured by Sanyo Chemical Industries, Polymer Pole) having an average particle size of 1.0 μm, and an average particle size of 0.5 part
μm, 3.09 parts by weight, and then N
30 parts by weight of MP was added and mixed by stirring with a bead mill. . Imidazole curing agent (2E4MZ-C manufactured by Shikoku Chemicals)
N) 2 parts by weight, a photoinitiator (Ciba Geigy, Irgacure I-907) 2 parts by weight, a photosensitizer (Nippon Kayaku, D
0.2 parts by weight of ETX-S) and 1.5 parts by weight of NMP were mixed with stirring. These were mixed to prepare an adhesive composition A for electroless plating.

【0034】B.下層の無電解めっき用接着剤の調製 .クレゾールノボラック型エポキシ樹脂(日本化薬
製、分子量2500)の25%アクリル化物を35重量
部(固形分80%)、感光性モノマー(東亜合成製、ア
ロニックスM315)4重量部、消泡剤(サンノプコ
製、S−65)0.5重量部、NMPを3.6重量部を
撹拌混合した。 .ポリエーテルスルフォン(PES)12重量部、エ
ポキシ樹脂粒子(三洋化成製、ポリマーポール)の平均
粒径0.5μmのものを14.49重量部、を混合した
後、さらにNMP20重量部を添加し、ビーズミルで撹
拌混合した。
B. Preparation of adhesive for electroless plating of lower layer. 35 parts by weight (solid content: 80%) of a 25% acrylate of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight: 2500), 4 parts by weight of a photosensitive monomer (Aronix M315, manufactured by Toa Gosei), an antifoaming agent (San Nopco) , S-65), 0.5 parts by weight and 3.6 parts by weight of NMP were stirred and mixed. . After mixing 12 parts by weight of polyether sulfone (PES) and 14.49 parts by weight of an epoxy resin particle (manufactured by Sanyo Chemical Industries, Polymer Pole) having an average particle size of 0.5 μm, 20 parts by weight of NMP were further added, The mixture was stirred and mixed with a bead mill.

【0035】.イミダゾール硬化剤(四国化成製、2
E4MZ−CN)2重量部、光開始剤(チバガイギー
製、イルガキュア I−907)2重量部、光増感剤
(日本化薬製、DETX−S)0.2重量部、NMP
1.5重量部を撹拌混合した。これらを混合して下層の
無電解めっき用接着剤Bを調製した。
[0035] Imidazole curing agent (Shikoku Chemicals, 2
E4MZ-CN) 2 parts by weight, photoinitiator (Circa Geigy, Irgacure I-907) 2 parts by weight, photosensitizer (Nippon Kayaku, DETX-S) 0.2 parts by weight, NMP
1.5 parts by weight were stirred and mixed. These were mixed to prepare a lower layer adhesive B for electroless plating.

【0036】(15)基板の両面に、まず、前記(1
4)で調製したBの無電解めっき用接着剤(粘度1.5
Pa・s)44をロールコータを用いて塗布し、水平状
態で20分間放置してから、60℃で30分の乾燥を行
い、次いで、Aの無電解めっき用接着剤(粘度1.0P
a・s)46をロールコ一夕を用いて塗布し、水平状態
で20分間放置してから、60℃で30分の乾燥を行
い、厚さ40μmの接着剤層50を形成した(図4
(P)参照)。
(15) First, on both sides of the substrate,
The adhesive for electroless plating of B prepared in 4) (viscosity 1.5
Pa.s) 44 is applied using a roll coater, left in a horizontal state for 20 minutes, dried at 60 ° C. for 30 minutes, and then an adhesive for electroless plating A (viscosity 1.0 P
a.s) 46 was applied using a roll roller, left in a horizontal state for 20 minutes, and then dried at 60 ° C. for 30 minutes to form an adhesive layer 50 having a thickness of 40 μm (FIG. 4).
(P)).

【0037】(16)接着剤層50を形成した基板の両
面に、85μmφの黒円が印刷されたフォトマスクフィ
ルムを密着させ、超高圧水銀灯により500mJ/cm
2 で露光した。これをDMDG(ジエチレングリコール
ジメチルエーテル)溶液でスプレー現像することによ
り、接着剤層に85μmφのバイアホールとなる開口を
形成した。さらに、当該基板を超高圧水銀灯により30
00mJ/cm2 で露光し、100℃で1時間、その後
150℃で5時間の加熱処理をすることにより、フォト
マスクフィルムに相当する寸法精度に優れた開口(バイ
アホール形成用開口48)を有する厚さ35μmの層間
絶縁材層(接着剤層)50を形成した(図4(Q)参
照)。なお、バイアホールとなる開口には、スズめっき
層を部分的に露出させた。
(16) A photomask film on which a black circle of 85 μmφ is printed is brought into close contact with both surfaces of the substrate on which the adhesive layer 50 is formed, and 500 mJ / cm by an ultra-high pressure mercury lamp.
Exposure at 2 . This was spray-developed with a DMDG (diethylene glycol dimethyl ether) solution to form an opening serving as a 85 μmφ via hole in the adhesive layer. Further, the substrate is subjected to an ultra-high pressure mercury lamp for 30 minutes.
Exposure at 00 mJ / cm 2 and heat treatment at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours have openings with excellent dimensional accuracy equivalent to a photomask film (via hole forming openings 48). An interlayer insulating material layer (adhesive layer) 50 having a thickness of 35 μm was formed (see FIG. 4 (Q)). Note that the tin plating layer was partially exposed in the opening serving as the via hole.

【0038】(17)バイアホール形成用開口48を形
成した基板を、クロム酸に20分間浸漬し、接着剤層表
面に存在するエポキシ樹脂粒子を溶解除去して、当該接
着剤層50の表面をRmax=1〜5μm程度の深さで
粗化することで粗化面51を形成し、その後、中和溶液
(シプレイ社製)に浸漬してから水洗した(図4
(R))。
(17) The substrate on which the opening 48 for forming the via hole is formed is immersed in chromic acid for 20 minutes to dissolve and remove the epoxy resin particles present on the surface of the adhesive layer. Rmax is roughened to a depth of about 1 to 5 μm to form a roughened surface 51, which is then immersed in a neutralizing solution (manufactured by Shipley) and then washed with water (FIG. 4).
(R)).

【0039】(18)接着剤層表面の粗化(粗化深さ5
μm)を行った基板30に対し、パラジウム触媒(アト
テック製)を付与することにより、接着剤層50および
バイアホール用開口48の表面に触媒核を付与した。
(18) Roughening of the adhesive layer surface (roughening depth 5
By applying a palladium catalyst (manufactured by Atotech) to the substrate 30 subjected to (μm), catalyst nuclei were provided on the surfaces of the adhesive layer 50 and the via hole openings 48.

【0040】(19)前記(2)と同じ組成の無電解銅
めっき浴中に基板を浸漬して、粗化面51全体に厚さ
0.6μmの無電解銅めっき膜52を形成した(図4
(S)参照)。このとき、無電解銅めっき膜52は薄い
ために、この無電解めっき膜52の表面には、接着剤層
50の粗化面51に追従した凹凸が観察された。
(19) The substrate was immersed in an electroless copper plating bath having the same composition as in the above (2) to form an electroless copper plating film 52 having a thickness of 0.6 μm on the entire roughened surface 51 (FIG. 4
(S)). At this time, since the electroless copper plating film 52 was thin, irregularities following the roughened surface 51 of the adhesive layer 50 were observed on the surface of the electroless plating film 52.

【0041】(20)市販の感光性ドライフィルムを無
電解銅めっき膜52に張り付け、マスクを載置して、1
00mJ/cm2 で露光、0.8%炭酸ナトリウムで現
像処理し、厚さ15μmのめっきレジスト54を設けた
(図4(T)参照)。
(20) A commercially available photosensitive dry film is adhered to the electroless copper plating film 52, and a mask is placed thereon.
Exposure was performed at 00 mJ / cm 2 , development processing was performed with 0.8% sodium carbonate, and a plating resist 54 having a thickness of 15 μm was provided (see FIG. 4 (T)).

【0042】(21)次いで、前記(6)の条件に従っ
て電解銅めっきを施し、厚さ15μmの電解銅めっき膜
56を形成した(図5(U)参照)。
(21) Next, electrolytic copper plating was performed according to the above condition (6) to form an electrolytic copper plating film 56 having a thickness of 15 μm (see FIG. 5 (U)).

【0043】(22)めっきレジスト56を5%KOH
で剥離除去した後、そのめっきレジスト56下の無電解
めっき膜52を硫酸と過酸化水素の混合液でエッチング
処理して溶解除去し、無電解銅めっき膜52と電解銅め
っき膜56からなる厚さ16μmの導体回路58及びバ
イアホール60U、60Dを形成する(図5(V))。
引き続き、該導体回路58及びバイアホール60U、6
0Dの表面に粗化層62を形成して、片面3層のパッケ
ージ基板とした(図5(W)参照)。なお、接着剤層5
0の粗化面に残っているPdをクロム酸(800g/
l)に1〜10分浸漬して除去した。
(22) The plating resist 56 is made of 5% KOH
Then, the electroless plating film 52 under the plating resist 56 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide to form a film comprising the electroless copper plating film 52 and the electrolytic copper plating film 56. A conductor circuit 58 and via holes 60U and 60D each having a thickness of 16 μm are formed (FIG. 5 (V)).
Subsequently, the conductor circuit 58 and the via holes 60U, 6
A roughened layer 62 was formed on the surface of 0D to obtain a three-layer package substrate on one side (see FIG. 5 (W)). The adhesive layer 5
Pd remaining on the roughened surface of chromic acid (800 g /
1) dipped for 1 to 10 minutes to remove.

【0044】(23)(15)〜(22)の工程を繰り
返して、バイアホール160Uを有する層間樹脂絶縁層
150及びバイアホール160Dを有する層間樹脂絶縁
層150をさらに1層積層した(図5(X))。
(23) The steps (15) to (22) are repeated to further laminate one interlayer resin insulating layer 150 having via holes 160U and one interlayer resin insulating layer 150 having via holes 160D (FIG. 5 ( X)).

【0045】(24)上記(23)で得た配線板の両面
に、市販のソルダーレジスト組成物を20μmの厚さで
塗布した。次いで、70℃で20分間、70℃で30分
間の乾燥処理を行った後、1000mJ/cm2 の紫外
線で露光し、DMTG現像処理した。そしてさらに、8
0℃で1時間、100℃で1時間、120℃で1時間、
150℃で3時間の条件で加熱処理し、パッド部分71
が開口した(開口径200μm)ソルダーレジスト層
(厚み20μm)70を形成した(図6参照)。
(24) A commercially available solder resist composition having a thickness of 20 μm was applied to both surfaces of the wiring board obtained in the above (23). Next, after drying at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, the substrate was exposed to ultraviolet light of 1000 mJ / cm 2 and subjected to DMTG development. And then 8
1 hour at 0 ° C, 1 hour at 100 ° C, 1 hour at 120 ° C,
The heat treatment was performed at 150 ° C. for 3 hours, and the pad portion 71 was heated.
A solder resist layer (opening diameter: 200 μm) 70 (opening diameter: 200 μm) was formed (see FIG. 6).

【0046】(25)次に、ソルダーレジスト層70を
形成した基板30を、塩化ニッケル30g/l、次亜リ
ン酸ナトリウム10g/l、クエン酸ナトリウム10g
/lからなるpH=5の無電解ニッケルめっき液に20
分間浸漬して、開口部71に厚さ5μmのニッケルめっ
き層72を形成した。さらに、その基板30を、シアン
化金カリウム2g/l、塩化アンモニウム75g/l、
クエン酸ナトリウム50g/l、次亜リン酸ナトリウム
10g/lからなる無電解金めっき液に93℃の条件で
23秒間浸漬して、ニッケルめっき層72上に厚さ0.
03μmの金めっき層74を形成した。
(25) Next, the substrate 30 on which the solder resist layer 70 was formed was replaced with nickel chloride 30 g / l, sodium hypophosphite 10 g / l, and sodium citrate 10 g.
/ L of electroless nickel plating solution of pH = 5
By immersing for 5 minutes, a nickel plating layer 72 having a thickness of 5 μm was formed in the opening 71. Further, the substrate 30 was treated with 2 g / l of potassium gold cyanide, 75 g / l of ammonium chloride,
It was immersed in an electroless gold plating solution consisting of 50 g / l of sodium citrate and 10 g / l of sodium hypophosphite at 93 ° C. for 23 seconds to form a film having a thickness of 0.1 g on the nickel plating layer 72.
A gold plating layer 74 of 03 μm was formed.

【0047】(26)そして、ソルダーレジスト層70
の開口部71、チップコンデンサC及びチップ抵抗(図
示せず)を実装する導体回路158Dの部位に、はんだ
ペーストを印刷する。ここで、はんだとしては、9:1
はんだが望ましい。この後、該導体回路158Dにチッ
プコンデンサC(村田製作所製、GRM36 長さ1m
m、幅0.5mm、厚さ0.5mm)及びチップ抵抗を載置
する。そして、200℃でリフローすることにより半田
バンプ76U、76Dを形成すると共に、該導体回路1
58DにチップコンデンサC及びチップ抵抗を取り付け
る。その後、基板20を洗浄してチップコンデンサ下の
はんだ64及び半田バンプ76U、76Dから溶け出し
たフラックス等を除去する。このように、チップコンデ
ンサCを基板内に埋め込むのではなく、表面に実装する
ため容易に取り付けることができる。
(26) The solder resist layer 70
The solder paste is printed on the portion of the conductor circuit 158D where the opening 71, the chip capacitor C and the chip resistor (not shown) are mounted. Here, 9: 1 is used as the solder.
Solder is preferred. Thereafter, a chip capacitor C (manufactured by Murata Manufacturing, GRM36, 1 m long) is connected to the conductor circuit 158D.
m, width 0.5 mm, thickness 0.5 mm) and a chip resistor. Then, the solder bumps 76U and 76D are formed by reflow at 200 ° C.
Attach a chip capacitor C and a chip resistor to 58D. Thereafter, the substrate 20 is washed to remove the flux and the like melted from the solder 64 and the solder bumps 76U and 76D below the chip capacitor. As described above, the chip capacitor C is not embedded in the substrate but mounted on the surface, so that it can be easily attached.

【0048】その後、図7に示すように該パッケージ基
板10に集積回路チップ90を取り付けた後、ドータボ
ード94に該パッケージ基板10を組み付ける。
Thereafter, as shown in FIG. 7, after the integrated circuit chip 90 is mounted on the package substrate 10, the package substrate 10 is mounted on the daughter board 94.

【0049】[0049]

【発明の効果】以上のように、請求項1では、下面側の
表面であって集積回路チップの直下にチップコンデンサ
を実装してあるので、該チップコンデンサから集積回路
チップまでの配線の距離が短くなり、該配線のインダク
タンス分を低下させれるため、該集積回路チップに瞬時
に大電流を供給することができる。
As described above, according to the first aspect, the chip capacitor is mounted on the lower surface and directly below the integrated circuit chip. Therefore, the wiring distance from the chip capacitor to the integrated circuit chip is reduced. Since the length is shortened and the inductance of the wiring is reduced, a large current can be instantaneously supplied to the integrated circuit chip.

【0050】請求項2では、スルーホールへバイアホー
ルを直接接続することで、スルーホールとバイアホール
との配線距離が短くなる。そして、集積回路チップの直
下に実装部品(チップコンデンサ)を実装してあるの
で、該チップコンデンサから集積回路チップまでの配線
の距離が短くなり、該配線のインダクタンス分を低下さ
せれるため、該集積回路チップへ瞬時に大電流を供給す
ることができる。
According to the second aspect, by connecting the via hole directly to the through hole, the wiring distance between the through hole and the via hole is reduced. Since the mounting component (chip capacitor) is mounted directly below the integrated circuit chip, the distance of the wiring from the chip capacitor to the integrated circuit chip is shortened, and the inductance of the wiring is reduced. A large current can be instantaneously supplied to the circuit chip.

【0051】請求項3では、チップコンデンサの誘電材
料として高誘電率のセラミックを用いるため、高い容量
を得ることができる。
According to the third aspect, since a high dielectric constant ceramic is used as the dielectric material of the chip capacitor, a high capacitance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係るパッケージ基板の製造
工程を示す図である。
FIG. 1 is a diagram illustrating a manufacturing process of a package substrate according to an embodiment of the present invention.

【図2】本発明の実施形態に係るパッケージ基板の製造
工程を示す図である。
FIG. 2 is a diagram illustrating a manufacturing process of the package substrate according to the embodiment of the present invention.

【図3】本発明の実施形態に係るパッケージ基板の製造
工程を示す図である。
FIG. 3 is a diagram illustrating a manufacturing process of the package substrate according to the embodiment of the present invention.

【図4】本発明の実施形態に係るパッケージ基板の製造
工程を示す図である。
FIG. 4 is a diagram illustrating a manufacturing process of the package substrate according to the embodiment of the present invention.

【図5】本発明の実施形態に係るパッケージ基板の製造
工程を示す図である。
FIG. 5 is a diagram showing a manufacturing process of the package substrate according to the embodiment of the present invention.

【図6】本発明の実施形態に係るパッケージ基板を示す
断面図である。
FIG. 6 is a sectional view showing a package substrate according to the embodiment of the present invention.

【図7】本発明の実施形態に係るパッケージ基板に集積
回路チップを搭載した状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state where an integrated circuit chip is mounted on the package substrate according to the embodiment of the present invention.

【図8】図8(A)及び図8(B)は、従来技術に係る
パッケージ基板の断面図である。
FIGS. 8A and 8B are cross-sectional views of a package substrate according to the related art.

【符号の説明】 10 パッケージ基板 16 スルーホール 22 充填剤 26a 導体層 30 コア基板 50 層間樹脂絶縁層 58 導体回路(導体層) 60U、60D バイアホール 80A、80B ビルドアップ配線層 90 集積回路チップ 94 ドータボード(基板) 150 層間樹脂絶縁層 160U、160D バイアホール C チップコンデンサ(実装部品)DESCRIPTION OF SYMBOLS 10 Package substrate 16 Through hole 22 Filler 26a Conductive layer 30 Core substrate 50 Interlayer resin insulating layer 58 Conductive circuit (conductive layer) 60U, 60D Via hole 80A, 80B Build-up wiring layer 90 Integrated circuit chip 94 Daughter board (Substrate) 150 Interlayer resin insulation layer 160U, 160D Via hole C Chip capacitor (Mounted part)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上面に集積回路チップを載置し、下面が
基板側に取り付けられるパッケージ基板において、 下面側の表面であって、集積回路チップの直下に実装部
品を取り付けたことを特徴とするパッケージ基板。
1. A package substrate in which an integrated circuit chip is mounted on an upper surface and a lower surface is mounted on the substrate side, wherein a mounting component is mounted on a lower surface side and directly below the integrated circuit chip. Package substrate.
【請求項2】 上面に集積回路チップを載置し、下面が
基板側に取り付けられるパッケージ基板であって、層間
樹脂絶縁層と導体層とが交互に積層され、各導体層間が
バイアホールにて接続されたビルドアップ配線層が、コ
ア基板の両面に形成されてなるパッケージ基板におい
て、 前記コア基板に形成されたスルーホールには、充填剤が
充填されるとともに該充填剤のスルーホールからの露出
面を覆う導体層が形成されてなり、 その導体層にはバイアホールが接続され、 前記パッケージ基板の下面側の表面であって、集積回路
チップの直下に実装部品を取り付けたことを特徴とする
パッケージ基板。
2. A package substrate having an integrated circuit chip mounted on an upper surface and a lower surface mounted on the substrate side, wherein interlayer resin insulating layers and conductive layers are alternately laminated, and each conductive layer is formed by a via hole. In a package substrate in which connected build-up wiring layers are formed on both surfaces of a core substrate, a filler is filled into a through hole formed in the core substrate and the filler is exposed from the through hole. A conductive layer is formed to cover the surface, a via hole is connected to the conductive layer, and a mounting component is mounted on the lower surface of the package substrate, directly below the integrated circuit chip. Package substrate.
【請求項3】 前記実装部品が、誘電材料としてセラミ
ックを用いるチップコンデンサであることを特徴とする
請求項1又は2のパッケージ基板。
3. The package substrate according to claim 1, wherein said mounting component is a chip capacitor using ceramic as a dielectric material.
JP12294398A 1998-04-16 1998-04-16 Package board Pending JPH11307687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12294398A JPH11307687A (en) 1998-04-16 1998-04-16 Package board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12294398A JPH11307687A (en) 1998-04-16 1998-04-16 Package board

Publications (1)

Publication Number Publication Date
JPH11307687A true JPH11307687A (en) 1999-11-05

Family

ID=14848466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12294398A Pending JPH11307687A (en) 1998-04-16 1998-04-16 Package board

Country Status (1)

Country Link
JP (1) JPH11307687A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223299A (en) * 1999-12-01 2001-08-17 Ibiden Co Ltd Package substrate
JP2001223298A (en) * 1999-12-01 2001-08-17 Ibiden Co Ltd Package substrate
JP2003101195A (en) * 2001-09-26 2003-04-04 Nec Toppan Circuit Solutions Inc Substrate for semiconductor device and production method therefor
US6586827B2 (en) 2000-12-27 2003-07-01 Ngk Spark Plug Co., Ltd. Wiring board and method for fabricating the same
US6680123B2 (en) 2000-12-25 2004-01-20 Ngk Spark Plug Co., Ltd. Embedding resin
US6809268B2 (en) 2000-07-31 2004-10-26 Ngk Spark Plug Co., Ltd. Printed wiring substrate and method for fabricating the same
US6876091B2 (en) 2000-12-25 2005-04-05 Ngk Spark Plug Co., Ltd. Wiring board
JP2005347391A (en) * 2004-06-01 2005-12-15 Ibiden Co Ltd Printed wiring board
CN100394597C (en) * 2001-03-23 2008-06-11 英特尔公司 Integrated circuit package with a capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171889A (en) * 1982-04-01 1983-10-08 キヤノン株式会社 Mounting structure for electronic part
JPH04127461A (en) * 1990-09-18 1992-04-28 Nec Corp Resin-sealed semiconductor device
JPH07283538A (en) * 1994-04-14 1995-10-27 Ibiden Co Ltd Manufacture of multilayered printed wiring board
JPH0832240A (en) * 1994-05-13 1996-02-02 Hitachi Ltd Multialyer wiring board, production of the board and semiconductor device using the board
JPH09148699A (en) * 1995-11-29 1997-06-06 Sumitomo Bakelite Co Ltd Printed circuit board for semiconductor package
JPH09260537A (en) * 1996-03-26 1997-10-03 Sumitomo Kinzoku Electro Device:Kk Flip chip ceramic substrate
JPH1013026A (en) * 1996-06-19 1998-01-16 Ibiden Co Ltd Multilayer printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171889A (en) * 1982-04-01 1983-10-08 キヤノン株式会社 Mounting structure for electronic part
JPH04127461A (en) * 1990-09-18 1992-04-28 Nec Corp Resin-sealed semiconductor device
JPH07283538A (en) * 1994-04-14 1995-10-27 Ibiden Co Ltd Manufacture of multilayered printed wiring board
JPH0832240A (en) * 1994-05-13 1996-02-02 Hitachi Ltd Multialyer wiring board, production of the board and semiconductor device using the board
JPH09148699A (en) * 1995-11-29 1997-06-06 Sumitomo Bakelite Co Ltd Printed circuit board for semiconductor package
JPH09260537A (en) * 1996-03-26 1997-10-03 Sumitomo Kinzoku Electro Device:Kk Flip chip ceramic substrate
JPH1013026A (en) * 1996-06-19 1998-01-16 Ibiden Co Ltd Multilayer printed wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223299A (en) * 1999-12-01 2001-08-17 Ibiden Co Ltd Package substrate
JP2001223298A (en) * 1999-12-01 2001-08-17 Ibiden Co Ltd Package substrate
JP4592177B2 (en) * 1999-12-01 2010-12-01 イビデン株式会社 Package substrate
US6809268B2 (en) 2000-07-31 2004-10-26 Ngk Spark Plug Co., Ltd. Printed wiring substrate and method for fabricating the same
US6680123B2 (en) 2000-12-25 2004-01-20 Ngk Spark Plug Co., Ltd. Embedding resin
US6876091B2 (en) 2000-12-25 2005-04-05 Ngk Spark Plug Co., Ltd. Wiring board
US6586827B2 (en) 2000-12-27 2003-07-01 Ngk Spark Plug Co., Ltd. Wiring board and method for fabricating the same
CN100394597C (en) * 2001-03-23 2008-06-11 英特尔公司 Integrated circuit package with a capacitor
JP2003101195A (en) * 2001-09-26 2003-04-04 Nec Toppan Circuit Solutions Inc Substrate for semiconductor device and production method therefor
JP2005347391A (en) * 2004-06-01 2005-12-15 Ibiden Co Ltd Printed wiring board

Similar Documents

Publication Publication Date Title
US8683685B2 (en) Method of manufacturing multilayer printed wiring board
JP2003008228A (en) Multilayer printed wiring board and method of manufacturing the same
JP2000165046A (en) Multilayer built-up wiring board
JPH11307687A (en) Package board
JP2000068650A (en) Multi-layered printed wiring board
JP4442832B2 (en) Multilayer printed wiring board
JPH11214846A (en) Multilayer printed wiring board
JP4159136B2 (en) Multilayer printed wiring board
JP2001244636A (en) Printed wiring board
JP2001237510A (en) Printed-wiring board
JP3421239B2 (en) Manufacturing method of multilayer printed wiring board
JP4468528B2 (en) Multilayer printed wiring board and manufacturing method thereof.
JP3256172B2 (en) Multilayer printed wiring board
JP2001339006A (en) Multilayer printed wiring board
JP2001244635A (en) Method for manufacturing printed circuit board
JP3352023B2 (en) Manufacturing method of multilayer printed wiring board
JP2000101246A (en) Multilayer built-up wiring board and its manufacture
JPH11199738A (en) Fluororesin composition and multilayer printed wiring board
JP3158089B2 (en) Package substrate and method of manufacturing package substrate
JP3219395B2 (en) Manufacturing method of multilayer printed wiring board
JPH11307937A (en) Core board, its manufacturing method, and multi-layer printed circuit board
JPH11307938A (en) Core board, its manufacturing method, and multi-layer printed circuit board
JP4215872B2 (en) Multilayer printed wiring board, object to be processed, and method for manufacturing multilayer printed wiring board
JPH11340590A (en) Printed wiring board
JP2007201508A (en) Multilayer printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401