JPH11354801A - Manufacture of polycrystalline semiconductor - Google Patents

Manufacture of polycrystalline semiconductor

Info

Publication number
JPH11354801A
JPH11354801A JP15588998A JP15588998A JPH11354801A JP H11354801 A JPH11354801 A JP H11354801A JP 15588998 A JP15588998 A JP 15588998A JP 15588998 A JP15588998 A JP 15588998A JP H11354801 A JPH11354801 A JP H11354801A
Authority
JP
Japan
Prior art keywords
film
oxide film
amorphous silicon
silicon film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15588998A
Other languages
Japanese (ja)
Other versions
JP4223590B2 (en
Inventor
Yuki Matsuura
由紀 松浦
Takeshi Oyama
毅 大山
Masashi Goto
真史 後藤
Yasuto Kawahisa
慶人 川久
Hiroshi Mihashi
浩 三橋
Takashi Fujimura
尚 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15588998A priority Critical patent/JP4223590B2/en
Publication of JPH11354801A publication Critical patent/JPH11354801A/en
Application granted granted Critical
Publication of JP4223590B2 publication Critical patent/JP4223590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent formation of protrusions on a polycrystalline Si film surface formed by laser-annealing to crystallize amorphous Si, improve the gate dielectric breakdown voltage of a polycrystalline Si TFT and realize a high display quality liquid crystal display element. SOLUTION: An amorphous Si film 14 is cleaned with an ozone-containing solution for forming an oxide film, the oxide film and impurities are cleaned out with HF at the same time until the oxide film and impurities are perfectly removed, where the contact angle of pure water 17 dropped on the amorphous Si film 14 to this film 14 to 60 deg. or more. After the oxide film and impurities are removed completely, the amorphous Si film 14 is laser-annealed to crystallize it, thus obtaining a polycrystalline Si.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質シリコンを
結晶化して多結晶シリコンを得る多結晶半導体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polycrystalline semiconductor which obtains polycrystalline silicon by crystallizing amorphous silicon.

【0002】[0002]

【従来の技術】近年、高精細な液晶表示素子のスイッチ
ング素子として、低コスト化を実現すると共に移動度が
高く且つ液晶表示素子の駆動も含めた高性能化が可能で
あることから、多結晶シリコンをチャネル層に用いる多
結晶シリコン薄膜トランジスタ(以下多結晶シリコンT
FTと略称する。)の実用化が進められている。液晶表
示素子では無アルカリガラス等の絶縁性の基板上に多結
晶シリコンTFTを形成するため、基板ダメージの少な
い低温プロセスで多結晶シリコン膜を形成する必要があ
り、一般には、非晶質シリコン膜にレーザ光を照射して
結晶化する事により多結晶シリコンを得るレーザアニー
ル法が採用されている。このレーザアニール法により形
成した多結晶シリコン膜をチャネルに用いた多結晶シリ
コンTFTの電界効果移動度は100cm2 /Vs以上
であることが知られている。
2. Description of the Related Art In recent years, as a switching element for a high-definition liquid crystal display element, a polycrystal has been realized because of its low cost, high mobility, and high performance including driving of the liquid crystal display element. Polycrystalline silicon thin film transistor using silicon as a channel layer (hereinafter polycrystalline silicon T
Abbreviated as FT. ) Is being put to practical use. In a liquid crystal display device, since a polycrystalline silicon TFT is formed on an insulating substrate such as non-alkali glass, it is necessary to form the polycrystalline silicon film by a low-temperature process with little damage to the substrate. A laser annealing method for obtaining polycrystalline silicon by irradiating the substrate with a laser beam to crystallize the substrate is employed. It is known that the field effect mobility of a polycrystalline silicon TFT using a polycrystalline silicon film formed by this laser annealing method as a channel is 100 cm 2 / Vs or more.

【0003】そしてレーザアニール法として、従来は図
5(a)に示す様に、ガラス基板1上にアンダーコート
層2を介し低温で非晶質シリコン膜3を形成する。次に
図5(b)に示す様にレーザアニール時に膜アブレーシ
ョンが生じないように500℃で1時間の脱水素処理を
おこなう。次に図5(c)に示す様に、非晶質シリコン
膜3表面に形成された自然酸化膜4を1%弗酸水(H
F)で15秒洗浄除去する。次に図5(d)に示す様に
レーザ光を照射して非晶質シリコン膜3を結晶化させ、
図5(e)に示す様にガラス基板1上に多結晶シリコン
膜6を得ていた。
Conventionally, as a laser annealing method, an amorphous silicon film 3 is formed on a glass substrate 1 at a low temperature via an undercoat layer 2 as shown in FIG. Next, as shown in FIG. 5B, dehydrogenation treatment is performed at 500 ° C. for 1 hour so that film ablation does not occur during laser annealing. Next, as shown in FIG. 5C, the natural oxide film 4 formed on the surface of the amorphous silicon film 3 is made of 1% hydrofluoric acid (H
F) Wash and remove for 15 seconds. Next, as shown in FIG. 5D, the amorphous silicon film 3 is crystallized by irradiating a laser beam,
As shown in FIG. 5E, a polycrystalline silicon film 6 was obtained on the glass substrate 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の、
非晶質シリコン膜にレーザ光を照射して結晶化させ、多
結晶シリコン膜を形成するという上記レーザアニール法
では、形成された多結晶シリコン膜表面が平滑で無く、
80nm以上の突起を生じてしまっていた。このため従
来の突起を生じた多結晶シリコン膜を用いて、ゲート上
置きのコプラナ型構造の多結晶シリコンTFTを形成す
ると、多結晶シリコン表面に生じた突起の高さが大きい
場所では、突起部分で多結晶シリコン膜を被覆するゲー
ト絶縁膜のカバレッジが低下し、多結晶シリコンTFT
のゲート絶縁耐圧を劣化する原因となっていた。
SUMMARY OF THE INVENTION However, in the prior art,
In the laser annealing method of irradiating the amorphous silicon film with a laser beam to crystallize and form a polycrystalline silicon film, the surface of the formed polycrystalline silicon film is not smooth,
Protrusions of 80 nm or more were formed. For this reason, when a polycrystalline silicon TFT having a coplanar structure on a gate is formed using a conventional polycrystalline silicon film having a projection, when the height of the projection formed on the surface of the polycrystalline silicon is large, the projection portion is formed. Reduces the coverage of the gate insulating film that covers the polycrystalline silicon film with the polycrystalline silicon TFT.
This causes the gate withstand voltage to deteriorate.

【0005】そして従来のレーザアニール法で形成した
多結晶シリコン膜をチャネル層とする多結晶シリコンT
FTを液晶表示素子の駆動回路部分に適用し、例えばゲ
ート酸化膜厚100nmとしてTFTを作製した場合、
30V程度のゲート電圧で多結晶シリコンTFTが破壊
してしまい、液晶表示素子の表示上では線欠陥等の画像
不良を生じ手、液晶表示そしの表示品位を低下し、製造
歩留まりを低下するという問題を有していた。
A polycrystalline silicon film having a polycrystalline silicon film formed by a conventional laser annealing method as a channel layer.
When FT is applied to a drive circuit portion of a liquid crystal display element and a TFT is manufactured with a gate oxide film thickness of 100 nm, for example,
At a gate voltage of about 30 V, the polycrystalline silicon TFT is broken, which causes image defects such as line defects on the display of the liquid crystal display element, lowers the display quality of the liquid crystal display, and lowers the production yield. Had.

【0006】このゲート絶縁耐圧を劣化する原因である
多結晶シリコン膜表面の突起は、レーザアニールによる
非晶質シリコンの結晶化プロセスが数百n秒程度の瞬時
溶融結晶化であるため、結晶成長時に結晶粒界がぶつか
りあう部分に生じてしまうものである。そして多結晶シ
リコン表面の突起をXPS(X−ray photoe
lectron spectroscopy)により分
析した所、突起のない部分に比べて酸素元素が多いとい
う結果が得られた。更に非晶質シリコン膜表面の酸化膜
厚とレーザアニール後に多結晶シリコン膜表面に生じた
突起の高さとの関係を調べた所、図6に示す様に、自然
酸化膜4が2〜5nm程度である場合の突起の高さが6
0〜90nm程度であるのに比し、自然酸化膜4が10
nm程度である場合の突起の高さは150nmと高くな
っていた。
The projections on the surface of the polycrystalline silicon film, which cause deterioration of the gate dielectric breakdown voltage, are crystallized because the process of crystallization of amorphous silicon by laser annealing is instantaneous melting crystallization for several hundred nanoseconds. Occasionally, a crystal grain boundary is generated at a portion where the crystal collision occurs. Then, the projections on the surface of the polycrystalline silicon are formed by XPS (X-ray photoe).
When analyzed by electron spectroscopy, it was found that the amount of the oxygen element was larger than that of the portion having no protrusion. Further, the relationship between the thickness of the oxide film on the surface of the amorphous silicon film and the height of the protrusions formed on the surface of the polycrystalline silicon film after the laser annealing was examined. As shown in FIG. If the height of the protrusion is 6
The native oxide film 4 has a thickness of 10 to 90 nm.
The height of the protrusion when the thickness was about nm was as high as 150 nm.

【0007】上述の実験結果から、従来のレーザアニー
ル法では、非晶質シリコン膜表面の酸化膜及び表面吸着
不純物の洗浄除去が完全で無く、レーザ光照射前の非晶
質シリコン膜表面に自然酸化膜や、炭素(C)、ボロン
(B)等の不純物がわずかでも存在していると、これ等
が、結晶化した多結晶シリコン膜表面に高さ80nm以
上の突起を生じさせる要因と成っている事が判明した。
[0007] From the above experimental results, in the conventional laser annealing method, the oxide film on the surface of the amorphous silicon film and the surface adsorbed impurities are not completely removed by washing, and the surface of the amorphous silicon film before laser light irradiation is naturally removed. The presence of even a small amount of an impurity such as an oxide film or carbon (C) or boron (B) causes a protrusion having a height of 80 nm or more on the surface of the crystallized polycrystalline silicon film. It turned out that.

【0008】又、従来のレーザアニール法での図5
(d)に示すレーザ光照射前の非晶質シリコン膜表面の
自然酸化膜や不純物の除去状態を調べるため、図7に示
す様に非晶質シリコン膜3表面に純水(水滴)7を滴下
し、接触角測定器にて非晶質シリコン膜3表面と純水7
との接触角θを測定した所、35゜〜40゜の接触角を
成しているという結果をえられた。
FIG. 5 shows a conventional laser annealing method.
As shown in FIG. 7D, pure water (water droplets) 7 is applied to the surface of the amorphous silicon film 3 as shown in FIG. The surface of the amorphous silicon film 3 and pure water 7 were dropped using a contact angle measuring device.
When the contact angle θ was measured, it was found that the contact angle was 35 ° to 40 °.

【0009】他方、レーザ光照射前の非晶質シリコン膜
表面の酸化膜や不純物の除去状態と、非晶質シリコン膜
表面に滴下された純水との接触角との関係を調べたとこ
ろ、接触角測定器にて測定された非晶質シリコン膜表面
と純水との接触角θが60゜以上であれば、酸化膜や不
純物の除去状態が完全であるという事が判明した。
On the other hand, when the relationship between the removal state of the oxide film and impurities on the surface of the amorphous silicon film before laser light irradiation and the contact angle with pure water dropped on the surface of the amorphous silicon film was examined, When the contact angle θ between the surface of the amorphous silicon film and the pure water measured by the contact angle measuring device was 60 ° or more, it was found that the oxide film and impurities were completely removed.

【0010】上記の事から、非晶質シリコン膜3表面と
純水7との接触角が35゜〜40゜である、前述の従来
のレーザアニール法による非晶質シリコン膜3表面は、
弗酸水(HF)による洗浄が十分でなく、非晶質シリコ
ン膜表面の自然酸化膜のエッチングが不十分であり、又
表面に吸着している炭素(C)、ボロン(B)等の大気
中の不純物の洗浄も不十分であり、この事が要因となり
多結晶シリコン膜表面に80nm以上の突起を生、ひい
ては多結晶シリコンTFTのゲート絶縁耐圧を劣化させ
てしまう事が解明された。
From the above, the surface of the amorphous silicon film 3 formed by the above-described conventional laser annealing method, in which the contact angle between the surface of the amorphous silicon film 3 and the pure water 7 is 35 ° to 40 °,
Insufficient cleaning with hydrofluoric acid (HF), insufficient etching of the native oxide film on the surface of the amorphous silicon film, and air such as carbon (C) and boron (B) adsorbed on the surface. It has been clarified that cleaning of impurities in the inside is insufficient, and this causes a protrusion of 80 nm or more on the surface of the polycrystalline silicon film, which eventually deteriorates the gate withstand voltage of the polycrystalline silicon TFT.

【0011】本発明は上記課題を除去するもので、レー
ザアニールによる多結晶シリコン膜の結晶化時に多結晶
シリコン膜表面に突起が発生するのを防止し、多結晶シ
リコンTFTのゲート絶縁耐圧の劣化を防止することに
より製造歩留まりの向上を図ると共に、線欠陥等を生じ
る事無く、良好な表示品位を有する液晶表示素子を得る
ことが可能な高品質の多結晶半導体の製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to prevent a projection from being formed on the surface of a polycrystalline silicon film during crystallization of the polycrystalline silicon film by laser annealing, thereby deteriorating the gate withstand voltage of the polycrystalline silicon TFT. To provide a high-quality polycrystalline semiconductor manufacturing method capable of obtaining a liquid crystal display element having a good display quality without causing line defects or the like, while improving the manufacturing yield. Aim.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するための手段として、基板上に堆積される非晶質シリ
コンにレーザ光を照射して結晶化する多結晶半導体の製
造方法において、前記基板上に非晶質シリコン膜を形成
する工程と、前記非晶質シリコン膜表面を酸化して酸化
膜を形成する工程と、前記酸化膜除去後の表面に純水を
滴下した時の前記表面に対する前記純水の接触角が60
度以上に成るよう前記酸化膜を除去する工程と、前記酸
化膜除去後の前記非晶質シリコン膜に前記レーザ光を照
射して前記非晶質シリコン膜を結晶化する工程とを実施
するものである。
According to the present invention, there is provided a method of manufacturing a polycrystalline semiconductor, comprising: irradiating amorphous silicon deposited on a substrate with laser light to crystallize the silicon; Forming an amorphous silicon film on the substrate, oxidizing the surface of the amorphous silicon film to form an oxide film, and dropping pure water onto the surface after removing the oxide film. The contact angle of the pure water to the surface is 60
Performing the step of removing the oxide film so that the temperature of the amorphous silicon film is equal to or higher than the above, and the step of irradiating the amorphous silicon film after the removal of the oxide film with the laser beam to crystallize the amorphous silicon film. It is.

【0013】又本発明は上記課題を解決するための手段
として、表面に純水を滴下した時の前記表面に対する前
記純水の接触角が60度以上である非晶質シリコンにレ
ーザ光を照射して結晶化する工程とを実施するものであ
る。
According to another aspect of the present invention, there is provided a method of irradiating a laser beam to amorphous silicon having a contact angle of 60 degrees or more with the surface of pure water when pure water is dropped on the surface. And crystallization.

【0014】そして本発明は上記構成により、非晶質シ
リコン膜表面の酸化膜および吸着不純物を十分除去する
事により、これら酸化膜および吸着不純物に起因して発
生する多結晶シリコン膜表面の突起の発生を防止し、高
品質の多結晶シリコンTFTの実用化を図り、液晶表示
素子の表示品位を向上し、更には製造歩留まりを向上す
るものである。
According to the present invention, the oxide film and the adsorbed impurities on the surface of the amorphous silicon film are sufficiently removed by the above structure, so that the protrusions on the surface of the polycrystalline silicon film caused by the oxide film and the adsorbed impurities are removed. This is intended to prevent the occurrence of the problem and to commercialize a high-quality polycrystalline silicon TFT, improve the display quality of the liquid crystal display element, and further improve the production yield.

【0015】[0015]

【発明の実施の形態】以下本発明を図1乃至図4に示す
実施の形態を参照して説明する。図1は、ガラス基板1
0上に酸化シリコン(SiO2 )膜から成るアンダーコ
ート層11を介して形成される多結晶シリコン膜12を
示す概略断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in FIGS. FIG. 1 shows a glass substrate 1
FIG. 1 is a schematic cross-sectional view showing a polycrystalline silicon film 12 formed on a substrate 0 via an undercoat layer 11 made of a silicon oxide (SiO 2 ) film.

【0016】次に多結晶シリコン膜12製造方法につい
て述べる。図2(a)に示す様にガラス基板10上にア
ンダーコート層11を形成し、更に非晶質シリコン膜1
4を40〜80nmの厚さで堆積する。アンダーコート
層11及び非晶質シリコン膜14のいずれも、プラズマ
CVD法を用いて成膜温度300℃以下で形成する。次
に図2(b)に示す様に非晶質シリコン膜14中の水素
(H)を脱離するために、450℃、30〜60分の熱
アニールを行う。この時非晶質シリコン膜14表面には
自然酸化膜15が形成される。
Next, a method for manufacturing the polycrystalline silicon film 12 will be described. An undercoat layer 11 is formed on a glass substrate 10 as shown in FIG.
4 is deposited with a thickness of 40-80 nm. Both the undercoat layer 11 and the amorphous silicon film 14 are formed at a film formation temperature of 300 ° C. or lower by using a plasma CVD method. Next, as shown in FIG. 2B, thermal annealing is performed at 450 ° C. for 30 to 60 minutes to desorb hydrogen (H) in the amorphous silicon film 14. At this time, a natural oxide film 15 is formed on the surface of the amorphous silicon film 14.

【0017】次に図2(c)に示す様に濃度20ppm
のオゾン(O3 )を含む溶液にて、非晶質シリコン膜1
4を23秒間洗浄して、非晶質シリコン膜14の表面を
0.5nm〜1.5nm厚さの範囲で酸化して酸化膜1
6を形成する。尚このオゾン(O3 )を含む溶液による
酸化により、炭素(C)、ボロン(B)等の不純物は酸
化膜16中に取り込まれる。
Next, as shown in FIG.
Amorphous silicon film 1 with a solution containing ozone (O 3 )
4 is washed for 23 seconds, and the surface of the amorphous silicon film 14 is oxidized in a range of 0.5 nm to 1.5 nm in thickness to form an oxide film 1.
6 is formed. Incidentally, impurities such as carbon (C) and boron (B) are taken into the oxide film 16 by the oxidation using the solution containing ozone (O 3 ).

【0018】次に図2(d)に示す様に酸化膜16及び
この酸化膜16に取り込まれた炭素(C)、ボロン
(B)等の不純物を、濃度1%の弗酸水(HF)で洗浄
除去する。弗酸水(HF)による洗浄除去は、図3に示
す様に、接触角測定器(図示せず)による非晶質シリコ
ン膜14表面と純水17との接触角θが、60゜以上に
成るまで行うものとする。弗酸水(HF)による洗浄時
間と接触角測定器で測定した純水の非晶質シリコン膜表
面での接触角との関係を示す図4から、純水の非晶質シ
リコン膜表面での接触角θを60゜以上とするには、弗
酸水(HF)による洗浄時間は、120秒以上を必要と
される。
Next, as shown in FIG. 2 (d), the oxide film 16 and impurities such as carbon (C) and boron (B) taken in the oxide film 16 are hydrofluoric acid water (HF) having a concentration of 1%. Wash and remove with. As shown in FIG. 3, cleaning and removal with hydrofluoric acid water (HF) is performed when the contact angle θ between the surface of the amorphous silicon film 14 and the pure water 17 by a contact angle measuring device (not shown) is 60 ° or more. Until it becomes true. FIG. 4 shows the relationship between the cleaning time with hydrofluoric acid water (HF) and the contact angle of pure water on the amorphous silicon film surface measured by a contact angle measuring device. To set the contact angle θ to 60 ° or more, the cleaning time with hydrofluoric acid (HF) needs to be 120 seconds or more.

【0019】次に図2(e)に示す様に、純水の接触角
θが60゜以上である状態の非晶質シリコン膜14を、
XeClレーザ装置によるレーザ光によりレーザアニー
ルして結晶化し、図2(f)に示す様に、ガラス基板1
0上にアンダーコート層11を介し多結晶シリコン膜1
2を形成する。レーザ光による照射エネルギーは270
〜340mJ/cm2 とした。この結果、平均結晶粒径
範囲0.3〜0.8μmの多結晶シリコン膜12をえら
れた。尚多結晶シリコン膜12表面を調べた所、表面突
起の高さは、50nm以下に抑えられていた。
Next, as shown in FIG. 2E, the amorphous silicon film 14 having a contact angle θ of pure water of 60 ° or more is
As shown in FIG. 2F, the glass substrate 1 is crystallized by laser annealing with a laser beam from a XeCl laser device.
0 through an undercoat layer 11 and a polycrystalline silicon film 1
Form 2 Irradiation energy by laser light is 270
3340 mJ / cm 2 . As a result, a polycrystalline silicon film 12 having an average crystal grain size range of 0.3 to 0.8 μm was obtained. When the surface of the polycrystalline silicon film 12 was examined, the height of the surface protrusion was suppressed to 50 nm or less.

【0020】この様にして成る多結晶シリコン膜12を
チャネル層に用いて、ゲート酸化膜厚100nmの、ゲ
ート上置きのコプラナ型構造の多結晶シリコンTFTを
形成した所、ゲート絶縁耐圧が50V以上になることが
確認された。尚、上記図2(d)に示す酸化膜16の洗
浄除去時、洗浄時間を120秒以下で処理した後にレー
ザアニールして成る多結晶シリコン膜をチャネル層に用
いて、ゲート上置きのコプラナ型構造の多結晶シリコン
TFTを形成し、このゲート絶縁耐圧を調べた所、一部
のTFTは、ゲート電圧50V未満で破壊し、ゲート絶
縁耐圧の劣化が見られた。
A polycrystalline silicon TFT having a gate oxide film thickness of 100 nm and having a coplanar structure on a gate was formed by using the polycrystalline silicon film 12 thus formed as a channel layer. It was confirmed that. At the time of cleaning and removing the oxide film 16 shown in FIG. 2D, a polycrystalline silicon film formed by performing a cleaning time of 120 seconds or less and then laser annealing is used as a channel layer, and a coplanar type having a gate placed thereon is used. When a polycrystalline silicon TFT having a structure was formed and its gate dielectric breakdown voltage was examined, some TFTs were broken at a gate voltage of less than 50 V, and deterioration of the gate dielectric breakdown voltage was observed.

【0021】この様に構成すれば、非晶質シリコン膜1
4のレーザアニール前処理として、純水の接触角θが6
0゜以上であり、酸化膜16及び炭素(C)、ボロン
(B)等の不純物を完全に除去した状態に成るように、
非晶質シリコン膜14表面の酸化膜及び不純物を洗浄除
去することにより、レーザアニールにより結晶化して得
られた多結晶シリコン膜表面での突起の高さを50nm
以下に抑える事が出来る。従ってこのような多結晶シリ
コン膜をチャネル層に用いる事により、ゲート絶縁耐圧
の高い、良好な多結晶シリコンTFTひいては、絶縁破
壊による線欠陥を生じる事無く高い表示品位を有する液
晶表示素子を得られ、製造時の歩留まりも向上される。
With this configuration, the amorphous silicon film 1
As a pretreatment for laser annealing of No. 4, the contact angle θ of pure water is 6
0 ° or more so that the oxide film 16 and impurities such as carbon (C) and boron (B) are completely removed.
By cleaning and removing the oxide film and impurities on the surface of the amorphous silicon film 14, the height of the protrusion on the surface of the polycrystalline silicon film obtained by crystallization by laser annealing is reduced to 50 nm.
It can be suppressed below. Therefore, by using such a polycrystalline silicon film for the channel layer, it is possible to obtain a good polycrystalline silicon TFT having a high gate withstand voltage and, consequently, a liquid crystal display element having a high display quality without causing line defects due to dielectric breakdown. Also, the production yield is improved.

【0022】又、本実施の形態にあっては、酸化膜除去
の前にオゾン(O3 )を含む溶液により非晶質シリコン
膜14表面に酸化膜16を形成し、この酸化膜16中に
炭素(C)、ボロン(B)等の不純物を取り込み、1%
弗酸水(HF)による酸化膜16の洗浄除去により、炭
素(C)、ボロン(B)等の不純物を酸化膜16ごと除
去でき、非晶質シリコン膜14表面の不純物を完全に除
去可能と成る。
In this embodiment, an oxide film 16 is formed on the surface of the amorphous silicon film 14 with a solution containing ozone (O 3 ) before removing the oxide film. Incorporates impurities such as carbon (C) and boron (B), 1%
By cleaning and removing the oxide film 16 with hydrofluoric acid water (HF), impurities such as carbon (C) and boron (B) can be removed together with the oxide film 16 and impurities on the surface of the amorphous silicon film 14 can be completely removed. Become.

【0023】尚本発明は上記実施の形態に限られるもの
でなく、その趣旨を変えない範囲での変更は可能であっ
て、例えば非晶質シリコン膜の膜厚或いはその表面の酸
化膜の膜厚等限定されないが、酸化膜厚を0.5nm以
下とすると、1元素分より薄くなり不純物の十分な除去
を行えず、又、酸化膜厚を1.5nm以上にすると、1
%弗酸水(HF)による酸化膜の洗浄除去操作に時間が
掛かり過ぎる事から、酸化膜は、0.5nm〜1.5n
mとする事が望ましい。また、レーザ光の照射エネルギ
ーの大きさ等も任意である。
The present invention is not limited to the above embodiment, but may be modified without departing from the spirit of the invention. For example, the thickness of an amorphous silicon film or the thickness of an oxide film on the surface thereof may be changed. Although the thickness is not limited, if the oxide film thickness is set to 0.5 nm or less, it becomes thinner than one element, so that impurities cannot be sufficiently removed.
% Of hydrofluoric acid (HF), it takes too much time to clean and remove the oxide film.
m is desirable. In addition, the magnitude of the irradiation energy of the laser light is also arbitrary.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、レ
ーザアニールする前の非晶質シリコン表面の酸化膜及び
不純物を完全に洗浄除去する事により、レーザ光照射に
より結晶化された多結晶シリコン表面に生じる突起の高
さを低く抑えられる。従ってこのようにして形成された
多結晶シリコンを用いて形成される、多結晶シリコンT
FTのゲート絶縁耐圧の劣化を抑制出来、ひいては表示
品位の高い液晶表示素子の製造可能となり、又製造歩留
まりの低下を防止出来る。
As described above, according to the present invention, the oxide film and the impurities on the amorphous silicon surface before the laser annealing are completely washed and removed, so that the polycrystalline crystallized by the laser light irradiation. The height of the projections formed on the silicon surface can be kept low. Therefore, the polycrystalline silicon T formed using the polycrystalline silicon thus formed is used.
It is possible to suppress the deterioration of the gate insulation withstand voltage of the FT, and it is possible to manufacture a liquid crystal display element with high display quality, and it is possible to prevent a reduction in manufacturing yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるガラス基板上に形
成される多結晶シリコン膜を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a polycrystalline silicon film formed on a glass substrate according to an embodiment of the present invention.

【図2】本発明の実施の形態における多結晶シリコンの
製造工程を示し(a)はその非晶質シリコン膜形成時、
(b)はその非晶質シリコン膜表面の水素(H)脱離
時、(c)はその非晶質シリコン膜表面の酸化膜形成
時、(d)はその酸化膜の洗浄除去時、(e)はそのレ
ーザ光照射時、(f)はその多結晶シリコン膜の結晶化
時を示す概略説明図である。
FIGS. 2A and 2B show a process of manufacturing polycrystalline silicon according to an embodiment of the present invention. FIG.
(B) when hydrogen (H) is desorbed from the surface of the amorphous silicon film, (c) when an oxide film is formed on the surface of the amorphous silicon film, (d) when cleaning and removing the oxide film, (e) is a schematic explanatory view showing the time of laser beam irradiation, and (f) is a schematic explanatory view showing the time of crystallization of the polycrystalline silicon film.

【図3】本発明の実施の形態の非晶質シリコン膜表面
と、純水との接触角を示す概略説明図である。
FIG. 3 is a schematic explanatory diagram showing a contact angle between a surface of an amorphous silicon film and pure water according to the embodiment of the present invention.

【図4】本発明の実施の形態における弗酸水(HF)に
よる洗浄時間と純水の接触角との関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a cleaning time with hydrofluoric acid (HF) and a contact angle of pure water in the embodiment of the present invention.

【図5】従来の多結晶シリコンの製造工程を示し(a)
はその非晶質シリコン膜形成時、(b)はその非晶質シ
リコン膜表面の水素(H)脱離時、(c)はその酸化膜
の洗浄除去時、(d)はそのレーザ光照射時、(e)は
その多結晶シリコン膜の結晶化時を示す概略説明図であ
る。
FIG. 5 shows a conventional polycrystalline silicon manufacturing process (a).
(B) when hydrogen (H) is desorbed from the surface of the amorphous silicon film, (c) when cleaning and removing the oxide film, and (d) when irradiating the laser beam. FIG. 4E is a schematic explanatory view showing the time of crystallization of the polycrystalline silicon film.

【図6】従来の多結晶シリコンの、非晶質シリコン膜表
面の酸化膜厚とレーザアニール後に多結晶シリコン表面
に生じた突起の高さとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the oxide film thickness on the surface of an amorphous silicon film of conventional polycrystalline silicon and the height of a protrusion formed on the surface of the polycrystalline silicon after laser annealing.

【図7】従来の非晶質シリコン膜表面と、純水との接触
角を示す概略説明図である。
FIG. 7 is a schematic explanatory view showing a contact angle between a conventional amorphous silicon film surface and pure water.

【符号の説明】[Explanation of symbols]

10…ガラス基板 11…アンダーコート層 12…多結晶シリコン膜 14…非晶質シリコン膜 16…酸化膜 17…純水 DESCRIPTION OF SYMBOLS 10 ... Glass substrate 11 ... Undercoat layer 12 ... Polycrystalline silicon film 14 ... Amorphous silicon film 16 ... Oxide film 17 ... Pure water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川久 慶人 埼玉県深谷市幡羅町一丁目9番2号 株式 会社東芝深谷電子工場内 (72)発明者 三橋 浩 埼玉県深谷市幡羅町一丁目9番2号 株式 会社東芝深谷電子工場内 (72)発明者 藤村 尚 埼玉県深谷市幡羅町一丁目9番2号 株式 会社東芝深谷電子工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshito Kawahisa 1-9-2 Harara-cho, Fukaya-shi, Saitama Pref. Inside the Toshiba Fukaya Electronics Factory (72) Inventor Hiroshi Mitsuhashi 1-chome, Harara-cho, Fukaya-shi, Saitama No. 9-2 Toshiba Fukaya Electronics Factory (72) Inventor Takashi Fujimura 1-9-2 Hara-cho, Fukaya-shi, Saitama Prefecture Toshiba Fukaya Electronics Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に堆積される非晶質シリコンにレ
ーザ光を照射して結晶化する多結晶半導体の製造方法に
おいて、 前記基板上に非晶質シリコン膜を形成する工程と、前記
非晶質シリコン膜表面を酸化して酸化膜を形成する工程
と、前記酸化膜除去後の表面に純水を滴下した時の前記
表面に対する前記純水の接触角が60度以上に成るよう
前記酸化膜を除去する工程と、前記酸化膜除去後の前記
非晶質シリコン膜に前記レーザ光を照射して前記非晶質
シリコン膜を結晶化する工程とを具備する事を特徴とす
る多結晶半導体の製造方法。
1. A method for manufacturing a polycrystalline semiconductor in which amorphous silicon deposited on a substrate is crystallized by irradiating a laser beam to the amorphous silicon, wherein: a step of forming an amorphous silicon film on the substrate; Oxidizing a surface of the amorphous silicon film to form an oxide film, and oxidizing the pure water so that a contact angle of the pure water with the surface when the pure water is dropped on the surface after the oxide film is removed is 60 degrees or more. A polycrystalline semiconductor comprising: a step of removing a film; and a step of irradiating the amorphous silicon film after the removal of the oxide film with the laser beam to crystallize the amorphous silicon film. Manufacturing method.
【請求項2】 酸化膜を形成する工程は、オゾンを含む
溶液を用いてなされることを特徴とする請求項1に記載
の多結晶半導体の製造方法。
2. The method according to claim 1, wherein the step of forming the oxide film is performed using a solution containing ozone.
【請求項3】 酸化膜を除去する工程は、弗酸を含むエ
ッチング液にてなされることを特徴とする請求項1又は
請求項2のいずれかに記載の多結晶半導体の製造方法。
3. The method for manufacturing a polycrystalline semiconductor according to claim 1, wherein the step of removing the oxide film is performed using an etching solution containing hydrofluoric acid.
【請求項4】 酸化膜の膜厚が0.5nm乃至1.5n
mである事を特徴とする請求項1乃至請求項3のいずれ
かに記載の多結晶半導体の製造方法。
4. The oxide film has a thickness of 0.5 nm to 1.5 n.
4. The method for producing a polycrystalline semiconductor according to claim 1, wherein m is m.
【請求項5】 表面に純水を滴下した時の前記表面に対
する前記純水の接触角が60度以上である非晶質シリコ
ンにレーザ光を照射して結晶化する多結晶半導体の製造
方法。
5. A method for producing a polycrystalline semiconductor, comprising irradiating a laser beam to amorphous silicon having a contact angle of 60 ° or more with the pure water when the pure water is dropped on the surface to crystallize the amorphous silicon.
JP15588998A 1998-06-04 1998-06-04 Method for manufacturing polycrystalline semiconductor Expired - Fee Related JP4223590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15588998A JP4223590B2 (en) 1998-06-04 1998-06-04 Method for manufacturing polycrystalline semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15588998A JP4223590B2 (en) 1998-06-04 1998-06-04 Method for manufacturing polycrystalline semiconductor

Publications (2)

Publication Number Publication Date
JPH11354801A true JPH11354801A (en) 1999-12-24
JP4223590B2 JP4223590B2 (en) 2009-02-12

Family

ID=15615728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15588998A Expired - Fee Related JP4223590B2 (en) 1998-06-04 1998-06-04 Method for manufacturing polycrystalline semiconductor

Country Status (1)

Country Link
JP (1) JP4223590B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061760A1 (en) * 2000-02-15 2001-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing thin-film transistor, and liquid-crystal display
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
KR20020085241A (en) * 2001-05-07 2002-11-16 주식회사 현대 디스플레이 테크놀로지 Method for manufacturing thin film transistor liquid crystal display device
US6657227B2 (en) 2000-12-06 2003-12-02 Hitachi, Ltd. Transistor with thin film active region having clusters of different crystal orientation
US6670638B2 (en) 2000-09-25 2003-12-30 Hitachi, Ltd. Liquid crystal display element and method of manufacturing the same
JP2005093992A (en) * 2003-08-08 2005-04-07 Semiconductor Energy Lab Co Ltd Doping apparatus, doping method and manufacturing method for thin film transistor
US7553714B2 (en) 2004-04-29 2009-06-30 Samsung Mobile Display Co., Ltd. Method of manufacturing thin film transistor having polycrystalline silicon layer, thin film transistor manufactured using the method and flat panel display comprising the thin film transistor
JP2011049577A (en) * 2003-08-08 2011-03-10 Semiconductor Energy Lab Co Ltd Method for fabricating semiconductor element
US9384965B2 (en) 2013-11-19 2016-07-05 Japan Display Inc. Polycrystallization method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061760A1 (en) * 2000-02-15 2001-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing thin-film transistor, and liquid-crystal display
US6716768B2 (en) 2000-02-15 2004-04-06 Matsushita Electric Industrial Co., Ltd. Method of manufacturing thin-film transistor, and liquid-crystal display
US7995010B2 (en) 2000-02-29 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
US10032840B2 (en) 2000-02-29 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9502483B2 (en) 2000-02-29 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9331130B2 (en) 2000-02-29 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9178004B2 (en) 2000-02-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9035853B2 (en) 2000-02-29 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8674909B2 (en) 2000-02-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8493295B2 (en) 2000-02-29 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US6670638B2 (en) 2000-09-25 2003-12-30 Hitachi, Ltd. Liquid crystal display element and method of manufacturing the same
US6716688B2 (en) 2000-12-06 2004-04-06 Hitachi, Ltd. Irradiation of manufacturing a thin film transistor by laser irradiation
US7227186B2 (en) 2000-12-06 2007-06-05 Hitachi, Ltd. Thin film transistor and method of manufacturing the same
US6657227B2 (en) 2000-12-06 2003-12-02 Hitachi, Ltd. Transistor with thin film active region having clusters of different crystal orientation
KR20020085241A (en) * 2001-05-07 2002-11-16 주식회사 현대 디스플레이 테크놀로지 Method for manufacturing thin film transistor liquid crystal display device
US7980198B2 (en) 2003-08-08 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Doping apparatus, doping method, and method for fabricating thin film transistor
JP2011049577A (en) * 2003-08-08 2011-03-10 Semiconductor Energy Lab Co Ltd Method for fabricating semiconductor element
JP2005093992A (en) * 2003-08-08 2005-04-07 Semiconductor Energy Lab Co Ltd Doping apparatus, doping method and manufacturing method for thin film transistor
US7553714B2 (en) 2004-04-29 2009-06-30 Samsung Mobile Display Co., Ltd. Method of manufacturing thin film transistor having polycrystalline silicon layer, thin film transistor manufactured using the method and flat panel display comprising the thin film transistor
US9384965B2 (en) 2013-11-19 2016-07-05 Japan Display Inc. Polycrystallization method

Also Published As

Publication number Publication date
JP4223590B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4045731B2 (en) Thin film semiconductor device manufacturing method
KR100392120B1 (en) Method for forming polycrystalline silicon film
JPH1140501A (en) Semiconductor device and method for manufacturing it
JP2002176180A (en) Thin film semiconductor element and its manufacturing method
JPH11354801A (en) Manufacture of polycrystalline semiconductor
JP4243455B2 (en) Thin film transistor manufacturing method
JP2000357798A (en) Thin-film transistor and its manufacture
JP2005064453A (en) Thin film transistor and its manufacturing method
JP2776276B2 (en) Method for manufacturing thin film transistor
JPH08339960A (en) Preparation of semiconductor device
JPH10144923A (en) Manufacture of semiconductor device
JP2003257992A (en) Method for manufacturing thin film transistor
JPH11354444A (en) Manufacture of polycrystalline semiconductor film
JP3338267B2 (en) Method for manufacturing semiconductor device
JP3279280B2 (en) Method for manufacturing thin film semiconductor device
JP3090847B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JP2000068518A (en) Manufacture of thin-film transistor
JP2002124467A (en) Method for forming polycrystalline semiconductor film and method for fabricating thin film transistor
JP3599513B2 (en) Method for manufacturing thin film transistor
JP2002110997A (en) Manufacturing method of polycrystalline thin-film transistor
JP2002353135A (en) Method for fabricating thin polysilicon film transistor and liquid crystal display employing it in switching element
JP2006324564A (en) Semiconductor device manufacturing method
JPH0794751A (en) Semiconductor device and method of fabrication thereof
JP3648998B2 (en) Manufacturing method of semiconductor device
JP2000077401A (en) Formation of semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees