JP2897486B2 - Positive thermistor element - Google Patents

Positive thermistor element

Info

Publication number
JP2897486B2
JP2897486B2 JP26631391A JP26631391A JP2897486B2 JP 2897486 B2 JP2897486 B2 JP 2897486B2 JP 26631391 A JP26631391 A JP 26631391A JP 26631391 A JP26631391 A JP 26631391A JP 2897486 B2 JP2897486 B2 JP 2897486B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
ptc element
ptc
gap region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26631391A
Other languages
Japanese (ja)
Other versions
JPH05109503A (en
Inventor
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP26631391A priority Critical patent/JP2897486B2/en
Publication of JPH05109503A publication Critical patent/JPH05109503A/en
Application granted granted Critical
Publication of JP2897486B2 publication Critical patent/JP2897486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正特性サーミスタ素子
に関し、特に、正特性サーミスタ素体の両主面に形成さ
れた電極が改良された正特性サーミスタ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor element, and more particularly to a positive temperature coefficient thermistor element having improved electrodes formed on both main surfaces of a positive temperature coefficient thermistor body.

【0002】[0002]

【従来の技術】従来、チタン酸バリウム系半導体磁器の
両主面に電極を形成してなる正特性サーミスタ素子(以
下、PTC素子)が公知である。PTC素子では、PT
C素体が半導体磁器よりなるため、使用する電極材料と
しては、半導体磁器との間に障壁を形成しない導電性材
料を用いる必要がある。そこで、PTC素体の両主面の
全面にNiを無電解めっきし、Ni電極を形成した後、
該Ni電極上にAgペーストを焼き付けることによりA
g電極を形成した構造が提案されている。しかしなが
ら、高温で使用されるPTC素子では、両主面のAg電
極がサーマルマイグレーションを起こし、両主面のAg
電極間で短絡を引き起こすという問題があった。
2. Description of the Related Art Conventionally, a positive temperature coefficient thermistor element (hereinafter, PTC element) in which electrodes are formed on both main surfaces of a barium titanate-based semiconductor ceramic has been known. For PTC elements, PT
Since the C element is made of semiconductor porcelain, it is necessary to use a conductive material that does not form a barrier between the C element and the semiconductor porcelain. Therefore, Ni is electrolessly plated on the entire surfaces of both main surfaces of the PTC body to form a Ni electrode.
By baking Ag paste on the Ni electrode, A
A structure in which a g electrode is formed has been proposed. However, in a PTC element used at a high temperature, the Ag electrodes on both main surfaces cause thermal migration, and the Ag electrodes on both main surfaces
There is a problem that a short circuit occurs between the electrodes.

【0003】上記電極間マイグレーションを防止するも
のとして、図4に示すPTC素子が提案されている。図
4(a),(b)に示すPTC素子1では、チタン酸バ
リウム系半導体磁器よりなるPTC素体2の両主面の全
面にNiを無電解めっきすることによりNi電極3a,
3bが形成されている。このNi電極3a,3b上に、
周囲にギャップ領域gを残してNi電極3a,3bより
も径の小さなAg電極4a,4bが形成されている。す
なわち、ギャップ領域gを設けることにより、両主面の
Ag電極4a,4b間のPTC素体2の側面を経由した
マイグレーションが生じ難くされている。
A PTC element shown in FIG. 4 has been proposed to prevent the above-mentioned migration between electrodes. In the PTC element 1 shown in FIGS. 4A and 4B, Ni is electrolessly plated on the entire surfaces of both main surfaces of the PTC body 2 made of barium titanate-based semiconductor porcelain, so that the Ni electrode 3a
3b is formed. On these Ni electrodes 3a and 3b,
Ag electrodes 4a and 4b smaller in diameter than the Ni electrodes 3a and 3b are formed around the gap region g. That is, by providing the gap region g, migration via the side surface of the PTC element body 2 between the Ag electrodes 4a and 4b on both main surfaces is less likely to occur.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図5に
部分拡大断面図で示すように、ギャップ領域gでは、N
i電極3aのみが存在するが、Niは比抵抗が比較的高
いため、該ギャップ領域gに存在するNi電極部分が抵
抗膜として機能する。その結果、PTC素子1に電圧を
印加した場合、PTC素体2内に図6に示す電流分布
(なお、電流分布を示す図の縦軸Iは電流強度を示
す。)が生じていた。そのため、PTC素体2内が不均
一に発熱し、図6に示すように、PTC素体2内に温度
分布(温度分布を示す図の縦軸のTは温度を示す。)が
生じていた。よって、上記のような温度分布が生じてい
る状態において、PTC素子にパルス電圧が数回印加さ
れると、ギャップ領域gにストレスが溜まり、甚だしき
場合にはPTC素子が割れることがあった。
However, as shown in a partially enlarged sectional view of FIG.
Although only the i-electrode 3a exists, Ni has a relatively high specific resistance, so the Ni electrode portion existing in the gap region g functions as a resistive film. As a result, when a voltage was applied to the PTC element 1, the current distribution shown in FIG. 6 (the vertical axis I in the figure showing the current distribution indicates the current intensity) occurred in the PTC element body 2. For this reason, the inside of the PTC body 2 generates heat non-uniformly, and as shown in FIG. 6, a temperature distribution occurs in the PTC body 2 (T on the vertical axis in the figure showing the temperature distribution indicates the temperature). . Therefore, when a pulse voltage is applied to the PTC element several times in a state where the temperature distribution as described above occurs, stress accumulates in the gap region g, and in some cases, the PTC element is broken.

【0005】よって、本発明の目的は、マイグレーショ
ンによる両主面の電極間の短絡が生じ難く、かつパルス
電圧が印加された場合にもPTC素体の割れが生じ難い
PTC素子を提供することにある。
Accordingly, an object of the present invention is to provide a PTC element in which a short circuit between electrodes on both main surfaces due to migration hardly occurs and a PTC element hardly cracks even when a pulse voltage is applied. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を達
成するためになされたものであり、正特性サーミスタ素
体の両主面の全面にニッケルよりなる第1の電極を形成
し、周囲に所定幅のギャップ領域を残して上記第1の電
極上に銀を主体とする第2の電極を形成してなるPTC
素子において、少なくとも上記ギャップ領域を覆うよう
に、アルミニウム48〜96重量%及びケイ素4〜52
重量%を含有するAl−Si電極が第1の電極上に形成
されていることを特徴とするPTC素子である。上記A
l−Si電極の組成において、アルミニウム及びケイ素
含有量を上記の割合に限定したのは、Alが48重量%
未満及びSiが52重量%を超えると、耐湿特性が劣化
するからであり、Alが96重量%を超え、Siが4重
量%未満の場合にも、同じく耐湿特性が劣化するからで
ある。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and comprises forming a first electrode made of nickel over the entire surface of both main surfaces of a positive temperature coefficient thermistor body, and forming a first electrode made of nickel. PTC formed by forming a second electrode mainly composed of silver on the first electrode while leaving a gap region of a predetermined width
In the device, 48 to 96% by weight of aluminum and 4 to 52% of silicon are formed so as to cover at least the gap region.
A PTC element characterized in that an Al-Si electrode containing 1% by weight is formed on a first electrode. A above
In the composition of the l-Si electrode, the aluminum and silicon contents were limited to the above proportions because the Al content was 48% by weight.
When the content is less than 52% and Si exceeds 52% by weight, the moisture resistance deteriorates. When the content of Al exceeds 96% by weight and the content of Si is less than 4% by weight, the moisture resistance also deteriorates.

【0007】アルミニウム及びケイ素を上記特定の割合
で含有する電極材料は、本願出願人が先に提出した特願
平2−340860号に開示されており、アルミニウム
粉末及びケイ素粉末に低融点ガラスフリット及び有機ビ
ヒクルを加えてペーストとし、該ペーストを塗布し、焼
き付けることにより電極として完成される。アルミニウ
ム粉末として、例えば、粒径が5〜30μm程度の粉末
が、また、ケイ素粉末として、例えば粒径が0.5〜1
0.0μm程度の粉末が用いられる。また、低融点ガラ
スフリット及び有機ビヒクルの混合割合は、特に限定は
されないが、一例を挙げると、上記アルミニウム粉末及
びケイ素粉末を合計で70重量%に対し、低融点ガラス
フリット10重量%及び有機ビヒクル20重量%の割合
で調合することができる。
[0007] An electrode material containing aluminum and silicon at the above-mentioned specific ratios is disclosed in Japanese Patent Application No. 2-340860 previously filed by the present applicant, and a low melting glass frit and aluminum frit are added to aluminum powder and silicon powder. An organic vehicle is added to form a paste, and the paste is applied and baked to complete the electrode. As aluminum powder, for example, a powder having a particle size of about 5 to 30 μm, and as silicon powder, for example, a particle having a particle size of 0.5 to 1 μm
A powder of about 0.0 μm is used. The mixing ratio of the low melting point glass frit and the organic vehicle is not particularly limited, but, for example, for example, 10% by weight of the low melting point glass frit and the organic vehicle with respect to 70% by weight of the aluminum powder and silicon powder in total. It can be prepared in a proportion of 20% by weight.

