JP2699716B2 - Positive thermistor element - Google Patents

Positive thermistor element

Info

Publication number
JP2699716B2
JP2699716B2 JP26631491A JP26631491A JP2699716B2 JP 2699716 B2 JP2699716 B2 JP 2699716B2 JP 26631491 A JP26631491 A JP 26631491A JP 26631491 A JP26631491 A JP 26631491A JP 2699716 B2 JP2699716 B2 JP 2699716B2
Authority
JP
Japan
Prior art keywords
electrode
ptc element
ptc
main surfaces
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26631491A
Other languages
Japanese (ja)
Other versions
JPH05109504A (en
Inventor
淳 小島
清美 佐々木
範光 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP26631491A priority Critical patent/JP2699716B2/en
Publication of JPH05109504A publication Critical patent/JPH05109504A/en
Application granted granted Critical
Publication of JP2699716B2 publication Critical patent/JP2699716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正特性サーミスタ素子
に関し、特に、正特性サーミスタ素体の両主面に形成さ
れた電極が改良された正特性サーミスタ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor element, and more particularly to a positive temperature coefficient thermistor element having improved electrodes formed on both main surfaces of a positive temperature coefficient thermistor body.

【0002】[0002]

【従来の技術】従来、チタン酸バリウム系半導体磁器の
両主面に電極を形成してなる正特性サーミスタ(以下、
PTCと略す)素子が公知である。PTC素子では、P
TC素体が半導体磁器よりなるため、使用する電極材料
としては、半導体磁器との間に障壁を形成しない導電性
材料を用いる必要がある。PTC素子において従来より
用いられている電極としては、以下のようなものがあっ
た。 PTC素体の両主面にNiをめっきした後、200〜
500℃で熱処理することにより形成された電極。 PTC素体の両主面にNiをめっきした後、さらに、
Ag含有ペーストをNiめっき層上に塗布・焼成するこ
とにより構成された電極。 Ga等のオーミック成分を含有するAgペーストを塗
布し焼き付けて構成された電極。 Alペーストを塗布し焼き付けて構成された電極。
2. Description of the Related Art Conventionally, a positive temperature coefficient thermistor (hereinafter referred to as a thermistor) having electrodes formed on both main surfaces of a barium titanate-based semiconductor porcelain.
Elements (abbreviated as PTC) are known. In the PTC element, P
Since the TC element is made of semiconductor porcelain, it is necessary to use a conductive material that does not form a barrier between the TC element and the semiconductor porcelain. The following have been used as electrodes conventionally used in PTC elements. After plating both main surfaces of the PTC body with Ni,
An electrode formed by heat treatment at 500 ° C. After plating both main surfaces of the PTC body with Ni,
An electrode formed by applying and baking an Ag-containing paste on a Ni plating layer. An electrode formed by applying and baking an Ag paste containing an ohmic component such as Ga. An electrode formed by applying and baking an Al paste.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高温環
境下で用いられるPTC素子において、上記のような各
電極を形成した場合、以下のような種々の問題があっ
た。 のNiめっき電極では、Ni被膜の比抵抗が高いこ
と、及び電極の膜厚を厚くすることが困難であること等
の理由により、電極の膜抵抗を低下させることができな
かった。従って、電圧印加時の大電流に電極が耐えられ
ないことがあった。 のNi−Ag電極では、使用温度が高くなると、Ag
がサーマルマイグレーョンを起こし、使用中に両主面の
電極間での短絡が生じることがあった。 のオーミック成分含有Agペースト電極は、寿命が短
く、特に、高温PTC素子に用いた場合には、より一層
寿命が短くなるため、実際の製品として使用することが
できなかった。 のAlペーストを用いた電極では、Alの安定度が悪
く寿命が短かった。特に、高温PTC素子を、高湿雰囲
気下で使用した場合には、抵抗値が著しく上昇するとい
う欠点があった。
However, when the above-mentioned electrodes are formed in a PTC element used in a high-temperature environment, there are various problems as described below. In the case of the Ni-plated electrode, the film resistance of the electrode could not be reduced because of the high specific resistance of the Ni film and the difficulty in increasing the thickness of the electrode. Therefore, the electrode may not be able to withstand a large current when a voltage is applied. In the Ni-Ag electrode of No. 1, when the operating temperature increases, the Ag
In some cases, thermal migration occurred, and a short circuit occurred between electrodes on both main surfaces during use. The ohmic component-containing Ag paste electrode has a short life, and particularly when used in a high-temperature PTC element, has a much shorter life, and thus cannot be used as an actual product. In the electrode using the Al paste, the stability of Al was poor and the life was short. In particular, when a high-temperature PTC element is used in a high-humidity atmosphere, there is a disadvantage that the resistance value is significantly increased.

【0004】他方、のNiめっき電極上にAgペース
トを塗布・焼付けてなる電極の問題点、すなわちAgの
サーマルマイグレーションを防止するものとして、図4
に示すPTC素子が提案されている。図4(a),
(b)に示すPTC素子1では、チタン酸バリウム系半
導体磁器よりなるPTC素体2の両主面にNiをめっき
することによりNi電極3a,3bが形成されており、
該Ni電極3a,3b上に、周囲にギャップ領域gを残
してNi電極3a,3bよりも径の小さなAg電極4
a,4bが形成されている。すなわち、ギャップ領域g
を設けることにより、両主面のAg電極4a,4b間の
PTC素体2の側面を経由したサーマルマイグレーショ
ンを防止することが試みられている。
On the other hand, as a problem of an electrode formed by applying and baking an Ag paste on the other Ni-plated electrode, that is, to prevent thermal migration of Ag, FIG.
Has been proposed. FIG. 4 (a),
In the PTC element 1 shown in (b), Ni electrodes 3a and 3b are formed by plating Ni on both main surfaces of a PTC element body 2 made of a barium titanate-based semiconductor ceramic.
An Ag electrode 4 having a smaller diameter than the Ni electrodes 3a and 3b, leaving a gap region g around the Ni electrodes 3a and 3b.
a, 4b are formed. That is, the gap region g
It has been attempted to prevent thermal migration through the side surface of the PTC element body 2 between the Ag electrodes 4a and 4b on both main surfaces by providing the.

【0005】しかしながら、図5に部分拡大断面図で示
すように、ギャップ領域gでは、Ni電極3aのみが存
在するが、Niは比抵抗が比較的高いため、該ギャップ
領域gに存在するNi電極部分が抵抗膜として機能す
る。その結果、PTC素子1に電圧を印加した場合、P
TC素体2内に図6に示す電流分布(なお、電流分布を
示す図の縦軸Iは電流の強度を示す。)が生じていた。
その結果、PTC素体2内が不均一に発熱し、すなわち
図6に示すようにPTC素体2内に図6に示す温度分布
(温度分布を示す部の縦軸のTは温度を示す。)が生じ
ていた。よって、上記のような温度分布が生じている状
態において、PTC素子1にパルス電圧が数回印加され
た場合、ギャップ領域gにストレスが溜まり、甚だしき
場合にはPTC素子1が割れることがあった。
However, as shown in a partially enlarged sectional view of FIG. 5, in the gap region g, only the Ni electrode 3a exists, but since Ni has a relatively high specific resistance, the Ni electrode 3a existing in the gap region g is present. The portion functions as a resistive film. As a result, when a voltage is applied to the PTC element 1,
The current distribution shown in FIG. 6 (the vertical axis I in the diagram showing the current distribution indicates the intensity of the current) occurred in the TC element body 2.
As a result, the inside of the PTC body 2 generates heat unevenly, that is, as shown in FIG. 6, the temperature distribution shown in FIG. 6 in the PTC body 2 (T on the vertical axis of the portion showing the temperature distribution indicates the temperature. ) Had occurred. Therefore, when a pulse voltage is applied to the PTC element 1 several times in a state where the temperature distribution as described above is generated, stress accumulates in the gap region g, and in extreme cases, the PTC element 1 may be broken. .

【0006】よって、本発明の目的は、マイグレーショ
ンによる短絡が生じ難く、長寿命であり、かつPTC素
体の割れが生じ難いPTC装置を提供することにある。
Accordingly, it is an object of the present invention to provide a PTC device in which a short circuit due to migration is unlikely to occur, has a long service life, and in which a PTC element is unlikely to crack.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を達
成するためになさたものであり、正特性サーミスタ素体
の両主面に電極を形成してなる正特性サーミスタ素子で
あって、下記の電極を備えることを特徴とする。すなわ
ち、請求項1に記載の発明では、上記電極が、アルミニ
ウムを48〜96重量%及びケイ素を4〜52重量%含
有するAl−Si電極により構成されていることを特徴
とする。また、請求項2に記載の発明では、PTC素体
の両主面にめっきにより形成されたNi電極と、上記N
i電極上に形成されており、かつアルミニウムを48〜
96重量%及びケイ素を4〜52重量%含有するAl−
Si電極とを有することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and is a positive temperature coefficient thermistor element having electrodes formed on both main surfaces of a positive temperature coefficient thermistor element body, It is characterized by comprising the following electrodes. That is, the invention according to claim 1 is characterized in that the electrode is constituted by an Al—Si electrode containing 48 to 96% by weight of aluminum and 4 to 52% by weight of silicon. According to the second aspect of the present invention, the Ni electrode formed by plating on both main surfaces of the PTC element and the NTC
formed on the i-electrode, and aluminum
Al- containing 96% by weight and 4-52% by weight of silicon
And a Si electrode.

【0008】上記請求項1,2に記載の発明のAl−S
i電極の組成において、アルミニウム及びケイ素含有量
を上記の範囲に限定したのは、Alが48重量%未満及
びSiが52重量%を超えると、PTC素体に対してオ
ーミックな接触が得られないからであり、かつ耐湿特性
も劣化するからである。また、Alが96重量%を超
え、Siが4重量%未満の場合には、耐湿特性が劣化す
るからである。アルミニウム及びケイ素を上記特定の割
合で含有する電極材料は、本願出願人が先に提出した特
願平2−340860号に開示されており、アルミニウ
ム粉末及びケイ素粉末に低融点ガラスフリット及び有機
ビヒクルを加えてペーストとし、該ペーストを塗布し、
焼き付けることにより電極として完成される。アルミニ
ウム粉末として、例えば粒径が5〜30μm程度の粉末
が、また、ケイ素粉末として、例えば粒径が0.5〜1
0.0μm程度の粉末が用いられる。また、低融点ガラ
スフリット及び有機ビヒクルの混合割合は、特に限定は
されないが、一例を挙げると、上記アルミニウム粉末及
びケイ素粉末を合計で70重量%に対し、低融点ガラス
フリット10重量%及び有機ビヒクル20重量%の割合
で調合することができる。
The Al-S according to the first and second aspects of the present invention.
In the composition of the i-electrode, the content of aluminum and silicon is limited to the above range. When Al is less than 48% by weight and Si exceeds 52% by weight, ohmic contact with the PTC element cannot be obtained. This is because the moisture resistance is also deteriorated. Also, when Al exceeds 96% by weight and Si is less than 4% by weight, the moisture resistance is deteriorated. An electrode material containing aluminum and silicon at the above specific ratio is disclosed in Japanese Patent Application No. 2-340860 previously filed by the present applicant, and a low melting point glass frit and an organic vehicle are added to aluminum powder and silicon powder. In addition to paste, apply the paste,
The electrode is completed by baking. As the aluminum powder, for example, a powder having a particle size of about 5 to 30 μm, and as the silicon powder, for example, a powder having a particle size of 0.5 to 1 μm.
A powder of about 0.0 μm is used. The mixing ratio of the low melting point glass frit and the organic vehicle is not particularly limited, but, for example, for example, 10% by weight of the low melting point glass frit and the organic vehicle with respect to 70% by weight of the aluminum powder and silicon powder in total. It can be prepared in a proportion of 20% by weight.

【0009】[0009]

【作用】請求項1に記載の発明では、上記特定の割合で
アルミニウム及びケイ素を含有するAl−Si電極を用
いているため、両主面の電極間におけるマイグレーショ
ンが生じない。また、Al−Si電極は、後述の実施例
から明らかなように、寿命特性も優れている。また、請
求項2に記載の発明では、Ni電極上にアルミニウム及
びケイ素を上記特定の範囲で含有するAl−Si電極が
形成されているため、両主面の電極間におけるマイグレ
ーションが生じ難く、かつ電極の経時による劣化も生じ
難い。さらに、Ni電極上の全面にAl−Si電極が形
成されているため、PTC素体内に温度分布が生じ難
く、従ってパルス電圧を印加した場合であってもPTC
素体の割れが生じ難い。
According to the first aspect of the present invention, since the Al-Si electrode containing aluminum and silicon in the above specific ratio is used, no migration occurs between the electrodes on both main surfaces. Further, the Al-Si electrode also has excellent life characteristics, as is apparent from the examples described later. According to the second aspect of the present invention, since the Al-Si electrode containing aluminum and silicon in the above-described specific range is formed on the Ni electrode, migration between the electrodes on both main surfaces hardly occurs, and Deterioration of the electrode over time is unlikely to occur. Further, since the Al-Si electrode is formed on the entire surface of the Ni electrode, a temperature distribution hardly occurs in the PTC body, so that even when a pulse voltage is applied, the PTC
The element is hardly cracked.

【0010】[0010]

【実施例】実施例1 アルミニウム含有割合が72重量%及びケイ素含有割合
が28重量%となるように混合された金属粉末70重量
部に対し、低融点ガラスフリット10重量部及び有機ビ
ヒクル20重量部を混合し、混練することによりAl−
Siペーストを作製した。他方、20×15×4mmの
角板状のPb含有チタン酸バリウム系PTC素体(両主
面間の抵抗値は120Ω)を用意した。このPTC素体
は、240℃で発熱するものである。上記PTC素体の
両主面に、前述のようにして得られたAl−Siペース
トを10μmの厚みに塗布し、600℃の温度で30分
間焼き付けることにより、Al−Si電極を上記角板状
PTC素体の両主面に形成した。このようにして得られ
たPTC素子を、図1に示す。PTC素子11は、角板
上記PTC素体12の両主面に上記Al−Si電極13
a,13bを形成した構造を有する。
EXAMPLE 1 10 parts by weight of a low-melting glass frit and 20 parts by weight of an organic vehicle based on 70 parts by weight of a metal powder mixed so that the aluminum content is 72% by weight and the silicon content is 28% by weight. Are mixed and kneaded to form an Al-
An Si paste was produced. On the other hand, a 20 × 15 × 4 mm square plate-shaped Pb-containing barium titanate-based PTC element (resistance between both main surfaces was 120Ω) was prepared. This PTC element generates heat at 240 ° C. The Al-Si paste obtained as described above was applied to both main surfaces of the PTC body to a thickness of 10 μm, and baked at a temperature of 600 ° C. for 30 minutes to form the Al-Si electrode into the square plate shape. It was formed on both main surfaces of the PTC body. FIG. 1 shows the PTC element thus obtained. The PTC element 11 is provided on both main surfaces of the square plate PTC element body 12 by the Al-Si electrodes 13.
a and 13b are formed.

【0011】比較例1 実施例1で用いたのと同一の角板状PTC素体を用意
し、両主面にNiを無電解めっきし、しかる後200〜
500℃の温度で熱処理することにより両主面にNi電
極が形成されたPTC素子を用意し、比較例1とした。比較例2 上記実施例1で用いたのと同一の角板状PTC素体を用
意し、両主面にNiを無電解めっきした後、さらにAg
含有ペーストをNi電極上に全面に塗布し、焼き付けて
Ag電極を形成し、比較例2のPTC素子とした。比較例3 実施例1で用いた角板状PTC素体の両主面に、オーミ
ック成分含有Agペーストを5μmの厚みに塗布し、6
00℃の温度で30分間焼き付けることにより、電極を
形成し、比較例3のPTC素子とした。比較例4 実施例1で用いた角板状PTC素体の両主面に、Alペ
ーストを塗布し、焼き付けることにより、電極を形成
し、比較例4のPTC素子とした。
Comparative Example 1 The same square plate-shaped PTC element used in Example 1 was prepared, and Ni was electrolessly plated on both principal surfaces.
A heat treatment was performed at a temperature of 500 ° C. to prepare a PTC element in which Ni electrodes were formed on both main surfaces. Comparative Example 2 The same square plate-shaped PTC element used in Example 1 was prepared, Ni was electrolessly plated on both main surfaces, and then Ag was further added.
The containing paste was applied on the entire surface of the Ni electrode and baked to form an Ag electrode, thereby obtaining a PTC element of Comparative Example 2. Comparative Example 3 An ohmic component-containing Ag paste was applied to both main surfaces of the square plate-shaped PTC element body used in Example 1 to a thickness of 5 μm,
An electrode was formed by baking at a temperature of 00 ° C. for 30 minutes to obtain a PTC element of Comparative Example 3. Comparative Example 4 An electrode was formed by applying and baking an Al paste on both main surfaces of the square plate-shaped PTC element used in Example 1 to obtain a PTC element of Comparative Example 4.

【0012】実施例1及び比較例1〜4のPTC素子の評価 実施例1のPTC素子及び比較例1のPTC素子におい
て、それぞれ、両主面の電極間に200V及び5秒のパ
ルス電圧を3回印加した。その結果、比較例1のPTC
素子では、Ni電極に焼き切れが発生したが、実施例1
のPTC素子では外観上の異常は全く認められなかっ
た。また、実施例1のPTC素子及び比較例2のPTC
素子に、200Vの電圧を500時間印加し、マイグレ
ーションの発生の有無を調べた。その結果、比較例2の
PTC素子では、10個のPTC素子あたり4個のPT
C素子においてマイグレーションに起因するPTC素体
の破壊が発生しており、かつ残りの6個のPTC素子に
おいても2mm以上のマイグレーションが発生してい
た。これに対して、実施例1のPTC素子では、上記の
ようなマイグレーションの発生は全く認められなかっ
た。
Evaluation of PTC Element of Example 1 and Comparative Examples 1-4 In the PTC element of Example 1 and the PTC element of Comparative Example 1, 200 V and a 5-second pulse voltage were applied between the electrodes on both main surfaces, respectively. Times applied. As a result, the PTC of Comparative Example 1
In the device, the Ni electrode burned out.
No abnormalities in appearance were observed in the PTC element of No. Further, the PTC element of Example 1 and the PTC of Comparative Example 2
A voltage of 200 V was applied to the device for 500 hours, and the occurrence of migration was examined. As a result, in the PTC element of Comparative Example 2, four PTC elements per ten PTC elements were used.
The PTC element was destroyed due to migration in the C element, and migration of 2 mm or more occurred in the remaining six PTC elements. On the other hand, in the PTC element of Example 1, the occurrence of migration as described above was not observed at all.

【0013】実施例1のPTC素子及び比較例3,4の
PTC素子について、下記の4種類の条件下において1
000時間経過した後の抵抗値の変化率を測定し、それ
によって寿命特性を比較した。 (1)湿中放置…60℃及び相対湿度90〜95%の高
温・高湿環境下に放置した。 (2)湿中断続負荷…60℃及び相対湿度90〜95%
の高温・高湿環境下において、200Vの電圧を10分
間印加した後20分間放置する操作を繰り返した。 (3)高温放置…150℃の温度の高温槽中に放置。 (4)常温連続負荷…常温(25℃)及び常湿中(相対
湿度65〜75%)において、200Vの電圧を連続的
に印加した。 上記4種類の環境の下における実施例1及び比較例3,
4のPTC素子の1000時間後の抵抗値変化率を、下
記の表1に示す。
With respect to the PTC element of Example 1 and the PTC elements of Comparative Examples 3 and 4,
After the lapse of 000 hours, the rate of change of the resistance value was measured, thereby comparing the life characteristics. (1) Leaving in humidity: The device was left in a high-temperature and high-humidity environment at 60 ° C. and a relative humidity of 90 to 95%. (2) Humidity interruption continuous load: 60 ° C and relative humidity 90 to 95%
In a high-temperature, high-humidity environment, the operation of applying a voltage of 200 V for 10 minutes and then allowing the voltage to stand for 20 minutes was repeated. (3) High temperature storage: Left in a high temperature bath at a temperature of 150 ° C. (4) Normal temperature continuous load: A voltage of 200 V was continuously applied at normal temperature (25 ° C.) and normal humidity (relative humidity 65 to 75%). Example 1 and Comparative Example 3 under the above four environments
Table 1 below shows the rate of change in resistance of the PTC element No. 4 after 1000 hours.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から明らかなように、比較例3,4に
比べて実施例1のPTC素子では、全ての環境下におい
て抵抗値の変化が非常に小さいことがわかる。
As is clear from Table 1, the PTC element of Example 1 has a very small change in resistance value in all environments as compared with Comparative Examples 3 and 4.

【0016】実施例2 実施例2は、請求項2に記載の発明にかかる実施例に相
当する。直径14mm×厚み2.3mmの円板状のチタ
ン酸バリウム系PTC素体(両主面間の抵抗値は15
Ω)を用意し、両主面にNiを無電解めっきし、厚み
1.5μmのNi電極を形成した。次に、上記Ni電極
上に、実施例1で用いたのと同一のAl−Siペースト
を塗布し、600℃の温度で30分間焼き付けることに
より、Al−Si電極を形成した。このようにして得ら
れた実施例1のPTC素子の構造を図2に示す。PTC
素子21では、PTC素体22の両主面の全面にNi電
極23a,23bが形成されており、さらにNi電極2
3a,23b上の全面に上記Al−Si電極24a,2
4bが形成されている。上記のようにして得た実施例2
のPTC素子21の両主面に電圧を印加し、PTC素体
22内の電流密度分布及び温度分布を測定した。結果を
図3に示す。図3から明らかなように、Ni電極23
a,23b上の全面にAl−Si電極24a,24bが
形成されているため、電流分布はPTC素体22の全領
域に渡り均一であることがわかる。また、PTC素体2
2内において温度分布もさほど偏っていないことがわか
る。
Embodiment 2 Embodiment 2 corresponds to the embodiment according to the second aspect of the present invention. A disc-shaped barium titanate-based PTC element having a diameter of 14 mm and a thickness of 2.3 mm (the resistance value between both principal surfaces is 15
Ω), and Ni was electrolessly plated on both main surfaces to form a 1.5 μm thick Ni electrode. Next, the same Al-Si paste as used in Example 1 was applied on the Ni electrode and baked at a temperature of 600 ° C. for 30 minutes to form an Al-Si electrode. FIG. 2 shows the structure of the PTC element of Example 1 thus obtained. PTC
In the element 21, Ni electrodes 23 a and 23 b are formed on the entire surfaces of both main surfaces of the PTC element body 22.
The Al-Si electrodes 24a, 24a
4b is formed. Example 2 obtained as described above
A voltage was applied to both main surfaces of the PTC element 21, and the current density distribution and the temperature distribution in the PTC element 22 were measured. The results are shown in FIG. As is clear from FIG.
Since the Al-Si electrodes 24a and 24b are formed on the entire surface of the PTC elements a and 23b, it can be seen that the current distribution is uniform over the entire area of the PTC body 22. PTC body 2
It can be seen that the temperature distribution is not so biased within 2.

【0017】比較のために、実施例2で用いたのと同一
のPTC素体の両主面にNiを無電解めっきした後、さ
らに幅1.5mmのギャップ領域を残してAg粉末を含
有するAgペーストをスクリーン印刷により膜厚4μm
となるように印刷し、600℃の温度で30分間焼き付
けることにより電極を形成したPTC素子を用意し、比
較例5とした。上記実施例2及び比較例5の各PTC素
子に、200V及び5秒のパルスを100回印加したと
ころ、比較例5のPTC素子では20個あたり15個の
素子において割れが生じた。これに対して、実施例2の
PTC素子では、外観上の以上は全く認められなかっ
た。また、上記パルスを印加した後に、電極間マイグレ
ーションの発生の有無を目視により調べたところ、実施
例2のPTC素子ではマイグレーションの発生は全く認
められなかった。
For comparison, the same PTC body used in Example 2 was electrolessly plated with Ni on both main surfaces, and further contained Ag powder except for a gap region having a width of 1.5 mm. Ag paste is screen-printed to a thickness of 4 μm
A PTC element having electrodes formed by printing and baking at a temperature of 600 ° C. for 30 minutes was prepared as Comparative Example 5. When a pulse of 200 V and 5 seconds was applied 100 times to each of the PTC elements of Example 2 and Comparative Example 5, cracks occurred in 15 out of 20 PTC elements of Comparative Example 5. On the other hand, in the PTC element of Example 2, no more than the appearance was recognized. After the application of the pulse, the presence or absence of migration between the electrodes was visually examined. As a result, no migration was observed in the PTC element of Example 2.

【0018】[0018]

【発明の効果】請求項1に記載の発明にかかるPTC素
子は、上記特定の範囲でアルミニウム及びケイ素を含む
Al−Si電極をPTC素体の両主面に形成された構造
を有するため、電極間マイグレーションによる短絡事故
を防止することができ、かつPTC素子の経時による特
性の劣化を防止することができる。従って、長寿命のP
TC素子が提供される。同様に、請求項2に記載の発明
では、PTC素体の両主面の全面にNi電極が形成され
ており、Ni電極上の全面に上記特定の範囲でアルミニ
ウム及びケイ素を含むAl−Si電極が形成されている
ため、マイグレーションによる短絡事故を防止すること
ができ、かつPTC素子の経時による特性の劣化を防止
することができると共に、高温環境下で使用したとして
も、パルス電圧等によるPTC素体の割れの生じ難い信
頼性に優れたPTC素子を提供することができる。
The PTC element according to the first aspect of the present invention has a structure in which Al-Si electrodes containing aluminum and silicon in the above specific range are formed on both main surfaces of the PTC element body. It is possible to prevent a short circuit accident due to the migration and prevent deterioration of the characteristics of the PTC element over time. Therefore, long life P
A TC device is provided. Similarly, in the invention described in claim 2, the Ni electrode is formed on the entire surface of both main surfaces of the PTC element body, and the Al-Si electrode containing aluminum and silicon in the above specific range is formed on the entire surface of the Ni electrode. Formed, it is possible to prevent a short circuit accident due to migration, to prevent deterioration of the characteristics of the PTC element over time, and to use the PTC element due to a pulse voltage or the like even when used in a high temperature environment. It is possible to provide a highly reliable PTC element which is less likely to break the body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかるPTC素子を示す側
面図。
FIG. 1 is a side view showing a PTC element according to one embodiment of the present invention.

【図2】本発明の他の実施例にかかるPTC素子を示す
側面図。
FIG. 2 is a side view showing a PTC element according to another embodiment of the present invention.

【図3】本発明の他の実施例にかかるPTC素子におけ
る電流分布及び温度分布を説明するための図。
FIG. 3 is a diagram for explaining current distribution and temperature distribution in a PTC element according to another embodiment of the present invention.

【図4】(a)及び(b)は従来のPTC素子を説明す
るための斜視図及び側面図。
FIGS. 4A and 4B are a perspective view and a side view for explaining a conventional PTC element.

【図5】従来のPTC素子の問題点を説明するための部
分拡大断面図。
FIG. 5 is a partially enlarged sectional view for explaining a problem of the conventional PTC element.

【図6】従来のPTC素子のPTC素体内の電流分布及
び温度分布を説明するための図。
FIG. 6 is a diagram for explaining current distribution and temperature distribution in a PTC element body of a conventional PTC element.

【符号の説明】[Explanation of symbols]

11…PTC素子 12…PTC素体 13a,13b…Al−Si電極 11: PTC element 12: PTC element 13a, 13b: Al-Si electrode

フロントページの続き (56)参考文献 特開 昭56−124201(JP,A) 特開 平2−216806(JP,A) 特開 平2−305404(JP,A) 特開 昭49−32182(JP,A)Continuation of front page (56) References JP-A-56-124201 (JP, A) JP-A-2-216806 (JP, A) JP-A-2-305404 (JP, A) JP-A-49-32182 (JP, A) , A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正特性サーミスタ素体の両主面に電極を
形成してなる正特性サーミスタ素子において、 前記電極が、アルミニウム48〜96重量%及びケイ素
4〜52重量%を含有するAl−Si電極により構成さ
れていることを特徴とする、正特性サーミスタ素子。
1. A positive temperature coefficient thermistor element comprising electrodes formed on both main surfaces of a positive temperature coefficient thermistor element, wherein said electrode is made of Al-Si containing 48 to 96% by weight of aluminum and 4 to 52% by weight of silicon. A positive temperature coefficient thermistor element comprising an electrode.
【請求項2】 正特性サーミスタ素体の両主面に電極を
形成してなる正特性サーミスタ素子において、 前記電極が、前記正特性サーミスタ素体の両主面にNi
をめっきすることによた形成されたNi電極と、前記N
i電極の全面に形成されており、かつアルミニウム48
〜96重量%及びケイ素4〜52重量%を含有するAl
−Si電極とからなることを特徴とする、正特性サーミ
スタ素子。
2. A positive temperature coefficient thermistor element comprising electrodes formed on both main surfaces of a positive temperature coefficient thermistor body, wherein said electrodes are formed on both main surfaces of said positive temperature coefficient thermistor body by Ni.
A Ni electrode formed by plating
formed on the entire surface of the i-electrode and made of aluminum 48
Al containing ~ 96% by weight and 4-52% by weight of silicon
A positive temperature coefficient thermistor element comprising a Si electrode;
JP26631491A 1991-10-15 1991-10-15 Positive thermistor element Expired - Lifetime JP2699716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26631491A JP2699716B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26631491A JP2699716B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Publications (2)

Publication Number Publication Date
JPH05109504A JPH05109504A (en) 1993-04-30
JP2699716B2 true JP2699716B2 (en) 1998-01-19

Family

ID=17429207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26631491A Expired - Lifetime JP2699716B2 (en) 1991-10-15 1991-10-15 Positive thermistor element

Country Status (1)

Country Link
JP (1) JP2699716B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057347A1 (en) 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Optoelectronic device
EP3018662A1 (en) * 2013-07-02 2016-05-11 Hitachi Metals, Ltd. Ptc element and heat-generating module
JPWO2015115422A1 (en) * 2014-01-28 2017-03-23 日立金属株式会社 PTC element and heating module

Also Published As

Publication number Publication date
JPH05109504A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
EP0235749B1 (en) Positive ceramic semiconductor device
US4053864A (en) Thermistor with leads and method of making
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP2699716B2 (en) Positive thermistor element
JP2001196201A (en) Thick film resistor
JP2897486B2 (en) Positive thermistor element
JP2757305B2 (en) Chip varistor
JPH0562804A (en) Ohmic electrode material and semiconductor ceramic element
JP3310010B2 (en) Positive characteristic thermistor device
JP2967221B2 (en) Positive thermistor element
JP2004214643A (en) Laminated chip varistor and manufacturing method therefor
JP3775003B2 (en) Conductive paste for semiconductor ceramic and semiconductor ceramic component
JP2639098B2 (en) Current limiting element
JP2504048B2 (en) Positive characteristic porcelain semiconductor
JP2009059755A (en) Electrode for ntc thermistor
JPH07105719A (en) Conductive paste and resistor element
JPS60701A (en) Ormic electrode
JP3016560B2 (en) Method for manufacturing voltage non-linear resistor
JPH07297008A (en) Positive temperature coefficient thermistor and thermistor device using the same
JPH04211101A (en) Voltage nonlinear resistor element
JPH0370361B2 (en)
JP2559524Y2 (en) Positive characteristic thermistor device
JP2000021606A (en) Electrode forming method of barium titanate based positive temperature coefficient thermistor
JPH0729702A (en) Ptc thermistor
JPH07226303A (en) Electrode forming method for ptc thermistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080926

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120926

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120926