JP3169096B2 - Positive thermistor - Google Patents

Positive thermistor

Info

Publication number
JP3169096B2
JP3169096B2 JP11484492A JP11484492A JP3169096B2 JP 3169096 B2 JP3169096 B2 JP 3169096B2 JP 11484492 A JP11484492 A JP 11484492A JP 11484492 A JP11484492 A JP 11484492A JP 3169096 B2 JP3169096 B2 JP 3169096B2
Authority
JP
Japan
Prior art keywords
metal plating
plating layer
thickness
thermistor
ptc element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11484492A
Other languages
Japanese (ja)
Other versions
JPH05315102A (en
Inventor
誠 佐野
範光 鬼頭
隆彦 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11484492A priority Critical patent/JP3169096B2/en
Publication of JPH05315102A publication Critical patent/JPH05315102A/en
Application granted granted Critical
Publication of JP3169096B2 publication Critical patent/JP3169096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は正特性サーミスタ(以
下、PTC素子という)にかかり、詳しくは、その電極
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor (hereinafter referred to as a PTC element), and more particularly to an electrode structure thereof.

【0002】[0002]

【従来の技術】従来から、PTC素子は、電圧印加時に
大電流が流れると磁器であるサーミスタ素体の発熱によ
って抵抗が増加するという特性を有するものとして知ら
れており、その用途としては、温度検知、過熱検知、温
度制御、モータ起動、消磁用などがある。そして、例え
ば、TVブラウン管の残留磁気を消去するための自動消
磁回路においては、図2で簡略化して示すように、PT
C素子10をブラウン管コイル20と交流電源21との
間に直列接続した構成が採用されている。すなわち、こ
の自動消磁回路は、まず、残留磁気よりも大きな交流電
流を交流電源21からブラウン管コイル20に印加した
後、やがて電流を徐々に減衰させて磁束密度を零付近ま
で近づけることによって消磁を行うものであり、この自
動消磁回路ではPTC素子10によって電流を制御して
減衰させるようになっている。
2. Description of the Related Art Conventionally, a PTC element is known to have a characteristic that when a large current flows when a voltage is applied, the resistance increases due to the heat generated by a thermistor element, which is a porcelain. Detection, overheat detection, temperature control, motor start, degaussing, etc. For example, in an automatic degaussing circuit for erasing residual magnetism of a TV cathode ray tube, as shown in a simplified manner in FIG.
The configuration in which the C element 10 is connected in series between the cathode ray tube coil 20 and the AC power supply 21 is adopted. That is, the automatic degaussing circuit performs degaussing by first applying an AC current larger than the remanence to the CRT coil 20 from the AC power supply 21 and then gradually attenuating the current to bring the magnetic flux density close to zero. In this automatic degaussing circuit, the current is controlled and attenuated by the PTC element 10.

【0003】ところで、このようなPTC素子10とし
ては、図3で示すように、円板状とされたサーミスタ素
体11の両主面上それぞれにニッケル(Ni)などから
なる金属めっき層12を形成したうえ、各金属めっき層
12上に銀(Ag)を主成分とする電極層13を塗布し
て焼き付けたものが一般的である。なお、金属めっき層
12はオーミック層として機能するものであり、ごく薄
い厚みで形成されるのが普通である。
As shown in FIG. 3, a metal plating layer 12 made of nickel (Ni) or the like is formed on both main surfaces of a disc-shaped thermistor element 11 as shown in FIG. After being formed, it is common to apply and bake an electrode layer 13 containing silver (Ag) as a main component on each metal plating layer 12. The metal plating layer 12 functions as an ohmic layer, and is usually formed with a very small thickness.

【0004】そして、例えば、消磁用のPTC素子10
などにおいては、消磁時間の調整あるいは静耐圧特性
(電圧を徐々に印加した時の破壊特性)を向上させるべ
くサーミスタ素体11の厚みを厚く、例えば、3.8m
m以上というように厚くすることが行われている。さら
にまた、Agを主成分とした電極層13を用いた場合に
は、このPTC素子10が使用される場所における雰囲
気、例えば、湿気や半田付け実装時に発生するフラック
スガスなどの影響によって銀マイグレーションが引き起
こされやすく、破壊が生じる危険がある。そこで、この
ような不都合の発生を未然に防止するために、電極層1
3の占有面積をサーミスタ素体11の主面表面積よりも
小さく設定し、サーミスタ素体11の主面周縁部上にギ
ャップ部分14を残しておくことが行われている。
Then, for example, a degaussing PTC element 10
In such cases, the thickness of the thermistor body 11 is increased, for example, to 3.8 m, in order to adjust the demagnetization time or to improve the static withstand voltage characteristics (destruction characteristics when voltage is gradually applied).
m or more. Furthermore, when the electrode layer 13 containing Ag as a main component is used, silver migration may occur due to the influence of the atmosphere in the place where the PTC element 10 is used, for example, moisture or a flux gas generated during solder mounting. It is easy to cause and risk of destruction. Therefore, in order to prevent such inconvenience from occurring, the electrode layer 1
The occupied area of the thermistor element 3 is set smaller than the surface area of the main surface of the thermistor element body 11, and the gap portion 14 is left on the periphery of the main surface of the thermistor element body 11.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記従来構
成とされたPTC素子10、特に、電圧印加時に大電流
が流れる消磁用やモータ起動用として使用されるPTC
素子10において、そのサーミスタ素体11の厚みが
3.8mm以上というように厚いにも拘わらず、金属め
っき層12の厚みが薄すぎる場合には、フラッシュ耐圧
特性(F耐圧特性:突入電流に対する破壊特性)の劣化
が起こることになる結果、サーミスタ素体11の電極層
13と対応する部分をえぐり取るような破壊(図3で
は、仮想線で示す)が生じることになり、PTC素子1
0に対する信頼性の低下を招いてしまうことになってい
た。そして、このようなF耐圧特性の劣化は、電流を制
限する際、金属めっき層12における電極層13のエッ
ジ部13aと接する部分と他の部分との電流密度が異な
ることに起因するものと考えられる。
However, the PTC element 10 having the above-mentioned conventional structure, in particular, a PTC element used for degaussing or motor starting in which a large current flows when a voltage is applied.
In the element 10, if the thickness of the metal plating layer 12 is too thin despite the thickness of the thermistor body 11 being as thick as 3.8 mm or more, the flash withstand voltage characteristics (F withstand voltage characteristics: destruction against inrush current) As a result, degradation (characteristics) is caused, and a destruction (shown by a phantom line in FIG. 3) occurs in which a portion corresponding to the electrode layer 13 of the thermistor body 11 is cut off.
This would lead to a decrease in the reliability for the zero. It is considered that such deterioration of the F breakdown voltage characteristic is caused by a difference in current density between a portion of the metal plating layer 12 in contact with the edge 13a of the electrode layer 13 and another portion when limiting the current. Can be

【0006】本発明は、このような不都合に鑑みて創案
されたものであって、F耐圧特性の劣化を防止すること
ができ、信頼性の向上を図ることが可能なPTC素子の
提供を目的としている。
The present invention has been made in view of such inconvenience, and it is an object of the present invention to provide a PTC element capable of preventing deterioration of the F breakdown voltage characteristic and improving reliability. And

【0007】[0007]

【課題を解決するための手段】本発明は、このような目
的を達成するために、3.8mm以上の厚みを有するサ
ーミスタ素体の両主面上それぞれに金属めっき層を形成
し、かつ、各金属めっき層上には銀を主成分とする電極
層を形成してなるPTC素子であって、前記金属めっき
層の厚みを2μm以上としていることを特徴とするもの
である。
According to the present invention, a metal plating layer is formed on both main surfaces of a thermistor body having a thickness of 3.8 mm or more, in order to achieve the above object. A PTC element in which an electrode layer containing silver as a main component is formed on each metal plating layer, wherein the thickness of the metal plating layer is 2 μm or more.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本実施例にかかるPTC素子の具体
的な構造を簡略化して示す外観斜視図であり、この図に
おける符号1はPTC素子である。
FIG. 1 is an external perspective view schematically showing a specific structure of a PTC element according to the present embodiment. In this figure, reference numeral 1 denotes a PTC element.

【0010】このPTC素子1は、3.8mm以上の厚
みを有する円板状とされたサーミスタ素体2の両主面上
それぞれにNiなどからなる金属めっき層3を形成し、
かつ、各金属めっき層3上にAgを主成分とする電極層
4を塗布して焼き付けてなるものであり、金属めっき層
3それぞれの厚みtは2μm以上とされている。そし
て、各電極層4はサーミスタ素体2の主面周縁部上にギ
ャップ部分5が残るように形成されており、このギャッ
プ部分5を設けておくことによって銀マイグレーション
の発生を防止するようになっている。
In this PTC element 1, a metal plating layer 3 made of Ni or the like is formed on both main surfaces of a disc-shaped thermistor body 2 having a thickness of 3.8 mm or more, respectively.
Further, the electrode layer 4 mainly composed of Ag is applied and baked on each metal plating layer 3, and the thickness t of each metal plating layer 3 is 2 μm or more. Each electrode layer 4 is formed such that a gap portion 5 remains on the periphery of the main surface of the thermistor element body 2. By providing the gap portion 5, silver migration is prevented from occurring. ing.

【0011】つぎに、本発明の発明者らが本実施例品で
あるPTC素子1及び従来例品であるPTC素子10そ
れぞれの仕様が互いに異なるものを30個ずつ用意して
特性比較実験を行ったところ、表1で示すような結果が
得られた。なお、この実験に用いる試料としてのPTC
素子それぞれは、所定成分比で調合されたセラミックス
からなる直径18mmの円板状とされたサーミスタ素体
の両主面上それぞれにNiからなる金属めっき層を形成
し、かつ、各金属めっき層上にAgを主成分とする所定
厚みの電極層を形成してなるものである。そして、この
表1中における抵抗値(R25)は25℃における試料
の抵抗値を示しており、また、表1中の符号*を付した
試料は本発明の範囲外のものである。
Next, the inventors of the present invention prepared a PTC element 1 of this embodiment and a PTC element 10 of a conventional example, each of which had a different specification from each other, and conducted a characteristic comparison experiment. As a result, the results shown in Table 1 were obtained. In addition, PTC as a sample used in this experiment
Each element has a metal plating layer made of Ni formed on both main surfaces of a disc-shaped thermistor body having a diameter of 18 mm made of ceramics prepared at a predetermined component ratio, and a metal plating layer made of Ni is formed on each metal plating layer. And an electrode layer mainly composed of Ag and having a predetermined thickness. The resistance value (R25) in Table 1 indicates the resistance value of the sample at 25 ° C., and the sample marked with * in Table 1 is out of the scope of the present invention.

【0012】[0012]

【表1】 [Table 1]

【0013】すなわち、これらの表1によれば、サー
ミスタ素体の厚みが3.8mm未満と薄い試料1〜8で
は、金属めっき層の厚みに関わりなく良好なF耐圧特性
が得られる、また、素体厚みがともに3.8mmで金
属めっき層の厚みが互いに異なる試料9,10と試料1
1,12とを比較した場合、本発明の範囲外にある試料
9,10の方が本発明の範囲内にある試料11,12よ
りも低い電圧で破壊しており、金属めっき層の厚みを2
μm以上としたことによるF耐圧特性の改善が顕著に現
れている、ことが分かる。さらに、素体厚みが3.8
mmを越えて厚い試料13〜20を比較した場合におい
ても、本発明の範囲外にある試料13,17は本発明の
範囲内にある試料14〜16,18〜20よりも低い電
圧で破壊しており、やはり金属めっき層の厚みを2μm
以上としたことによるF耐圧特性の向上が見られる。
That is, according to these Tables 1, in Samples 1 to 8 in which the thickness of the thermistor body is as thin as less than 3.8 mm, good F breakdown voltage characteristics can be obtained regardless of the thickness of the metal plating layer. Samples 9 and 10 and Sample 1 both having a body thickness of 3.8 mm and different thicknesses of metal plating layers
When compared with Samples 1 and 12, Samples 9 and 10 outside the range of the present invention were broken at a lower voltage than Samples 11 and 12 outside the range of the present invention, and the thickness of the metal plating layer was reduced. 2
It can be seen that the improvement of the F breakdown voltage characteristics due to the thickness of not less than μm is remarkably exhibited. Furthermore, the element body thickness is 3.8
Even when comparing samples 13 to 20 thicker than 1 mm, samples 13 and 17 outside the scope of the present invention break at a lower voltage than samples 14 to 16 and 18 to 20 within the scope of the invention. Also, the thickness of the metal plating layer is 2 μm
The improvement in the F withstand voltage characteristic can be seen by the above.

【0014】[0014]

【発明の効果】以上説明したように、本発明にかかるP
TC素子によれば、3.8mm以上の厚みを有するサー
ミスタ素体の両主面上それぞれに厚み2μm以上の金属
めっき層を形成したうえ、この金属めっき層を介して銀
を主成分とする電極層を形成しているので、フラッシュ
耐圧特性の劣化を防止することが可能となり、その向上
が図れることになる結果、PTC素子における信頼性の
向上を図ることができるという効果が得られる。
As described above, according to the present invention, P
According to the TC element, a metal plating layer having a thickness of 2 μm or more is formed on each of both main surfaces of the thermistor body having a thickness of 3.8 mm or more, and an electrode mainly composed of silver is formed through the metal plating layer. Since the layer is formed, it is possible to prevent deterioration of the flash withstand voltage characteristic, and to improve the flash withstand voltage characteristic. As a result, the effect of improving the reliability of the PTC element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例にかかるPTC素子を簡略化して示す
外観斜視図である。
FIG. 1 is an external perspective view schematically showing a PTC element according to an embodiment.

【図2】自動消磁回路の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of an automatic degaussing circuit.

【図3】従来例にかかるPTC素子を簡略化して示す側
面図である。
FIG. 3 is a side view schematically showing a PTC element according to a conventional example.

【符号の説明】[Explanation of symbols]

1 PTC素子(正特性サーミスタ) 2 サーミスタ素体 3 金属めっき層 4 電極層 Reference Signs List 1 PTC element (positive characteristic thermistor) 2 Thermistor body 3 Metal plating layer 4 Electrode layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−305404(JP,A) 特開 平1−236602(JP,A) 特開 昭54−44797(JP,A) 実開 昭54−34048(JP,U) 特公 昭53−29386(JP,B2) 特公 昭51−20716(JP,B1) 特公 昭49−8379(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-305404 (JP, A) JP-A-1-236602 (JP, A) JP-A-54-44797 (JP, A) 34048 (JP, U) JP-B 53-29386 (JP, B2) JP-B 51-20716 (JP, B1) JP-B 49-8379 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3.8mm以上の厚みを有するサーミスタ
素体(2)の両主面上それぞれに金属めっき層(3)を
形成し、かつ、各金属めっき層(3)上には銀を主成分
とする電極層(4)を形成してなる正特性サーミスタで
あって、 前記金属めっき層(3)の厚み(t)を2μm以上とし
ていることを特徴とする正特性サーミスタ。
1. A metal plating layer (3) is formed on both main surfaces of a thermistor body (2) having a thickness of 3.8 mm or more, and silver is formed on each metal plating layer (3). A positive temperature coefficient thermistor formed by forming an electrode layer (4) as a main component, wherein a thickness (t) of said metal plating layer (3) is 2 μm or more.
JP11484492A 1992-05-07 1992-05-07 Positive thermistor Expired - Lifetime JP3169096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11484492A JP3169096B2 (en) 1992-05-07 1992-05-07 Positive thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11484492A JP3169096B2 (en) 1992-05-07 1992-05-07 Positive thermistor

Publications (2)

Publication Number Publication Date
JPH05315102A JPH05315102A (en) 1993-11-26
JP3169096B2 true JP3169096B2 (en) 2001-05-21

Family

ID=14648128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11484492A Expired - Lifetime JP3169096B2 (en) 1992-05-07 1992-05-07 Positive thermistor

Country Status (1)

Country Link
JP (1) JP3169096B2 (en)

Also Published As

Publication number Publication date
JPH05315102A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
CA1153828A (en) Thin film varistor
US5289155A (en) Positive temperature characteristic thermistor and manufacturing method therefor
US3619703A (en) Degaussing device having series connected ptc and ntc resistors
JP3175102B2 (en) Positive thermistor body and positive thermistor
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JP3169096B2 (en) Positive thermistor
JP3169089B2 (en) Positive thermistor
US6177857B1 (en) Thermistor device
JPH05315103A (en) Positive temperature coefficient thermistor
US6150918A (en) Degaussing unit comprising one or two thermistors
JP3837839B2 (en) Positive temperature coefficient thermistor
JP2967221B2 (en) Positive thermistor element
JPH0636904A (en) Positive characteristic thermister
JP3837838B2 (en) Positive temperature coefficient thermistor
JPH0992430A (en) Surge absorbing element
JPS6322444B2 (en)
JP2639098B2 (en) Current limiting element
JP2897486B2 (en) Positive thermistor element
JP3310010B2 (en) Positive characteristic thermistor device
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JPS6010701A (en) Positive temperature coefficient thermistor
EP0749132A1 (en) Positive temperature coefficient thermistor and thermistor device using it
JPH065403A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3166784B2 (en) Positive thermistor element
JP2559524Y2 (en) Positive characteristic thermistor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12