【0008】[0008]

【作用】本発明では、ニッケルよりなる第1の電極上に
周囲にギャップ領域を残してAgを主体とする第2の電
極が形成されており、かつ該ギャップ領域を覆うように
上記特定の割合でアルミニウム及びケイ素を含有するA
l−Si電極が形成された構造を有するため、両主面の
電極間におけるマイグレーションが生じ難い。また、ギ
ャップ領域において、ニッケルよりなる第1の電極上に
上記Al−Si電極が重ねられているため、ギャップ領
域に存在する電極膜の抵抗が低められており、従って使
用状態においてPTC素体内に温度分布が生じ難い。よ
って、高温で使用した場合であっても、PTC素体の割
れが生じ難い。
According to the present invention, the second electrode mainly composed of Ag is formed on the first electrode made of nickel while leaving a gap region around the first electrode, and the specific ratio is set so as to cover the gap region. A containing aluminum and silicon
Since it has a structure in which an l-Si electrode is formed, migration between the electrodes on both main surfaces hardly occurs. Further, in the gap region, since the Al-Si electrode is superimposed on the first electrode made of nickel, the resistance of the electrode film existing in the gap region is reduced. Temperature distribution is unlikely to occur. Therefore, even when used at a high temperature, cracking of the PTC body is unlikely to occur.

【0009】[0009]

【実施例】以下、本発明の非限定的な実施例を説明する
ことにより、本発明を明らかにする。図1は、本発明の
一実施例にかかるPTC素子の断面図であり、図2は平
面図である。本実施例のPTC素子11は、円板状のP
TC素体12を用いて構成されている。PTC素体12
は、例えばチタン酸バリウム系材料のような半導体磁器
材料よりなる。PTC素体12の両主面の全面には、ニ
ッケルを無電解めっきすることにより、第1の電極13
a,13bが形成されている。そして、第1の電極13
a,13b上には、周囲に所定幅のギャップ領域gを残
してAgペーストを塗布・焼き付けることによりAgを
主体とする第2の電極14a,14bが形成されてい
る。ここまでは、図4に示した従来のPTC素子1と同
様である。
The present invention will be clarified below by describing non-limiting examples of the present invention. FIG. 1 is a sectional view of a PTC element according to one embodiment of the present invention, and FIG. 2 is a plan view. The PTC element 11 of the present embodiment has a disc-shaped PTC element.
It is configured using the TC element 12. PTC body 12
Is made of a semiconductor porcelain material such as a barium titanate-based material. The entire surface of both main surfaces of the PTC element body 12 is electrolessly plated with nickel to form the first electrode 13.
a, 13b are formed. Then, the first electrode 13
The second electrodes 14a, 14b mainly composed of Ag are formed on the a, 13b by applying and baking an Ag paste while leaving a gap region g of a predetermined width around the periphery. Up to this point, it is the same as the conventional PTC element 1 shown in FIG.

【0010】本実施例のPTC素子11の特徴は、上記
ギャップ領域g上において、Niよりなる第1の電極1
3a,13bを覆うように、Al−Si電極15a,1
5bが形成されていることにある。Al−Si電極は、
アルミニウム48〜96重量%及びケイ素4〜52重量
%をこの割合で含有するペーストを塗布し、焼き付ける
ことにより形成される。本実施例のPTC素子11で
は、Agよりなる第2の電極14a,14bの周囲にギ
ャップ領域gが形成されているため、並びにギャップ領
域g上に上記Al−Si電極が形成されているため、A
gを主体とする第2の電極14a,14b間のマイグレ
ーションが確実に防止される。
A feature of the PTC element 11 of this embodiment is that the first electrode 1 made of Ni is formed on the gap region g.
Al-Si electrodes 15a, 1b are provided so as to cover 3a, 13b.
5b is formed. The Al-Si electrode is
The paste is formed by applying and baking a paste containing 48 to 96% by weight of aluminum and 4 to 52% by weight of silicon in this ratio. In the PTC element 11 of this embodiment, the gap region g is formed around the second electrodes 14a and 14b made of Ag, and the Al-Si electrode is formed on the gap region g. A
Migration between the second electrodes 14a and 14b mainly composed of g is reliably prevented.

【0011】なお、図1及び図2から明らかなように、
本実施例では、Al−Si電極15a,15bの内側端
縁が第2の電極14a,14b上に至るように、Al−
Si電極15a,15bが形成されており、Agを主体
とする第2の電極14a,14bの外周縁が隠されてい
る。従って、第2の電極14a,14b間のマイグレー
ションの発生がより確実に防止されるが、Al−Si電
極15a,15bの内側端縁は、第2の電極14a,1
4bの外周端縁に当接されていてもよい。のみならず、
ギャップ領域gにおいては、Niよりなる第1の電極1
3a,13b上に上記Al−Si電極15a,15bが
存在するため、ギャップ領域gにおける電極抵抗が低め
られている。従って、使用状態では、図3に示すよう
に、電流分布がPTC素体12の全領域に渡り均一とな
り、またPTC素体12内における温度分布も図3に示
した従来例の場合に比べて偏っていないことがわかる。
よって、高温下で使用された場合にパルス電圧が印加さ
れたとしても、PTC素体12の割れが生じ難い。
Incidentally, as is apparent from FIGS. 1 and 2,
In the present embodiment, the Al-Si electrodes 15a and 15b are formed such that the inner edges thereof reach the second electrodes 14a and 14b.
Si electrodes 15a and 15b are formed, and the outer edges of the second electrodes 14a and 14b mainly composed of Ag are hidden. Therefore, the occurrence of migration between the second electrodes 14a and 14b is more reliably prevented, but the inner edges of the Al-Si electrodes 15a and 15b are connected to the second electrodes 14a and 1b.
4b may be in contact with the outer peripheral edge. As well,
In the gap region g, the first electrode 1 made of Ni
Since the Al-Si electrodes 15a and 15b exist on 3a and 13b, the electrode resistance in the gap region g is reduced. Accordingly, in the use state, as shown in FIG. 3, the current distribution becomes uniform over the entire area of the PTC body 12, and the temperature distribution in the PTC body 12 is also different from that of the conventional example shown in FIG. It can be seen that there is no bias.
Therefore, even if a pulse voltage is applied when used at a high temperature, cracking of the PTC element body 12 hardly occurs.

【0012】次に、具体的な実験結果につき説明する。
実施例のPTC素子11として、チタン酸バリウム系半
導体磁器よりなり、直径14mm×厚み2.3mmのP
TC素体12を用意した。このPTC素体12の両主面
間の抵抗は15Ωであった。次に、上記PTC素体12
の両主面に、膜厚1.5μmの第1の電極13a,13
bを、Niを無電解めっきすることにより形成した。さ
らに、第1の電極13a,13b上に、Ag粉末を含有
する導電ペーストをスクリーン印刷し、周囲に幅1.5
mmのギャップ領域gを残して、膜厚4μmの第2の電
極14a,14bを形成した。さらに、上記ギャップ領
域g上のNiよりなる第1の電極13a,13b上に、
Al72重量%及びSi28重量%の割合でAl及びS
iを含有する金属粉末含有導電ペーストを塗布し、焼き
付けることにより、膜厚10μmのAl−Si電極15
a,15bを形成し、PTC素子11を得た。
Next, specific experimental results will be described.
The PTC element 11 of the embodiment is made of a barium titanate-based semiconductor porcelain having a diameter of 14 mm and a thickness of 2.3 mm.
A TC body 12 was prepared. The resistance between the two main surfaces of the PTC body 12 was 15Ω. Next, the PTC body 12
The first electrodes 13a and 13 having a thickness of 1.5 μm
b was formed by electroless plating Ni. Further, a conductive paste containing Ag powder is screen-printed on the first electrodes 13a and 13b, and the width of the conductive paste is 1.5
The second electrodes 14a and 14b having a film thickness of 4 μm were formed while leaving a gap region g of mm. Further, on the first electrodes 13a and 13b made of Ni on the gap region g,
Al and S at a ratio of 72% by weight of Al and 28% by weight of Si
A conductive paste containing metal powder containing i is applied and baked to form an Al-Si electrode 15 having a film thickness of 10 μm.
a, 15b were formed, and a PTC element 11 was obtained.

【0013】比較のために、上記Al−Si電極が形成
されていないPTC素子(図4に示した従来例)を用意
した。上記実施例及び従来例のPTC素子に、200V
及び5秒のパルス電圧を100回印加したところ、従来
例のPTC素子では20個あたり15個の素子でPTC
素体に割れが生じた。これに対して、本実施例のPTC
素子では、外観上の異常は全く認められなかった。ま
た、本実施例のPTC素子において、上記パルス電圧を
印加した際のマイグレーションの発生の有無を目視によ
り調べたところ、電極間マイグレーションの発生は全く
認められなかった。なお、図示の実施例では、PTC素
子11は、円板状のPTC素体12を用いて構成されて
いたが、矩形板状等の他の形状のPTC素体を用いたP
TC素子にも本発明を適用することができる。
For comparison, a PTC element without the Al-Si electrode was prepared (the conventional example shown in FIG. 4). 200V is applied to the PTC element of the above embodiment and the conventional example.
And when a pulse voltage of 5 seconds is applied 100 times, the PTC element of the conventional example has 15 PTC elements per 20 elements.
The element cracked. In contrast, the PTC of the present embodiment
No abnormalities in appearance were observed in the device. In addition, in the PTC element of this example, when the presence or absence of migration when applying the pulse voltage was visually examined, no occurrence of migration between electrodes was observed. In the illustrated embodiment, the PTC element 11 is configured using the disc-shaped PTC element body 12, but the PTC element 11 using the PTC element body having another shape such as a rectangular plate shape is used.
The present invention can be applied to a TC element.

【0014】[0014]

【発明の効果】以上のように、本発明では、Niよりな
る第1の電極上に、周囲にギャップ領域を残してAgを
主体とする第2の電極が形成されており、かつギャップ
領域において第1の電極を覆うようにAl−Si電極が
形成されているため、両主面のAgを主体とする第2の
電極間のマイグレーションが生じ難い。よって、Ag電
極のマイグレーションに起因する短絡が生じ難い。のみ
ならず、ギャップ領域においては、Niよりなる第1の
電極を覆うようにAl−Si電極が形成されているた
め、ギャップ領域部分の電極抵抗が低められている。従
って、高温下で使用した場合であっても、PTC素体の
ほぼ全体に渡り温度が均一化されるため、パルス電圧が
印加されたとしてもPTC素体の割れが生じ難い。よっ
て、本発明により、電極間マイグレーションによる短絡
事故が生じ難く、PTC素体の割れの生じ難い、信頼性
に優れたPTC素子を提供することが可能となる。
As described above, according to the present invention, the second electrode mainly composed of Ag is formed on the first electrode made of Ni while leaving the gap region around the first electrode. Since the Al-Si electrode is formed so as to cover the first electrode, migration between the second electrodes mainly composed of Ag on both main surfaces hardly occurs. Therefore, a short circuit due to the migration of the Ag electrode hardly occurs. In addition, in the gap region, the Al-Si electrode is formed so as to cover the first electrode made of Ni, so that the electrode resistance in the gap region is reduced. Therefore, even when used at a high temperature, the temperature is made uniform over substantially the entire PTC body, so that even if a pulse voltage is applied, the PTC body is unlikely to crack. Therefore, according to the present invention, it is possible to provide a highly reliable PTC element in which a short circuit accident due to migration between electrodes is less likely to occur, a PTC element is less likely to crack, and the reliability is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のPTC素子を示す断面図。FIG. 1 is a sectional view showing a PTC element according to one embodiment of the present invention.

【図2】実施例のPTC素子の平面図。FIG. 2 is a plan view of the PTC element of the embodiment.

【図3】実施例のPTC素子における電流分布及び温度
分布を説明するための図。
FIG. 3 is a diagram for explaining current distribution and temperature distribution in the PTC element of the example.

【図4】(a)及び(b)は、従来のPTC素子を説明
するための斜視図及び側面図。
4A and 4B are a perspective view and a side view for explaining a conventional PTC element.

【図5】従来のPTC素子の問題点を説明するための部
分拡大断面図。
FIG. 5 is a partially enlarged sectional view for explaining a problem of the conventional PTC element.

【図6】従来のPTC素子のPTC素体内の電流分布及
び温度分布を説明するための図。
FIG. 6 is a diagram for explaining current distribution and temperature distribution in a PTC element body of a conventional PTC element.

【符号の説明】[Explanation of symbols]

11…PTC素子 12…PTC素体 13a,13b…第1の電極 14a,14b…第2の電極 15a,15b…Al−Si電極 11 PTC element 12 PTC body 13a, 13b First electrode 14a, 14b Second electrode 15a, 15b Al-Si electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正特性サーミスタ素体の両主面の全面に
ニッケルよりなる第1の電極を形成し、周囲に所定幅の
ギャップ領域を残して前記第1の電極上に銀を主体とす
る第2の電極を形成してなる正特性サーミスタ素子にお
いて、 少なくとも前記ギャップ領域を覆うように、アルミニウ
ム48〜96重量%及びケイ素4〜52重量%を含有す
るAl−Si電極が第1の電極上に形成されていること
を特徴とする、正特性サーミスタ素子。
1. A first electrode made of nickel is formed on the entire surface of both main surfaces of a positive temperature coefficient thermistor body, and silver is mainly formed on the first electrode while leaving a gap region of a predetermined width around the first electrode. In a positive temperature coefficient thermistor element formed with a second electrode, an Al-Si electrode containing 48 to 96% by weight of aluminum and 4 to 52% by weight of silicon is formed on the first electrode so as to cover at least the gap region. A positive temperature coefficient thermistor element, characterized in that the element is formed as follows.
JP26631391A 1991-10-15 1991-10-15 Positive thermistor element Expired - Fee Related JP2897486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26631391A JP2897486B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26631391A JP2897486B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Publications (2)

Publication Number Publication Date
JPH05109503A JPH05109503A (en) 1993-04-30
JP2897486B2 true JP2897486B2 (en) 1999-05-31

Family

ID=17429194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26631391A Expired - Fee Related JP2897486B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Country Status (1)

Country Link
JP (1) JP2897486B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749132A4 (en) * 1994-03-04 1997-05-14 Komatsu Mfg Co Ltd Positive temperature coefficient thermistor and thermistor device using it
JP3058097B2 (en) * 1996-10-09 2000-07-04 株式会社村田製作所 Thermistor chip and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05109503A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
EP0235749B1 (en) Positive ceramic semiconductor device
CA1298085C (en) Electrically conductive glass sheet
US3836883A (en) Fuse and resistor device
EP1041586A2 (en) Chip thermistor
JP2897486B2 (en) Positive thermistor element
JPH1041104A (en) Positive temperature coefficient thermistor element and positive temperature coefficient thermistor
JP2699716B2 (en) Positive thermistor element
JP3286855B2 (en) Manufacturing method of chip type PTC thermistor
JP2575400Y2 (en) Thermistor
JP2967221B2 (en) Positive thermistor element
JP3310010B2 (en) Positive characteristic thermistor device
JP2639098B2 (en) Current limiting element
JP2559524Y2 (en) Positive characteristic thermistor device
JP3166784B2 (en) Positive thermistor element
JPH07105719A (en) Conductive paste and resistor element
JP3070350B2 (en) Al electrode material for lead piezoelectric element
JP3837838B2 (en) Positive temperature coefficient thermistor
JP3837839B2 (en) Positive temperature coefficient thermistor
EP0749132A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JPH09129403A (en) Varistor provided with fuse
JP3278070B2 (en) Positive characteristic thermistor device
JPH0677004A (en) Positive temperature coefficient characteristic thermistor device
JPH04211101A (en) Voltage nonlinear resistor element
JPS6010701A (en) Positive temperature coefficient thermistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees