JPH113806A - Positive temperature coefficient thermistor - Google Patents

Positive temperature coefficient thermistor

Info

Publication number
JPH113806A
JPH113806A JP15501497A JP15501497A JPH113806A JP H113806 A JPH113806 A JP H113806A JP 15501497 A JP15501497 A JP 15501497A JP 15501497 A JP15501497 A JP 15501497A JP H113806 A JPH113806 A JP H113806A
Authority
JP
Japan
Prior art keywords
positive temperature
temperature coefficient
coefficient thermistor
thermistor
main surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15501497A
Other languages
Japanese (ja)
Other versions
JP3837839B2 (en
Inventor
Yoshitaka Nagao
吉高 長尾
Toshiharu Hirota
俊春 広田
Yasunori Namikawa
康訓 並河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15501497A priority Critical patent/JP3837839B2/en
Publication of JPH113806A publication Critical patent/JPH113806A/en
Application granted granted Critical
Publication of JP3837839B2 publication Critical patent/JP3837839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the flash resistance and Pmax of a positive temperature coefficient thermistor, by forming grooves inside the peripheral edge sections of both main surfaces of a ceramic body having a positive temperature characteristic of resistance along the peripheral section in the thickness direction of the ceramic body and electrodes on the main surfaces. SOLUTION: A positive temperature coefficient thermistor 1 is obtained by respectively forming ohmic electrodes 3 and 4 on both main surfaces of a positive temperature coefficient thermistor element 2. The element 2 is composed of a discoid ceramic body which is formed by molding and sintering a ceramic material for positive temperature coefficient thermistor containing barium titanate as a main component and has a positive temperature characteristic of resistance. Then, grooves 5 and 6 are respectively formed on both main surfaces of the ceramic body inside the peripheral edge sections along the peripheral edge sections in the thickness direction of the ceramic body. Therefore, the flash resistance of the thermistor 1 is remarkably improved and, in addition, the Pmax of the thermistor 1 can be reduced even when the size and weight of the thermistor 1 are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正特性サーミスタ
に関し、特に、過電流保護回路、消磁回路、モータ起動
回路等の回路に用いられ、フラッシュ耐圧の大きな正特
性サーミスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor, and more particularly to a positive temperature coefficient thermistor used in circuits such as an overcurrent protection circuit, a demagnetizing circuit, and a motor starting circuit, and having a high flash breakdown voltage.

【0002】[0002]

【従来の技術】従来の正特性サーミスタ31は、図6に
示されるように、板状のサーミスタ素体32の両主面に
オーミック性の電極33、34が形成されたものであ
る。
2. Description of the Related Art A conventional positive temperature coefficient thermistor 31 has ohmic electrodes 33 and 34 formed on both main surfaces of a plate-like thermistor element 32 as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
正特性サーミスタ31に電圧を印加すると、印加直後は
正特性サーミスタ31が低抵抗であるため、突入電流が
多く流れて、ジュール熱によって正特性サーミスタ31
が高温になり主面と略平行な面で割れる層状割れという
現象が発生する(正特性サーミスタに突入電流を流した
とき、正特性サーミスタが層状割れに至る直前の電圧を
フラッシュ耐圧と呼ぶ)。特に、正特性サーミスタ31
を小型化すると、フラッシュ耐圧が小さくなるという問
題点を有していた。
However, when a voltage is applied to the conventional positive-characteristic thermistor 31, immediately after the voltage is applied, since the positive-characteristic thermistor 31 has a low resistance, a large amount of inrush current flows, and the positive-characteristic thermistor 31 is caused by Joule heat. 31
Becomes high temperature, causing a phenomenon of layered cracking that splits on a plane substantially parallel to the main surface (the voltage immediately before the positive characteristic thermistor reaches the layered crack when an inrush current flows through the positive characteristic thermistor is called flash breakdown voltage). In particular, the positive characteristic thermistor 31
There is a problem that when the size is reduced, the flash breakdown voltage is reduced.

【0004】本発明の目的は、上述の問題点を解消すべ
くなされたもので、フラッシュ耐圧が大きい正特性サー
ミスタを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a positive temperature coefficient thermistor having a large flash breakdown voltage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の正特性サーミスタにおいては、正の抵抗温
度特性を有するセラミック体の主面の周縁部内側に、周
縁部に沿うように且つ前記セラミック体の厚み方向に溝
が形成されたサーミスタ素体の両主面に、電極が形成さ
れている。また、前記正特性サーミスタ素体の周縁部の
角部が丸みを帯びていることが好ましい。また、前記電
極は下層電極と上層電極からなり、下層電極が前記正特
性サーミスタ素体の両主面全面に形成されていることこ
とが好ましい。
In order to achieve the above object, in a positive temperature coefficient thermistor of the present invention, a ceramic body having a positive resistance temperature characteristic is provided inside a peripheral portion of a main surface of the ceramic body so as to be along the peripheral portion. In addition, electrodes are formed on both main surfaces of the thermistor body having grooves formed in the thickness direction of the ceramic body. Further, it is preferable that a corner of a peripheral portion of the positive temperature coefficient thermistor body is rounded. Preferably, the electrode comprises a lower electrode and an upper electrode, and the lower electrode is formed over both main surfaces of the positive temperature coefficient thermistor body.

【0006】また、前記上層電極はその周縁部で下層電
極が露出するように前記下層電極より小さな平面積から
なることが好ましい。さらに、前記上層電極は前記正特
性サーミスタ素体の溝に囲まれた中央部に対応する両主
面に形成されていることが好ましい。そして、前記下層
電極はニッケルを主成分とする金属からなり、前記上層
電極は銀を主成分とする金属からなることが好ましい。
これにより、正特性サーミスタのフラッシュ耐圧及びP
max を向上させることができるものである。
Preferably, the upper layer electrode has a smaller plane area than the lower layer electrode so that the lower layer electrode is exposed at a peripheral portion thereof. Further, it is preferable that the upper layer electrode is formed on both main surfaces corresponding to a central portion surrounded by a groove of the positive temperature coefficient thermistor body. Preferably, the lower electrode is made of a metal mainly composed of nickel, and the upper electrode is made of a metal mainly composed of silver.
As a result, the flash breakdown voltage and P
max can be improved.

【0007】[0007]

【発明の実施の形態】本発明による一つの実施の形態の
正特性サーミスタについて、図1に基づいて説明する。
正特性サーミスタ1は、正特性サーミスタ素体2の両主
面に、オーミック性の例えばNi、In−Ga、Al、
またはAgを主成分とする電極3、4が形成されたもの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A PTC thermistor according to an embodiment of the present invention will be described with reference to FIG.
The positive temperature coefficient thermistor 1 has ohmic properties such as Ni, In—Ga, Al,
Alternatively, electrodes 3 and 4 mainly composed of Ag are formed.

【0008】正特性サーミスタ素体2は、チタン酸バリ
ウムを主成分とする正特性サーミスタ用セラミック原料
を、成形、焼結した正の抵抗温度特性有するセラミック
体からなり、略板状であって、その主面の周縁部内側
に、周縁部に沿うように且つセラミック体の厚み方向に
溝5、6が形成されたものである。
The positive temperature coefficient thermistor body 2 is made of a ceramic body having a positive resistance temperature characteristic formed by molding and sintering a ceramic material for a positive temperature coefficient thermistor containing barium titanate as a main component. Grooves 5 and 6 are formed inside the peripheral portion of the main surface along the peripheral portion and in the thickness direction of the ceramic body.

【0009】本発明による正特性サーミスタの他の実施
の形態を図2に基づいて説明する。但し、前述の実施の
形態と同一部分については、同一の符号を付し、詳細な
説明を省略する。
Another embodiment of the positive temperature coefficient thermistor according to the present invention will be described with reference to FIG. However, the same portions as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0010】正特性サーミスタ7は、正特性サーミスタ
素体8の両主面に電極3、4が形成されたものである。
正特性サーミスタ素体8は、図1に示した正特性サーミ
スタ素体2の角部に丸み9、10が形成されたものであ
り、主面の周縁部内側に、周縁部に沿うように且つセラ
ミック体の厚み方向に溝5、6が形成されている。
The positive temperature coefficient thermistor 7 has a structure in which electrodes 3 and 4 are formed on both main surfaces of a positive temperature coefficient thermistor body 8.
The positive-characteristic thermistor element body 8 is formed by forming roundnesses 9 and 10 at the corners of the positive-characteristic thermistor element body 2 shown in FIG. 1, inside the peripheral part of the main surface, along the peripheral part and Grooves 5 and 6 are formed in the thickness direction of the ceramic body.

【0011】本発明による正特性サーミスタのその他の
実施の形態を図3に基づいて説明する。但し、前述の実
施の形態と同一部分については、同一の符号を付し、詳
細な説明を省略する。
Another embodiment of the positive temperature coefficient thermistor according to the present invention will be described with reference to FIG. However, the same portions as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0012】正特性サーミスタ11は、図1に示した正
特性サーミスタ素体2の両主面に2層からなる電極3、
4が形成されたものである。電極3、4は、正特性サー
ミスタ素体の両主面全面に形成されたNiからなる下層
電極12、13と、さらにこの下層電極12、13の周
縁からギャップGを設けて周縁部の下層電極12、13
が露出するように形成されたAgからなる上層電極1
4、15とから構成されたものである。
The positive temperature coefficient thermistor 11 comprises two layers of electrodes 3 on both main surfaces of the positive temperature coefficient thermistor body 2 shown in FIG.
4 is formed. The electrodes 3 and 4 are composed of lower electrodes 12 and 13 made of Ni formed on the entire surfaces of both main surfaces of the positive temperature coefficient thermistor body, and a gap G is provided from the periphery of the lower electrodes 12 and 13 to form a lower electrode of the periphery. 12, 13
Upper electrode 1 made of Ag formed so as to be exposed
4 and 15.

【0013】なお、図3に示した上層電極14、15
は、溝5、6に囲まれた中央部に対応する両主面に形成
されたものであるが、この他に図示しないが、ギャップ
Gがこれより小さく、上層電極14、15が溝5、6を
越えてセラミック素体2の周縁側に近づいて形成されて
もよい。
The upper electrodes 14, 15 shown in FIG.
Are formed on both main surfaces corresponding to the central portion surrounded by the grooves 5 and 6, but are not shown. However, the gap G is smaller than this, and the upper electrodes 14 and 15 are 6 may be formed so as to approach the peripheral side of the ceramic body 2 beyond 6.

【0014】[0014]

【実施例1】本発明による正特性サーミスタの実施例1
として、図1に示されるように、外径がφ8.2mm、
両主面間の厚さTが3.0mm、溝5、6の深さdが
0.5mm、溝5、6の幅hが0.5mm、周縁部から
の溝5、6の位置Lが1mmの略円板状の正特性サーミ
スタ素体2を準備し、両主面にIn−Gaからなる電極
3、4を形成して、正特性サーミスタ1を得た。この正
特性サーミスタ1のフラッシュ耐圧を測定した結果を表
1に記す。なお、この正特性サーミスタ6はキュリー温
度が120℃、常温における抵抗値が23Ωであった。
Embodiment 1 Embodiment 1 of a PTC thermistor according to the present invention
As shown in FIG. 1, the outer diameter is φ8.2 mm,
The thickness T between the two main surfaces is 3.0 mm, the depth d of the grooves 5 and 6 is 0.5 mm, the width h of the grooves 5 and 6 is 0.5 mm, and the position L of the grooves 5 and 6 from the peripheral edge is An approximately disk-shaped PTC thermistor body 2 of about 1 mm was prepared, and electrodes 3 and 4 made of In—Ga were formed on both main surfaces to obtain a PTC thermistor 1. Table 1 shows the results of measuring the flash breakdown voltage of the positive temperature coefficient thermistor 1. The PTC thermistor 6 had a Curie temperature of 120 ° C. and a resistance value of 23Ω at room temperature.

【0015】比較のために、従来例1として、図6に示
されるような、外径がφ8.2mm、両主面の厚さTが
3mmの円板状の正特性サーミスタ素体32を準備し、
両主面に実施例1と同様にIn−Gaからなる電極3
3、34を形成して、正特性サーミスタ31を得た。こ
の正特性サーミスタ31のフラッシュ耐圧を測定した結
果を表1に記す。なお、この正特性サーミスタ31のキ
ュリー温度および常温における抵抗値は、実施例1と同
一であった。
For comparison, a disk-shaped positive temperature coefficient thermistor body 32 having an outer diameter of 8.2 mm and a thickness T of both main surfaces of 3 mm as shown in FIG. And
Electrodes 3 made of In-Ga on both main surfaces as in Example 1.
By forming Nos. 3 and 34, a positive temperature coefficient thermistor 31 was obtained. Table 1 shows the results of measuring the flash breakdown voltage of the positive temperature coefficient thermistor 31. The resistance of the positive temperature coefficient thermistor 31 at the Curie temperature and the normal temperature was the same as that of the first embodiment.

【0016】[0016]

【表1】 [Table 1]

【0017】表1を見れば明らかなように、実施例1の
フラッシュ耐圧は最小値および平均ともに従来例1のフ
ラッシュ耐圧より大幅に向上した。
As apparent from Table 1, the flash breakdown voltage of the first embodiment is significantly improved in both the minimum value and the average with respect to the flash breakdown voltage of the conventional example 1.

【0018】[0018]

【実施例2】実施例2は、前述の実施例1と同一形状の
正特性サーミスタ素体2に、同一の電極3、4を形成し
て、正特性サーミスタ1を得た。但し、実施例2の正特
性サーミスタ素体2の主原料は、実施例1の主原料と異
なるものを用いており、実施例2の正特性サーミスタの
キュリー温度は70℃、常温における抵抗値が9Ωであ
った。
Example 2 In Example 2, the same electrodes 3 and 4 were formed on a PTC thermistor body 2 having the same shape as that of Example 1 described above, and a PTC thermistor 1 was obtained. However, the main material of the PTC thermistor body 2 of Example 2 is different from the main material of Example 1, and the Curie temperature of the PTC thermistor of Example 2 is 70 ° C. It was 9Ω.

【0019】実施例2の正特性サーミスタについてフラ
ッシュ耐圧及びPmax を測定した結果を表2に記す。更
に、正特性サーミスタの体積を計算によって求めた結果
を表2に記す。
Table 2 shows the results of measuring the flash breakdown voltage and Pmax of the PTC thermistor of Example 2. Table 2 shows the result of calculation of the volume of the positive temperature coefficient thermistor.

【0020】比較のために、従来例2として、図6に示
されるような、外径がφ8.2mm、両主面の厚さTが
3mmの円板状の正特性サーミスタ素体32を準備し、
両主面に実施例2と同様にIn−Gaからなる電極3
3、34を形成して、正特性サーミスタ31を得た。こ
の従来例2の正特性サーミスタ31を実施例2と同様の
測定をし、結果を表2に記す。この正特性サーミスタ3
1のキュリー温度および常温における抵抗値は、実施例
2と同一であった。なお、上述の実施例1、従来例1お
よび実施例2、従来例2の測定試料数はそれぞれ18個
であった。
For comparison, a disk-shaped positive temperature coefficient thermistor body 32 having an outer diameter of φ8.2 mm and a thickness T of both main surfaces of 3 mm as shown in FIG. And
Electrodes 3 made of In-Ga on both main surfaces as in Example 2.
By forming Nos. 3 and 34, a positive temperature coefficient thermistor 31 was obtained. The PTC thermistor 31 of Conventional Example 2 was measured in the same manner as in Example 2, and the results are shown in Table 2. This positive characteristic thermistor 3
The Curie temperature and the resistance value at room temperature were the same as in Example 2. The number of measurement samples in each of Example 1, Conventional Example 1, Example 2, and Conventional Example 2 was 18 each.

【0021】ここでPmax について説明すると、正特性
サーミスタを用いた消磁用回路に電流を流すと、正特性
サーミスタの働きによって消磁コイルに図4に示すよう
な交番減衰電流が流れる。この交番減衰電流の隣り合う
ピーク値の差を包絡線変化量Pと呼び、包絡線変化量P
の最大値をPmax と呼ぶ。
Here, Pmax will be described. When a current flows through a degaussing circuit using a positive temperature coefficient thermistor, an alternating decay current as shown in FIG. 4 flows through the degaussing coil by the action of the positive temperature coefficient thermistor. The difference between adjacent peak values of the alternating decay current is called an envelope change amount P, and the envelope change amount P
Is referred to as Pmax.

【0022】Pmax の測定条件は、図5に示すように、
消磁コイルの代替として20Ωの抵抗73を用い、この
抵抗73と正特性サーミスタ74との直列回路にAC2
00V、60Hzの電圧75を印加した。
The conditions for measuring Pmax are as shown in FIG.
A 20 Ω resistor 73 is used as a substitute for the degaussing coil, and AC2 is connected to a series circuit of the resistor 73 and the positive temperature coefficient thermistor 74.
A voltage 75 of 00 V, 60 Hz was applied.

【0023】[0023]

【表2】 [Table 2]

【0024】表2において、従来例2と比較すれば理解
できるように、正特性サーミスタ素体2の主面の周縁部
近傍に溝5、6を設けた実施例2は、従来例2と比較し
てフラッシュ耐圧が大幅に向上すると共に、Pmax が小
さくなる。これにより、正特性サーミスタの体積を従来
例2より小さくすることが可能となる。また、正特性サ
ーミスタ素体2の体積を小さくすることができる。
In Table 2, as can be understood from comparison with the conventional example 2, the embodiment 2 in which the grooves 5, 6 are provided near the periphery of the main surface of the positive temperature coefficient thermistor body 2 is compared with the conventional example 2. As a result, the flash breakdown voltage is greatly improved, and Pmax is reduced. Thus, the volume of the positive temperature coefficient thermistor can be made smaller than that of the second conventional example. Further, the volume of the positive temperature coefficient thermistor body 2 can be reduced.

【0025】なお、本発明に係る正特性サーミスタは前
記実施の形態に限定するものでなく、その要旨の範囲内
で種々に変形することができる。例えば、正特性サーミ
スタの形状として、外形が略円板状のものを例示して説
明したが、これに限定されるものではなく、矩形状の略
平板状のもの、その他の形状の略平板状のものであって
もよいことはいうまでもない。また、正特性サーミスタ
素体2の溝5、6について、少なくとも一方の主面に溝
が形成されているものでもよく、主面に溝が複数形成さ
れているものでもよい。
The PTC thermistor according to the present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the invention. For example, the shape of the positive temperature coefficient thermistor has been described by exemplifying a substantially disc-shaped outer shape. However, the shape is not limited thereto. It goes without saying that it may be the same. Further, the grooves 5 and 6 of the positive temperature coefficient thermistor element body 2 may have a groove formed on at least one main surface, or may have a plurality of grooves formed on the main surface.

【0026】また、下層電極13、14の材質について
は、上述したIn−Ga、Ni等に限定されるものでな
く、Al、Cr、Cr合金又はオーミックAg等オーミ
ック性を有するものであればよい。また、電極の形成方
法についても、スパッタ、印刷、焼き付け、溶射、めっ
き等いずれの方法であってもよい。
The material of the lower electrodes 13 and 14 is not limited to In-Ga, Ni or the like described above, but may be any material having ohmic properties such as Al, Cr, Cr alloy or ohmic Ag. . Also, the electrode may be formed by any method such as sputtering, printing, baking, thermal spraying, and plating.

【0027】さらに、正特性サーミスタ素体の両主面に
形成される電極は、前述した1層からなるもの、および
2層からなるもの以外に、例えば、下層電極にCr、上
層電極として第2層目にモネル、第3層目にAgを主成
分とする3層からなる電極から構成されるもの、および
それ以上の複数層からなる電極から構成されてもよい。
Further, the electrodes formed on both main surfaces of the positive temperature coefficient thermistor body may be, for example, Cr as a lower electrode and a second electrode as an upper electrode, in addition to the above-described one-layer and two-layer electrodes. The third layer may be composed of Monel, the third layer may be composed of an electrode composed of three layers containing Ag as a main component, or may be composed of an electrode composed of more than two layers.

【0028】[0028]

【発明の効果】以上述べたように、本発明による正特性
サーミスタでは、電極が形成される正特性サーミスタ素
体の主面の周縁部近傍に溝を設けてあるために、フラッ
シュ耐圧が著しく向上する。また、正特性サーミスタを
小型、軽量にしてもPmax を小さくすることができる。
さらに、下層電極と上層電極との間にギャップを設けて
あるために、銀マイグレーションが防止される。
As described above, in the positive temperature coefficient thermistor according to the present invention, since the groove is provided in the vicinity of the periphery of the main surface of the positive temperature coefficient thermistor body on which the electrodes are formed, the flash breakdown voltage is significantly improved. I do. Further, even if the positive temperature coefficient thermistor is small and lightweight, Pmax can be reduced.
Further, since a gap is provided between the lower electrode and the upper electrode, silver migration is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一つの実施の形態の正特性サーミ
スタの半断面斜視図である。
FIG. 1 is a half sectional perspective view of a positive temperature coefficient thermistor according to one embodiment of the present invention.

【図2】本発明に係る他の実施の形態の正特性サーミス
タの縦断面図である。
FIG. 2 is a longitudinal sectional view of a PTC thermistor according to another embodiment of the present invention.

【図3】本発明に係るその他の実施の形態の正特性サー
ミスタの縦断面図である。
FIG. 3 is a longitudinal sectional view of a PTC thermistor according to another embodiment of the present invention.

【図4】消磁回路の消磁コイルに流れる交番減衰電流を
示す図である。
FIG. 4 is a diagram showing an alternating decay current flowing through a degaussing coil of a degaussing circuit.

【図5】Pmax を測定する回路図である。FIG. 5 is a circuit diagram for measuring Pmax.

【図6】従来の正特性サーミスタの斜視図である。FIG. 6 is a perspective view of a conventional PTC thermistor.

【符号の説明】[Explanation of symbols]

2 正特性サーミスタ素体 3、4 電極 5、6 溝 12、13 下層電極 14、15 上層電極 G ギャップ 2 Positive thermistor element 3, 4 Electrode 5, 6 Groove 12, 13 Lower electrode 14, 15 Upper electrode G Gap

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正の抵抗温度特性を有するセラミック体
の主面の周縁部内側に、周縁部に沿うように且つ前記セ
ラミック体の厚み方向に溝が形成されたサーミスタ素体
の両主面に、電極が形成されていることを特徴とする正
特性サーミスタ。
1. A thermistor body having grooves formed along the periphery and in the thickness direction of the ceramic body inside the periphery of the main surface of the ceramic body having a positive resistance temperature characteristic. And a positive temperature coefficient thermistor, wherein electrodes are formed.
【請求項2】 前記正特性サーミスタ素体の周縁部の角
部が丸みを帯びていることを特徴とする請求項1に記載
の正特性サーミスタ。
2. The positive temperature coefficient thermistor according to claim 1, wherein a corner of a peripheral portion of said positive temperature coefficient thermistor body is rounded.
【請求項3】 前記電極は下層電極と上層電極からな
り、下層電極が前記正特性サーミスタ素体の両主面全面
に形成されていることを特徴とする請求項1に記載の正
特性サーミスタ。
3. The positive temperature coefficient thermistor according to claim 1, wherein said electrode comprises a lower layer electrode and an upper layer electrode, and said lower layer electrode is formed on the entire both main surfaces of said positive temperature coefficient thermistor body.
【請求項4】 前記上層電極はその周縁部で下層電極が
露出するように前記下層電極より小さな平面積からなる
ことを特徴とする請求項3に記載の正特性サーミスタ。
4. The positive temperature coefficient thermistor according to claim 3, wherein said upper layer electrode has a smaller plane area than said lower layer electrode such that a lower layer electrode is exposed at a peripheral portion thereof.
【請求項5】 前記上層電極は前記正特性サーミスタ素
体の溝に囲まれた中央部に対応する両主面に形成されて
いることを特徴とする請求項3は4記載の正特性サーミ
スタ。
5. The positive temperature coefficient thermistor according to claim 4, wherein said upper layer electrode is formed on both main surfaces corresponding to a central portion surrounded by a groove of said positive temperature coefficient thermistor element body.
【請求項6】 前記下層電極はニッケルを主成分とする
金属からなり、前記上層電極は銀を主成分とする金属か
らなることを特徴とする請求項3、4又は5に記載の正
特性サーミスタ。
6. The positive temperature coefficient thermistor according to claim 3, wherein the lower electrode is made of a metal mainly containing nickel, and the upper electrode is made of a metal mainly containing silver. .
JP15501497A 1997-06-12 1997-06-12 Positive temperature coefficient thermistor Expired - Fee Related JP3837839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15501497A JP3837839B2 (en) 1997-06-12 1997-06-12 Positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15501497A JP3837839B2 (en) 1997-06-12 1997-06-12 Positive temperature coefficient thermistor

Publications (2)

Publication Number Publication Date
JPH113806A true JPH113806A (en) 1999-01-06
JP3837839B2 JP3837839B2 (en) 2006-10-25

Family

ID=15596803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15501497A Expired - Fee Related JP3837839B2 (en) 1997-06-12 1997-06-12 Positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JP3837839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697918B1 (en) 2005-01-12 2007-03-20 엘에스전선 주식회사 PTC current limiting device having structure preventing flashover

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697918B1 (en) 2005-01-12 2007-03-20 엘에스전선 주식회사 PTC current limiting device having structure preventing flashover

Also Published As

Publication number Publication date
JP3837839B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
JP3175102B2 (en) Positive thermistor body and positive thermistor
KR100307104B1 (en) Positive temperature coefficient thermistor element and heating apparatus using the same
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JPH113806A (en) Positive temperature coefficient thermistor
JP3837838B2 (en) Positive temperature coefficient thermistor
JP3140883B2 (en) Panel heater using PTC
JP2575400Y2 (en) Thermistor
JP2021086837A (en) Chip resistor
JP2699716B2 (en) Positive thermistor element
JP2005303160A (en) Laminated semiconductor ceramic electronic parts
JP4492187B2 (en) Multilayer positive temperature coefficient thermistor
JP2897486B2 (en) Positive thermistor element
JP3246003B2 (en) Positive thermistor element
JPH05242958A (en) Fixing heater and manufacture thereof
JP2574499Y2 (en) Surge protector
JP3465315B2 (en) Positive thermistor
JP2548458B2 (en) PTC thermistor device
JPH06310304A (en) Ntc thermistor
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JP3169096B2 (en) Positive thermistor
JPH05326205A (en) Chip thermistor
JPH06333706A (en) Thermistor device
JP2006005156A (en) Ptc thermistor and method for controlling current attenuation characteristic thereof
JPH02189901A (en) Laminated thermistor
JPH07326535A (en) Grain boundary insulated semiconductor ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees