JPH11354151A - Nickel-hydrogen battery - Google Patents

Nickel-hydrogen battery

Info

Publication number
JPH11354151A
JPH11354151A JP10173861A JP17386198A JPH11354151A JP H11354151 A JPH11354151 A JP H11354151A JP 10173861 A JP10173861 A JP 10173861A JP 17386198 A JP17386198 A JP 17386198A JP H11354151 A JPH11354151 A JP H11354151A
Authority
JP
Japan
Prior art keywords
electrode
nickel
hydrogen storage
storage alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173861A
Other languages
Japanese (ja)
Inventor
Tetsuo Nomura
哲郎 野村
Takashi Shirai
隆 白井
Mitsugi Nagano
貢 永野
Fumio Sato
文夫 佐藤
Takeshi Koyama
健 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Furukawa Battery Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Furukawa Battery Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP10173861A priority Critical patent/JPH11354151A/en
Publication of JPH11354151A publication Critical patent/JPH11354151A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance charging efficiency at high temperatures, prevent corrosion/deterioration of a negative electrode, and extend the life of a battery, by combining a nickel electrode, as a positive electrode, made up by adding a specific amount of CaCO3 to Ni(OH)2 , with an electrode, as the negative electrode, of an LaNi5 hydrogen storage alloy made up by substituting Ce for a specific amount of La. SOLUTION: As for a positive electrode, powder of CaCO3 is added by 1 to 4 wt.% to, and mixed with, powder of a positive-electrode active material of Ni(OH)2 , a water solution of a viscosity improver is added to, and kneaded with, the mixture, and thus obtained positive-electrode active material mix paste is packed into a long, three-dimensional, net-like, porous metallic substrate. As for a negative electrode, a viscosity improver water solution is kneaded with powder of a hydrogen storage alloy, as an LaNi5 hydrogen storage alloy, expressed by a fixed expression and made up by substituting Ce for 5 to 20% of La and substituting Co and Al for part of Ni, and thus obtained negative- electrode active material slurry is spread over a long porous metallic substrate, such as punching metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素電池
に関する。
[0001] The present invention relates to a nickel-metal hydride battery.

【0002】[0002]

【従来の技術】従来、ニッケル水素電池はエネルギー密
度が高く、過充電、過放電等に対する耐久性が高く、寿
命性能も良いため、携帯用機器、非常用電源等に広く用
いられている。また、ニッケル水素電池の負極として高
エネルギー密度を高めるため、水素吸蔵量の多いLaN
5 系水素吸蔵合金、特に実用上合金の微粉化を抑える
ためにNiの20%程度をCoで、平衡圧を調整するた
めにNiの数%をAlで置換した合金を用いると共に高
温での充電効率を高めるため、その正極としてNi(O
H)2 に炭酸カルシウムを少量添加して成るものを用い
ることが提案されている。尚、正極には導電性を向上さ
せるためにコバルト化合物を添加することが一般的であ
る。
2. Description of the Related Art Conventionally, nickel-metal hydride batteries have been widely used in portable equipment, emergency power supplies, and the like because of their high energy density, high durability against overcharge and overdischarge, and good life performance. In order to increase the high energy density as a negative electrode of a nickel-metal hydride battery, LaN having a large hydrogen storage amount is used.
i 5 hydrogen storage alloy, particularly about 20% of Ni in order to suppress the pulverization of the practical alloy Co, at high temperature with an alloy of several percent of the Ni was replaced by Al in order to adjust the equilibrium pressure To enhance the charging efficiency, Ni (O
It has been proposed to use a material obtained by adding a small amount of calcium carbonate to H) 2 . In addition, it is common to add a cobalt compound to the positive electrode in order to improve conductivity.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、上記のよ
うに、ニッケル水素電池のニッケル極にCaCO3 を添
加すると、その炭酸根の影響で負極の充放電での腐食劣
化が早くなり、電池寿命が短縮する弊害を伴うことが認
められた。この点に徴し、高温での充電効率を高めると
共に負極の腐食劣化を防止し電池寿命の向上をもたらす
ニッケル水素電池の開発が望まれる。
However, as described above, when CaCO 3 is added to the nickel electrode of a nickel-metal hydride battery, the deterioration of the negative electrode during charge and discharge is accelerated due to the influence of the carbonate group. It was found that there was an adverse effect of shortening the life. In view of this point, it is desired to develop a nickel-metal hydride battery that enhances charging efficiency at a high temperature, prevents corrosion of the negative electrode, and improves battery life.

【0004】[0004]

【課題を解決するための手段】正極としてNi(OH)
2 に対しCaCO3 を重量で1〜4%添加して成るニッ
ケル極と、負極としてLaの5〜20%をCeで置換し
て成るLaNi5 系水素吸蔵合金から成る電極とを組み
合わせたことを特徴とするニッケル水素電池。
SUMMARY OF THE INVENTION Ni (OH) is used as a positive electrode.
A combination of a nickel electrode obtained by adding 1 to 4% by weight of CaCO 3 to 2 and an electrode made of a LaNi 5 -based hydrogen storage alloy obtained by replacing 5 to 20% of La with Ce as a negative electrode. Nickel-metal hydride battery.

【0005】[0005]

【発明の実施の形態】次に本発明の実施の形態を例示す
る。正極としては、正極活物質Ni(OH)2 の粉末と
これに対しCaCO3 を重量で1〜4%を粉末で添加、
混合し、その混合物にCMC水溶液などの粘稠剤の水溶
液を該混合物に対し重量で35〜45重量%添加混練
し、得られた正極活物質合剤ペーストを長尺の発泡ニッ
ケル基板などの三次元の網状多孔金属基板に充填し、加
熱乾燥、プレス、裁断して所定の寸法のNi極板を多数
枚製造する。尚、上記の混合物に、必要に応じ活物質利
用率向上のために金属コバルトのCoOなどのコバルト
酸化物などのコバルト化合物の粉末を該正極活物質に対
し重量で5〜10%添加することが好ましく一般であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be exemplified. As the positive electrode, a powder of a positive electrode active material Ni (OH) 2 and 1 to 4% by weight of CaCO 3 added thereto as a powder,
An aqueous solution of a thickener such as a CMC aqueous solution is added to the mixture, and the mixture is kneaded with 35 to 45% by weight of the mixture, and the obtained positive electrode active material mixture paste is mixed with a tertiary foamed nickel substrate or the like. The original reticulated porous metal substrate is filled, heated, dried, pressed, and cut to produce a large number of Ni plates having predetermined dimensions. In addition, powder of a cobalt compound such as cobalt oxide such as CoO of metallic cobalt may be added to the above-described mixture as needed in an amount of 5 to 10% by weight with respect to the positive electrode active material in order to improve the utilization rate of the active material. Preferred and general.

【0006】一方、負極としては、LaNi5 系水素吸
蔵合金として、Laの5〜20%をCeで置換すると共
に、Niの一部をCo及びAlで置換して成る一般式L
1Cey Ni5-a-b Coa Alb (茲でy=0.05
〜0.20、a=0.5〜1.5、b=0.1〜1.
0)で表わされる水素吸蔵合金の粉末に1%のCMC水
溶液などの粘稠剤水溶液を重量で20%混練し、得られ
た負極活物質スラリーを長尺のパンチングメタルなどの
多孔金属基板に塗布し、加熱乾燥、プレス、裁断して所
定の寸法の水素吸蔵電極(MH極板)を多数枚製造す
る。
On the other hand, as a negative electrode, a LaNi 5 -based hydrogen storage alloy having a general formula L in which 5 to 20% of La is replaced by Ce and a part of Ni is replaced by Co and Al.
a 1 Ce y Ni 5-ab Co a Al b ( in茲y = 0.05
~ 0.20, a = 0.5 ~ 1.5, b = 0.1 ~ 1.
20% by weight of an aqueous solution of a thickener such as a 1% CMC aqueous solution is kneaded with the hydrogen storage alloy powder represented by 0), and the obtained negative electrode active material slurry is applied to a porous metal substrate such as a long punching metal. Then, heating, drying, pressing, and cutting are performed to produce a large number of hydrogen storage electrodes (MH plates) having predetermined dimensions.

【0007】このようにして得られたニッケル極の所望
枚数と水素吸蔵合金電極の所定枚数とを合成樹脂製セパ
レータを介して積層して極板群とし、これを電槽に収容
し、KOH又はKOHを主成分とし、これにNaOH又
は/及びLiOHを少量添加した水溶液から成るアルカ
リ電解液を所定量注入し、電槽蓋を施し密閉ニッケル水
素電池を製造した。これにより高温での放電特性が良く
而も長寿命のニッケル水素電池が得られた。
[0007] The desired number of nickel electrodes and the predetermined number of hydrogen storage alloy electrodes thus obtained are laminated via a synthetic resin separator to form an electrode plate group, which is housed in a battery case, and is charged with KOH or KOH. A predetermined amount of an alkaline electrolytic solution composed of an aqueous solution containing KOH as a main component and a small amount of NaOH and / or LiOH added thereto, and a battery case lid was provided, thereby producing a sealed nickel-metal hydride battery. As a result, a nickel hydrogen battery having good discharge characteristics at high temperatures and a long life was obtained.

【0008】以下に詳述し明らかにするように、ニッケ
ル極中のCaCO3 の添加量が0〜4%の範囲では常温
での放電容量を良好に維持することができるが、特にC
aCO3 の添加量が3%で高温での最大の放電容量が得
られるので、経済的見地からは、1〜3%までにとゞめ
ることが好ましい。一方、Na(OH)2 に対するCa
CO3 の添加量が1〜4%の範囲を有するニッケル極を
正極として用いた場合、上記のLaNi5 系水素吸蔵合
金電極を負極としたニッケル水素電池の充放電におい
て、炭酸根による影響で、負極の腐食劣化が防止される
には、水素吸蔵合金電極の合金組成中、Laに対するC
eの置換率が5〜20%の範囲とした場合に最長の寿命
を維持することか判った。
As will be described in detail below, when the addition amount of CaCO 3 in the nickel electrode is in the range of 0 to 4%, the discharge capacity at room temperature can be maintained satisfactorily.
Since the maximum discharge capacity at a high temperature can be obtained when the addition amount of aCO 3 is 3%, it is preferable to limit the amount to 1 to 3% from an economic viewpoint. On the other hand, Ca for Na (OH) 2
When a nickel electrode having an addition amount of CO 3 in the range of 1 to 4% is used as a positive electrode, the charge and discharge of a nickel-metal hydride battery using the above-mentioned LaNi 5 -based hydrogen storage alloy electrode as a negative electrode is affected by carbonate groups. In order to prevent the corrosion deterioration of the negative electrode, it is necessary to use C
It was found that the longest life was maintained when the substitution rate of e was in the range of 5 to 20%.

【0009】結局、高温での放電特性が高いと共に負極
の腐食劣化が防止されて寿命特性が向上したニッケル水
素電池を得るためには、正極としてNi(OH)2 に対
し1〜4%のCaCO3 を含有するNi極と、負極とし
てLaの5〜20%をCeで置換したLaNi5 系水素
吸蔵合金から成る電極とを組み合わせることにより、そ
の目的を達成することが判った。
After all, in order to obtain a nickel-metal hydride battery having high discharge characteristics at a high temperature and preventing corrosion deterioration of the negative electrode and having improved life characteristics, 1 to 4% of CaCO with respect to Ni (OH) 2 is used as the positive electrode. It has been found that the object can be achieved by combining an Ni electrode containing 3 and an electrode made of a LaNi 5 -based hydrogen storage alloy in which 5 to 20% of La is replaced with Ce as a negative electrode.

【0010】次に、下記のNi極中のCaCO3 添加量
及び水素吸蔵合金中のLaに対するCeの置換率を色々
に変えた多くの試験例を詳述する。 [比較試験例]Ni(OH)2 粉を92.5−X重量
部、CaCO3 粉をX重量部、CoO粉を7.5重量部
(茲でXの値は下記表1に示す0、0.5、1、2、
3、4である)を混合し、これに対し1.0%のCMC
水溶液から成る粘稠剤水溶液を40重量%添加し、混練
してCaCO2 の添加量が異なる6種類の正極活物質合
剤ペーストを調製し、その各ペーストを、厚み1.2m
m、目付量600g/m2 の長尺の発泡ニッケル基板に
充填、加熱乾燥、プレス、裁断し、幅70mm、長さ1
60mm、厚み0.4mmを有する6種類のNi極板を
夫々多数枚作製した。一方、La1-y Cey Ni3.5
1.0 Al0.5 から成る(茲で置換率yの値は下記表1
に示す2.5、5、10、20、30である)6種類の
水素吸蔵合金を夫々粉末としたものを用意し、各ペース
トに1.0%のCMC水溶液から成る粘稠剤水溶液を2
0重量%添加し、混練し、厚み0.1mm、開孔率40
%のパンチングメタルに塗布、加熱乾燥、プレス、裁断
し、幅70mm、長さ160mm、厚み0.4mmを有
する6種類の水素吸蔵合金電極板、即ち、MH極板を夫
々多数枚作製した。このように得られたCaCO3 の添
加量を異にする6種類のNi極板とLaに対するCeの
置換量を異にする6種類のMH極板とを表1に示すよう
に組み合わせた36種類のニッケル水素電池を製造し
た。
Next, a number of test examples in which the amount of CaCO 3 added in the Ni electrode and the substitution ratio of Ce to La in the hydrogen storage alloy are varied are described in detail below. [Comparative Test Example] Ni (OH) 92.5-X parts by weight of 2 powder, CaCO 3 powder X-parts, 7.5 parts by weight of CoO powder (0 indicating the value of X in the following Table 1 in茲, 0.5, 1, 2,
3, 4) and 1.0% CMC
An aqueous solution of a thickening agent composed of an aqueous solution was added at 40% by weight, and kneaded to prepare six kinds of positive electrode active material mixture pastes having different addition amounts of CaCO 2.
m, filling into a long nickel foam substrate with a basis weight of 600 g / m 2 , drying by heating, pressing and cutting, width 70 mm, length 1
A large number of six types of Ni plates each having a thickness of 60 mm and a thickness of 0.4 mm were produced. On the other hand, La 1-y Ce y Ni 3.5 C
o 1.0 Al 0.5 (the value of the substitution rate y is shown in Table 1 below)
(2.5, 5, 10, 20, 30 shown in Table 1) were prepared as powders, and each paste was mixed with an aqueous solution of a thickener consisting of a 1.0% CMC aqueous solution.
0% by weight, kneaded, thickness 0.1 mm, porosity 40
% Of punching metal, heated and dried, pressed and cut to prepare a large number of six types of hydrogen storage alloy electrode plates having a width of 70 mm, a length of 160 mm and a thickness of 0.4 mm, that is, MH plates. As shown in Table 1, 36 types of Ni electrode plates having different addition amounts of CaCO 3 and six types of MH electrode plates having different substitution amounts of Ce to La were obtained as shown in Table 1. Was manufactured.

【0011】[0011]

【表1】 [Table 1]

【0012】上記の各種のニッケル水素電池は、次のよ
うに製造し、常温20℃と高温50℃での放電特性を試
験と充放電サイクル寿命試験を次のように行った。即
ち、該Ni極板24枚と該MH極板25枚とを幅170
mm、厚み0.20mmの長尺のジグザグ状に折り曲げ
たスルフォン化PPセパレータを介して積層し、金属電
槽に収納し、電槽蓋を気密に施した後、これに比重1.
3のKOHを主成分としたアルカリ電解液200ccを
減圧置換注液し、数サイクル活性化した後、20℃にお
いて6Aで24時間充電後、8時間放置し、次で24A
で1Vになるまで放電し、20℃での容量を測定した。
また、50℃の環境温度において6Aで24時間充電
後、20℃で8時間放置し、次で20℃において24A
で1Vになるまで放電し、これを50℃での容量とし
た。更に、各電池につき、20℃において12A×12
時間充電、24Aで1Vまでの放電を行い、サイクル寿
命試験に供した。その試験結果を図1及び図2に示す。
尚、図1は、Laに対するCeの置換率が10%の値に
おける20℃と50℃における夫々の放電特性を示す
が、その置換率の値が5〜20%の範囲である限り、そ
の置換率の値をどのように変えた場合でも、CaCO3
の添加量とその放電容量の値との関係は、図1に示すも
のと実質上変わらない放電特性を有するので、Ceの置
換率が10%の場合の図で代表し10%以外の場合の図
は省略した。
The above-mentioned various nickel-metal hydride batteries were manufactured as follows, and the discharge characteristics at normal temperature of 20 ° C. and the high temperature of 50 ° C. and the charge / discharge cycle life test were performed as follows. That is, the 24 Ni plates and the 25 MH plates have a width of 170
The separator is laminated via a long zigzag sulfonated PP separator folded into a long zigzag shape, placed in a metal battery case, and hermetically sealed with a battery case lid.
200 cc of an alkaline electrolyte containing KOH as a main component was injected under reduced pressure, activated for several cycles, charged at 20 ° C. at 6 A for 24 hours, allowed to stand for 8 hours, and then charged at 24 A
, And the capacity at 20 ° C. was measured.
After charging at 6 A for 24 hours at an environmental temperature of 50 ° C., the battery was left at 20 ° C. for 8 hours.
At a temperature of 50 ° C. Furthermore, each battery has a capacity of 12 A × 12 at 20 ° C.
The battery was charged for 1 hour and discharged at 24 A to 1 V, and subjected to a cycle life test. The test results are shown in FIGS.
FIG. 1 shows the respective discharge characteristics at 20 ° C. and 50 ° C. when the substitution ratio of Ce to La is 10%, but as long as the substitution ratio is in the range of 5 to 20%, Whatever the value of the rate was changed, CaCO 3
Since the relationship between the amount of addition and the value of the discharge capacity thereof has substantially the same discharge characteristics as that shown in FIG. 1, the relationship in the case where the substitution ratio of Ce is 10% is typical in the case where the substitution ratio of Ce is 10%. The illustration is omitted.

【0013】表1、図1及び図2に徴し、次のことが判
る。即ち、図1から明らかなように、環境温度が20℃
の場合には、CaCO3 の無添加の場合が放電容量が最
大で、添加量が増大するに伴い放電容量は低下するが、
放電容量100AH以上を保持するにはCaCO3 の添
加量を4%までにとゞめることが好ましいこと、環境温
度が高温の50℃の場合は、放電容量100AH以上を
保持するには、CaCO3 の添加量が少なくとも1%な
ければならず、その後添加量の増大に伴い放電容量も向
上し、添加量3%で最大値を示し、その後は低下し始
め、放電容量100AH以上を維持するには4%を限度
とすることが好ましいこと、結局、CaCO3 の添加量
は1〜4%の範囲において高い放電特性をもたらすこと
が判った。一方、図2から明らかなように、正極中のC
aCO3 の添加量が0〜4%の範囲においては、負極を
構成する水素吸蔵合金としては、Laに対するCe置換
率が5〜20%で、CaCO3 の0〜4%の範囲でいず
れの場合もその充放電サイクル寿命は1200サイクル
の最大の値を示すこと、従って、図1及び図2を総括す
ると、高温における放電特性の向上と併せて電池寿命の
向上をもたらすには、Na(OH)2 に対する炭酸カル
シウムの添加量Xが1〜4%であるニッケル極とLaに
対するCeの置換率とが5〜20%であるLaNi5
水素吸蔵合金から成るMH極とを組み合わせたニッケル
水素電池を選択すべきことが判った。表1よりこの目的
を達成するニッケル水素電池に該当するものを選択すれ
ば、試験例15,16,17,21,22,23,2
7,28,29,33,34及び35のNi極とMH極
とを組み合わせたものが、本発明の実施例となることが
判る。表中、これら実施例に対応する試験例は判り易く
アンダーラインを表示した。
The following can be seen from Table 1, FIG. 1 and FIG. That is, as is clear from FIG.
In the case of, the discharge capacity is maximum when CaCO 3 is not added, and the discharge capacity decreases as the added amount increases,
In order to maintain a discharge capacity of 100 AH or more, it is preferable that the addition amount of CaCO 3 is limited to 4% or less. The addition amount of 3 must be at least 1%, and then the discharge capacity also increases with the increase of the addition amount, shows a maximum value at the addition amount of 3%, and thereafter starts to decrease, so that the discharge capacity is maintained at 100 AH or more. It is found that it is preferable to set the upper limit to 4%, and in the end, when the amount of CaCO 3 added is in the range of 1 to 4%, high discharge characteristics are obtained. On the other hand, as is apparent from FIG.
When the addition amount of aCO 3 is in the range of 0 to 4%, the hydrogen storage alloy constituting the negative electrode has a Ce substitution ratio with respect to La of 5 to 20% and CaCO 3 in the range of 0 to 4%. The charge / discharge cycle life also shows the maximum value of 1200 cycles. Therefore, when FIGS. 1 and 2 are summarized, it is necessary to use Na (OH) to improve the battery life as well as the discharge characteristics at high temperatures. A nickel-metal hydride battery comprising a combination of a nickel electrode having an addition amount X of calcium carbonate with respect to 2 of 1 to 4% and an MH electrode made of a LaNi 5 -based hydrogen storage alloy having a substitution ratio of Ce to La of 5 to 20%. It turned out to be a choice. If a nickel-metal hydride battery that achieves this purpose is selected from Table 1, Test Examples 15, 16, 17, 21, 22, 23, and 2
It can be seen that a combination of the Ni pole and the MH pole of 7, 28, 29, 33, 34 and 35 is an embodiment of the present invention. In the table, test examples corresponding to these examples are underlined for easy understanding.

【0014】[0014]

【発明の効果】このように本発明によるときは、CaC
3 を添加したNi極を正極とし、LaNi5 系水素吸
蔵合金電極を負極とするニッケル水素電池において、C
aCo3 の添加量をNi(OH)2 に対し1〜4%の範
囲としたNi極とLaをCeで5〜20%置換して成る
LaNi5 系水素吸蔵合金電極から成る電極を組み合わ
るときは、特に高温における放電特性が向上すると共に
炭酸根による負極の腐食が防止されて充放電サイクル寿
命を延長したニッケル水素電池をもたらす。
As described above, according to the present invention, CaC
In a nickel-metal hydride battery having a Ni electrode to which o 3 is added as a positive electrode and a LaNi 5 hydrogen storage alloy electrode as a negative electrode,
When combining an Ni electrode in which the addition amount of aCo 3 is in the range of 1 to 4% with respect to Ni (OH) 2 and an electrode composed of a LaNi 5 -based hydrogen storage alloy electrode in which La is replaced with Ce by 5 to 20%. The present invention provides a nickel-metal hydride battery having improved charge-discharge cycle life by improving discharge characteristics particularly at high temperatures and preventing the negative electrode from being corroded by carbonate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Ni極中のCaCo3 の添加量の変化による
ニッケル水素電池の放電容量との関係を示す図。
FIG. 1 is a diagram showing a relationship between a change in the amount of CaCo 3 added to a Ni electrode and a discharge capacity of a nickel-metal hydride battery.

【図2】 LaNi5 系水素吸蔵合金電極中のLaに対
するCeの置換率の変化によるニッケル水素電池のサイ
クル寿命の関係を示す図。
FIG. 2 is a diagram showing the relationship between the cycle life of a nickel-metal hydride battery and the change in the substitution ratio of Ce to La in a LaNi 5 hydrogen storage alloy electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白井 隆 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社いわき事業所内 (72)発明者 永野 貢 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 佐藤 文夫 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 小山 健 宮城県仙台市青葉区中山7丁目2番1号 東北電力株式会社研究開発センター内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Shirai 23-6 Tsukubashicho, Iwaki-shi, Fukushima Pref. 23-6 Iwaki Furukawa Battery Co., Ltd. Chome 2-1 Tohoku Electric Power Co. R & D Center (72) Inventor Fumio Sato 7-2-1 Nakayama Aoba-ku Aoba-ku Sendai City Miyagi Prefecture Tohoku Electric Power Co. R & D Center (72) Inventor Ken Koyama Miyagi 7-2-1, Nakayama, Aoba-ku, Sendai-shi Tohoku Electric Power Company R & D Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極としてNi(OH)2 に対しCaC
3 を重量で1〜4%添加して成るニッケル極と、負極
としてLaの5〜20%をCeで置換して成るLaNi
5 系水素吸蔵合金から成る電極とを組み合わせたことを
特徴とするニッケル水素電池。
1. A cathode comprising Ni (OH) 2 and CaC
A nickel electrode obtained by adding 1 to 4% by weight of O 3 , and a LaNi obtained by replacing 5 to 20% of La with Ce as a negative electrode
A nickel-metal hydride battery, which is combined with an electrode made of a 5- system hydrogen storage alloy.
JP10173861A 1998-06-05 1998-06-05 Nickel-hydrogen battery Pending JPH11354151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173861A JPH11354151A (en) 1998-06-05 1998-06-05 Nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173861A JPH11354151A (en) 1998-06-05 1998-06-05 Nickel-hydrogen battery

Publications (1)

Publication Number Publication Date
JPH11354151A true JPH11354151A (en) 1999-12-24

Family

ID=15968509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173861A Pending JPH11354151A (en) 1998-06-05 1998-06-05 Nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JPH11354151A (en)

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3923157B2 (en) Alkaline storage battery
EP1195832A1 (en) A high-temperature nickel-hydrogen battery and producing method thereof
EP1100141A1 (en) Nickel-metal hydride storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH1064535A (en) Nickel electrode for alkaline storage battery
JPH11354151A (en) Nickel-hydrogen battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JPH06150925A (en) Manufacture of nickel positive electrode for alkaline storage battery and alkaline storage battery equipped with electrode
JP3221040B2 (en) Alkaline storage battery
JP3057737B2 (en) Sealed alkaline storage battery
JP2000182611A (en) Alkaline storage battery and its manufacture
JP3103622B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2568971B2 (en) Nickel-hydrogen secondary battery
JP4531874B2 (en) Nickel metal hydride battery
JPS5933758A (en) Sealed nickel cadmium battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3412162B2 (en) Alkaline storage battery
JP2001035526A (en) Nickel hydrogen storage battery
JPH1040950A (en) Alkaline secondary battery
JP3070081B2 (en) Sealed alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery