JPH11353708A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH11353708A
JPH11353708A JP11030047A JP3004799A JPH11353708A JP H11353708 A JPH11353708 A JP H11353708A JP 11030047 A JP11030047 A JP 11030047A JP 3004799 A JP3004799 A JP 3004799A JP H11353708 A JPH11353708 A JP H11353708A
Authority
JP
Japan
Prior art keywords
recording
film
layer
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11030047A
Other languages
Japanese (ja)
Inventor
Takashi Tomie
崇 冨江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11030047A priority Critical patent/JPH11353708A/en
Publication of JPH11353708A publication Critical patent/JPH11353708A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent deformation of a substrate by irradiation of light when information is recorded by using changes in physical characteristics of a recording layer caused by irradiation of light. SOLUTION: At least a heat insulating layer, reflection layer, lower dielectric layer, recording layer and upper dielectric layer are formed in this order on a substrate, and the substrate is made of a plastic material. The temp. to cause thermal deformation of the substrate is lower than the temp. at which physical characteristics of the recording layer relating to recording are caused. The film thickness of the heat insulating layer is >=2 nm. The optical recording medium is preferably a phase transition type optical recording medium in which information is recorded by using changes in the structural characteristics of the recording layer caused by irradiation of light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光を用いて情報が記
録再生される光記録媒体に関し、特にプラスチック基板
を通さずに記録膜面側からレーザ光を照射して記録再生
するタイプの光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium on which information is recorded / reproduced by using light, and more particularly to an optical recording type of recording / reproducing by irradiating a laser beam from a recording film surface side without passing through a plastic substrate. Regarding the medium.

【0002】[0002]

【従来の技術】現在、普通に用いられている光記録媒体
の多くは、透明基板を通してレーザ光を記録膜に照射す
る基板入射タイプの光ディスクである。それに反して近
年、雑誌「エレクトロニクス」1996年5月号、87
〜91ページ等に記載されたような、基板を通さずに膜
面側からレーザ光を照射する膜面入射タイプの光記録が
注目されている。
2. Description of the Related Art At present, most commonly used optical recording media are substrate-incident type optical disks in which a recording film is irradiated with a laser beam through a transparent substrate. In contrast, in recent years, the magazine "Electronics", May 1996, 87
On page 91, a film-surface incident type optical recording that irradiates a laser beam from the film surface side without passing through a substrate has attracted attention.

【0003】この膜面入射タイプ媒体は、従来の媒体よ
りも高密度記録が可能であることにより、研究が開始さ
れているが、実用レベルでの記録再生の実証はなされて
いなく、今後に克服すべき種々の課題が発生すると思わ
れる。
Research has been started on this film-incidence type medium because it can perform higher-density recording than conventional media, but recording / reproduction at a practical level has not been demonstrated, and will be overcome in the future. It seems that various issues to be solved will occur.

【0004】媒体としては、光磁気記録媒体と相変化記
録媒体が考えられている。
As a medium, a magneto-optical recording medium and a phase change recording medium are considered.

【0005】光磁気記録媒体は、光照射、主にレーザー
光の照射によって記録膜の温度を上昇させて、その膜の
保磁力を低下させ、外部磁界で磁化方向を反転させて記
録・消去するものである。記録膜の温度は約200℃ま
で上昇される。
In a magneto-optical recording medium, the temperature of a recording film is increased by light irradiation, mainly laser light irradiation, the coercive force of the film is reduced, and the magnetization direction is reversed by an external magnetic field to perform recording / erasing. Things. The temperature of the recording film is raised to about 200 ° C.

【0006】相変化記録媒体は、光照射、主にレーザー
光の照射によって生じた物質の非晶質状態と結晶状態の
間の可逆的な構造変化(相変化)を、情報の記録・消去
に利用している。記録膜の温度は、記録の時は約600
℃に、消去の時は約170℃になる。こうした相変化記
録媒体は、情報の高速処理能力に加えて記録容量が大き
い。また、ドライブの構造が光磁気記録ドライブより簡
単なことより、廉価にできるメリットもある。
A phase change recording medium uses a reversible structural change (phase change) between an amorphous state and a crystalline state of a substance caused by light irradiation, mainly laser light irradiation, for recording and erasing information. We are using. The temperature of the recording film is about 600 at the time of recording.
° C, and about 170 ° C during erasing. Such a phase change recording medium has a large recording capacity in addition to a high-speed information processing capability. Another advantage is that the drive structure is simpler than that of a magneto-optical recording drive, so that the cost can be reduced.

【0007】また、これらの光磁気記録媒体と相変化記
録媒体の代表的構造は、ポリカーボネイト(PC)製の
透明円板上に蒸着やスパッタ法で形成される無機薄膜の
積層体であり、現在の市販の通常媒体は、PC基板/第
1誘電体/記録膜/第2誘電体/反射膜/有機樹脂保護
層、という構造である。光磁気記録媒体の記録層はTb
FeCoなどの希土類・遷移金属合金、相変化記録媒体
の記録層はGeSbTeやAgInSbTeなどのカル
コゲン合金が使用されている。光磁気記録媒体の誘電体
はSiNなどのチッ化膜、相変化記録媒体の誘電体はZ
nS・SiO2などのZnS系の膜が使用される。
A typical structure of the magneto-optical recording medium and the phase change recording medium is a laminate of an inorganic thin film formed by vapor deposition or sputtering on a transparent disc made of polycarbonate (PC). Has a structure of PC substrate / first dielectric / recording film / second dielectric / reflective film / organic resin protective layer. The recording layer of the magneto-optical recording medium is Tb
Rare earth / transition metal alloys such as FeCo and chalcogen alloys such as GeSbTe and AgInSbTe are used for the recording layer of the phase change recording medium. The dielectric of the magneto-optical recording medium is a nitride film such as SiN, and the dielectric of the phase change recording medium is Z.
A ZnS-based film such as nS.SiO 2 is used.

【0008】相変化記録媒体では情報の消去状態を記録
膜の結晶状態とし、記録状態を高レーザパワーによる膜
の溶融、急冷により生成する非晶質状態とするのが通常
である。また、相変化記録媒体の記録層はスパッタ製膜
直後は非晶質状態であり、これを全面アニール処理をし
て結晶状態、すなわち消去状態にしてから使用される。
全面のアニール処理は、例えば、約1wattで、1〜
2μm幅X約100μm長のレーザ光を照射して行われ
る。この工程を初期化(初期結晶化)と呼んでいる。
In a phase change recording medium, the erasing state of information is usually set to the crystalline state of the recording film, and the recording state is usually set to the amorphous state generated by melting and quenching of the film with high laser power. Further, the recording layer of the phase change recording medium is in an amorphous state immediately after the sputter deposition, and is used after being subjected to an overall annealing treatment to be in a crystalline state, that is, an erased state.
The entire surface is annealed, for example, at about 1 watt,
This is performed by irradiating a laser beam having a width of 2 μm and a length of about 100 μm. This step is called initialization (initial crystallization).

【0009】これらの現在の市販の通常媒体に対して、
研究が開始された膜面入射タイプ媒体では基板からの薄
膜の積層順序を逆にするのが通常の考えである。すなわ
ち、PC基板/反射膜/下部誘電体/記録膜/上部誘電
体の構成で研究されている。
For these current commercial ordinary media,
It is a common idea to reverse the stacking order of thin films from a substrate in a film-surface incident type medium for which research has begun. That is, research is being conducted on the configuration of a PC substrate / reflective film / lower dielectric / recording film / upper dielectric.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記の膜面入
射タイプ媒体の開発を目的とするものであり、新たに発
見された下記の課題を解決するものである。
SUMMARY OF THE INVENTION The object of the present invention is to develop the above-mentioned film surface incidence type medium, and to solve the following newly discovered problems.

【0011】すなわち、本発明者は上記のPC基板/反
射膜/下部誘電体/記録膜/上部誘電体の構成の膜面入
射タイプ媒体を開発中に膜面からのレーザ光照射により
PC基板が熱変形し、ゆず肌を呈する課題を発見した。
特に、高記録密度を目標として波長の短い(赤色)レー
ザ光を用いた時は、適当な反射率を得るために下部誘電
体の膜厚が薄くなり、この課題が顕在化した。特に、相
変化記録媒体では初期結晶化の過程でこの課題が顕在化
した。
That is, the inventor of the present invention has been developing a film-incidence type medium having the structure of the above-mentioned PC substrate / reflective film / lower dielectric / recording film / upper dielectric, and the PC substrate is irradiated with laser light from the film surface. We discovered the problem of heat deformation and presenting citron skin.
In particular, when a short wavelength (red) laser beam is used for the purpose of high recording density, the thickness of the lower dielectric becomes thin in order to obtain an appropriate reflectance, and this problem has become apparent. In particular, in a phase change recording medium, this problem became apparent during the initial crystallization process.

【0012】本発明は高密度光記録の研究開発の過程で
顕在化したかかる課題を解決して、実用に耐える膜面入
射タイプの光記録媒体を提供するものである。
SUMMARY OF THE INVENTION The present invention solves such a problem that has become apparent in the course of research and development of high-density optical recording, and provides a film surface incidence type optical recording medium that can withstand practical use.

【0013】[0013]

【課題を解決するための手段】本発明の光記録媒体は、
光の照射により生じる記録層の物理特性の変化を利用し
て情報の記録を行う光記録媒体において、基板上に2n
m以上の膜厚の断熱層、反射層、下部誘電体層、記録
層、上部誘電体層を少なくともこの順に設け、基板はプ
ラスチックよりなり、かつ基板の熱変形温度は記録層で
記録に関わる物理特性の変化が生じる温度以下であるこ
とを特徴とする。
The optical recording medium of the present invention comprises:
In an optical recording medium that records information by utilizing a change in physical characteristics of a recording layer caused by light irradiation, a 2n
The heat insulating layer, the reflective layer, the lower dielectric layer, the recording layer, and the upper dielectric layer having a thickness of at least m are provided in this order, the substrate is made of plastic, and the thermal deformation temperature of the substrate is a physical property related to recording in the recording layer. It is characterized in that the temperature is lower than the temperature at which the characteristic changes.

【0014】すなわち、従来のPC基板/反射膜/下部
誘電体/記録膜/上部誘電体の構成の膜面入射タイプ媒
体において見出された課題を解決すべく鋭意研究の結
果、レーザ光照射による記録膜の温度上昇時に熱がプラ
スチック基板に伝導して、該プラスチック基板の温度が
その熱変形温度以上に上昇することが原因であると考え
られる。
That is, as a result of intensive studies to solve the problems found in the conventional film-incidence type medium having the structure of PC substrate / reflective film / lower dielectric / recording film / upper dielectric, the results of laser beam irradiation This is considered to be because heat is conducted to the plastic substrate when the temperature of the recording film rises, and the temperature of the plastic substrate rises above its thermal deformation temperature.

【0015】そこで、プラスチック基板と反射膜との間
に誘電体薄膜の断熱層を挿入することで顕著な改善効果
を見出し、媒体の実用化の見通しを得ることができた。
Therefore, a remarkable improvement effect was found by inserting a heat insulating layer of a dielectric thin film between the plastic substrate and the reflection film, and the prospect of practical use of the medium was obtained.

【0016】[0016]

【発明の実施の形態】本発明の光記録媒体は、プラスチ
ック基板の片面又は両面に、基板面から順に、断熱層、
反射層、下部誘電体層、記録層、上部誘電体層からなる
基本構成を有する膜面入射タイプの光記録媒体である。
BEST MODE FOR CARRYING OUT THE INVENTION The optical recording medium of the present invention comprises a heat insulating layer on one side or both sides of a plastic substrate in order from the substrate surface.
This is a film-incidence type optical recording medium having a basic configuration including a reflective layer, a lower dielectric layer, a recording layer, and an upper dielectric layer.

【0017】本発明の断熱層は、熱伝導率が低く、2n
m以上の膜厚が必要である。温度上昇した記録膜からの
熱伝導の様式は次のようであると考えられる。すなわ
ち、記録膜の熱は下部誘電体膜をその膜厚方向に通過
し、反射層(通常は熱伝導率の良いAl合金膜)を膜面
方向に拡散しながら一部はプラスチック基板に伝熱す
る、と考えられる。すなわち、熱が反射膜の膜面方向に
のみ拡散すればプラスチック基板の温度上昇というかか
る問題は発生しない、と考えられる。ゆえに、断熱層の
熱伝導率は、反射層の熱伝導率との相対関係で規定さ
れ、反射層の熱伝導率が高い時は、熱はプラスチック基
板に伝熱し難く、断熱層の断熱性能はそれ程必要とされ
ないが、反射層の熱伝導率が低い時の断熱層の熱伝導率
は十分に低い必要がある。断熱層の熱伝導率は反射層の
熱伝導率の約10分の1以下である必要がある。また、
断熱層があまりに薄い時は効果なく、2nm以上の膜厚
が必要である。
The heat-insulating layer of the present invention has low thermal conductivity and 2n
m is required. It is considered that the mode of heat conduction from the recording film whose temperature has increased is as follows. In other words, the heat of the recording film passes through the lower dielectric film in the thickness direction, and partially diffuses to the plastic substrate while diffusing the reflection layer (usually an Al alloy film having good thermal conductivity) in the film surface direction. It is considered to be. That is, it is considered that such a problem that the temperature of the plastic substrate rises does not occur if the heat is diffused only in the film surface direction of the reflection film. Therefore, the thermal conductivity of the heat-insulating layer is defined by the relative relationship with the thermal conductivity of the reflective layer. When the thermal conductivity of the reflective layer is high, heat is not easily transferred to the plastic substrate, and the heat-insulating performance of the heat-insulating layer is low. Although not so required, the thermal conductivity of the heat insulating layer when the thermal conductivity of the reflective layer is low needs to be sufficiently low. The thermal conductivity of the heat insulating layer needs to be about one-tenth or less of the thermal conductivity of the reflective layer. Also,
There is no effect when the heat insulating layer is too thin, and a film thickness of 2 nm or more is required.

【0018】「発明が解決しようとする課題」の項に記
載のように、断熱層の膜厚は下部誘電体の膜厚にも依存
するので一概に言えないが、下部誘電体層が10から3
0nm程度と薄い時は、20nm以上の膜厚である事が
好ましい。下部誘電体層が50nm程度以上に厚く、記
録膜の温度の反射膜への伝熱を概ね阻止する膜厚の時
は、断熱層の膜厚は比較的薄くても良い。本発明は、特
に高密度記録を目的としたものであり、使用されるレー
ザ光の波長が短く、下部誘電体膜の膜厚が比較的薄い場
合に、最も効果を発揮するものである。
As described in the section of "Problems to be Solved by the Invention", the thickness of the heat insulating layer depends on the thickness of the lower dielectric, so it cannot be said unconditionally. 3
When the thickness is as thin as about 0 nm, the thickness is preferably 20 nm or more. When the lower dielectric layer is thicker than about 50 nm and has a thickness that substantially prevents the transfer of the temperature of the recording film to the reflective film, the thickness of the heat insulating layer may be relatively thin. The present invention is particularly intended for high-density recording, and is most effective when the wavelength of the laser beam used is short and the thickness of the lower dielectric film is relatively small.

【0019】かかる断熱層としては、スパッタ法で製膜
されるZnS・SiO2膜、ZnS膜、SiN膜、Al
SiN膜、Al23膜、SiO2膜、Ta25膜、Ti
2膜、Y23膜などのカルコゲン化物、チッ化物、酸
化物、及びこれらの混合物からなる層を用いることがで
きる。反射膜は通常は、AlにTi、Ta、Cr、Au
などを数原子%添加したAl合金膜が使用される。Al
合金膜の熱伝導率は添加元素の含有率で異なり、一般に
は添加元素の含有率が多い程その熱伝導率は低下し、そ
の値は約50〜120w/(m・K)と推定されてい
る。断熱層の熱伝導率は5〜12w/(m・K)以下で
ある必要があり、好ましくは2w/(m・K)以下が良
い。
Examples of the heat insulating layer include a ZnS.SiO 2 film, a ZnS film, a SiN film, and an AlS film formed by a sputtering method.
SiN film, Al 2 O 3 film, SiO 2 film, Ta 2 O 5 film, Ti
A layer formed of a chalcogenide, a nitride, an oxide, or a mixture thereof such as an O 2 film or a Y 2 O 3 film can be used. The reflective film is usually made of Ti, Ta, Cr, Au on Al.
An Al alloy film to which several atomic% is added is used. Al
The thermal conductivity of the alloy film differs depending on the content of the additional element. Generally, the higher the content of the additional element, the lower the thermal conductivity, and the value is estimated to be about 50 to 120 w / (m · K). I have. The thermal conductivity of the heat insulating layer needs to be 5 to 12 w / (m · K) or less, and preferably 2 w / (m · K) or less.

【0020】さらに、断熱層としては特に熱伝導率が小
さく、熱で結晶化し難い安定な非晶質であるZnS・S
iO2膜が好ましい。ZnS・SiO2膜は、膜面入射タ
イプの相変化記録媒体を目的とする時は上部誘電体と下
部誘電体として使われるので、同じ材料を断熱層として
も使用する方が生産管理上も好ましい。ZnS・SiO
2膜はZnSとSiO2の約8:2の混合物をスパッタ製
膜して得られる。
Further, as a heat insulating layer, ZnS.S, which is a stable amorphous which has a particularly low thermal conductivity and is hardly crystallized by heat, is used.
iO 2 film is preferable. Since the ZnS.SiO 2 film is used as an upper dielectric and a lower dielectric when a film-incident type phase change recording medium is intended, it is preferable to use the same material as a heat insulating layer in terms of production management. . ZnS / SiO
The two films are obtained by sputtering a mixture of about 8: 2 of ZnS and SiO 2 .

【0021】また特に、本発明は相変化記録媒体に適応
される時に効果が大きく、好適に用いられる。相変化記
録媒体の記録時の記録膜の温度は、光磁気記録媒体の記
録、消去時の記録膜の温度以上に上昇するからである。
光磁気記録媒体の記録膜は記録、消去時に約200℃に
上昇するが、相変化記録媒体の記録膜(GeSbTe)
の記録時の膜の溶融温度は約600℃である。また、初
期結晶化では記録レーザビームの直径(約1μm)より
もはるかに大きいレーザビームが使用され広い範囲が同
時に加熱アニールされる為に、プラスチック基板への熱
の影響は厳しくなると思われ、本発明の効果が大きい。
In particular, the present invention has a large effect when applied to a phase change recording medium, and is suitably used. This is because the temperature of the recording film at the time of recording on the phase change recording medium rises above the temperature of the recording film at the time of recording and erasing on the magneto-optical recording medium.
The recording film of the magneto-optical recording medium rises to about 200 ° C. during recording and erasing, but the recording film of the phase change recording medium (GeSbTe)
The melting temperature of the film at the time of recording was about 600 ° C. Also, in the initial crystallization, a laser beam much larger than the diameter of the recording laser beam (about 1 μm) is used, and a wide range is simultaneously heated and annealed. The effect of the invention is great.

【0022】以上のように、本発明は、光照射による温
度上昇により発現する、記録層の結晶形態や磁気特性な
どの物理特性の変化を利用して記録される記録媒体にお
いて、記録膜の温度(熱)がプラスチック基板に伝播す
ることによるプラスチック基板の熱変形を防止するもの
であり、プラスチック基板の熱変形温度が記録層の物理
特性変化温度以下の場合のみに本発明は効果がある。プ
ラスチック基板の熱変形温度とはプラスチック基板が応
力下で熱変形を開始する温度である。熱可塑性樹脂での
ガラス転移温度、または、ガラス転移温度より10℃程
度低い温度で変形が開始する場合は、その変形開始温度
が該当する。プラスチック基板の代表的なものはポリカ
ーボネート樹脂であり、そのガラス転移温度は分子量や
分子量分布でことなるが、代表的には約135℃であ
る。
As described above, the present invention relates to a recording medium for recording using a change in physical properties such as a crystal morphology and magnetic properties of a recording layer, which is manifested by a rise in temperature due to light irradiation. This prevents thermal deformation of the plastic substrate due to propagation of (heat) to the plastic substrate. The present invention is effective only when the thermal deformation temperature of the plastic substrate is lower than the physical property change temperature of the recording layer. The thermal deformation temperature of the plastic substrate is the temperature at which the plastic substrate starts to thermally deform under stress. When deformation starts at the glass transition temperature of the thermoplastic resin or at a temperature lower by about 10 ° C. than the glass transition temperature, the deformation start temperature corresponds to the temperature. A typical plastic substrate is a polycarbonate resin, and its glass transition temperature varies depending on the molecular weight and molecular weight distribution, but is typically about 135 ° C.

【0023】記録層の物理特性変化温度とは、上記に述
べたことから明らかであるが、記録及び/又は消去の時
の記録膜の温度である。その温度で記録膜の物理特性が
変化する。光磁気記録膜では、その保磁力が外部磁界で
磁化が反転するに十分な値に低下する温度であり、相変
化記録媒体では、記録膜が結晶状態から非晶質状態に変
化する(溶融)温度と非晶質状態から結晶状態に変化す
る(アニール)温度である。プラスチック基板の熱変形
温度は上記の物理特性変化温度のいずれの温度よりも低
い必要がある。
As is apparent from the above description, the physical property change temperature of the recording layer is the temperature of the recording film at the time of recording and / or erasing. At that temperature, the physical properties of the recording film change. In a magneto-optical recording film, the coercive force is a temperature at which the coercive force drops to a value sufficient to cause the magnetization to be reversed by an external magnetic field. In a phase change recording medium, the recording film changes from a crystalline state to an amorphous state (melting). The temperature and the temperature at which the amorphous state changes to the crystalline state (annealing). The heat distortion temperature of the plastic substrate needs to be lower than any of the physical property change temperatures described above.

【0024】[0024]

【実施例1〜4、比較例1および参考例1,2】1.2
mm厚さのプラスチック基板の片面に、基板面から順
に、断熱層、反射層、下部誘電体層、記録層、上部誘電
体層からなる構成を有する膜面入射タイプの相変化光記
録媒体を作製した。また、比較例として、断熱層のない
通常構成(基板面から順に、反射層、下部誘電体層、記
録層、上部誘電体層からなる構成)の媒体も同時に作製
した。
Examples 1-4, Comparative Example 1 and Reference Examples 1, 2 1.2
On one side of a plastic substrate having a thickness of mm, a film incident type phase-change optical recording medium having a structure including a heat insulating layer, a reflective layer, a lower dielectric layer, a recording layer, and an upper dielectric layer in order from the substrate surface is manufactured. did. As a comparative example, a medium having a normal configuration without a heat insulating layer (a configuration including a reflective layer, a lower dielectric layer, a recording layer, and an upper dielectric layer in this order from the substrate surface) was simultaneously manufactured.

【0025】ここで、プラスチック基板には、120m
m直径で、内径15mmのセンターホールを有するポリ
カーボネイト製の基板を用いた。基板の射出成形によ
り、連続サーボ用の螺旋溝(グルーブ)が半径24mm
〜58mmの範囲に形成されている。溝深さは70nm
であり、トラックピッチは1.10μmである。グルー
ブ幅とランド幅は、ともに約0.55μm幅である。該
基板の記録面(グルーブ面)上に、後述の種々の膜厚の
断熱層をもつ膜面入射タイプの相変化媒体を作製した。
断熱層と下部誘電体層と上部誘電体層としてZnS−S
iO2膜(ZnS:SiO2=80:20mol%のター
ゲットをスパッタして得られる膜)を用いた。記録層
は、GeSbTe合金膜(Ge:Sb:Te=2:2:
5原子%、膜厚20nm)である。反射層は、AlCr
合金膜(Al:Cr=97:3原子%、膜厚150n
m)である。これらの無機薄膜は透明基板上にマグネト
ロンスパッタリングによって形成した。使用したスパッ
タ装置はANELVA Corp.製のインラインスパ
ッタ装置(ILC3102型)であり、ターゲットは8
インチ直径で、基板は自公転しながら製膜される。膜厚
はスパッタ時間で調節した。膜面から680nmの光を
照射した時の反射率(初期結晶化後の反射率)が約30
%になるように、下部誘電体と上部誘電体の膜厚を調節
した。具体的には、ZnS−SiO2膜の屈折率は2.
13であり、下部誘電体の膜厚は15nm、上部誘電体
の膜厚は105nmである。表1には、断熱層の膜厚を
変えて実施例1〜4、比較例1および参考例1,2とし
て作製したサンプルの各層の膜厚を記載した。
Here, the plastic substrate has a length of 120 m.
A substrate made of polycarbonate having a center hole having a diameter of 15 mm and an inner diameter of 15 mm was used. Spiral groove for continuous servo is 24mm in radius by injection molding of substrate
It is formed in a range of up to 58 mm. Groove depth is 70nm
And the track pitch is 1.10 μm. The groove width and the land width are both about 0.55 μm. On the recording surface (groove surface) of the substrate, a film incident type phase change medium having heat insulating layers of various thicknesses described below was produced.
ZnS-S as heat insulating layer, lower dielectric layer and upper dielectric layer
An iO 2 film (a film obtained by sputtering a target of ZnS: SiO 2 = 80: 20 mol%) was used. The recording layer is a GeSbTe alloy film (Ge: Sb: Te = 2: 2:
5 atomic%, film thickness 20 nm). The reflective layer is made of AlCr
Alloy film (Al: Cr = 97: 3 atomic%, thickness 150n)
m). These inorganic thin films were formed on a transparent substrate by magnetron sputtering. The sputtering apparatus used was ANELVA Corp. Inline Sputtering System (ILC3102 type) with a target of 8
With an inch diameter, the substrate is formed while revolving around its axis. The film thickness was adjusted by the sputtering time. The reflectance (reflectance after initial crystallization) when light of 680 nm is irradiated from the film surface is about 30.
%, The film thicknesses of the lower dielectric and the upper dielectric were adjusted. Specifically, the refractive index of the ZnS—SiO 2 film is 2.
13, the thickness of the lower dielectric is 15 nm, and the thickness of the upper dielectric is 105 nm. Table 1 shows the thickness of each layer of the samples manufactured as Examples 1 to 4, Comparative Example 1, and Reference Examples 1 and 2 by changing the thickness of the heat insulating layer.

【0026】以上の実施例1〜4、比較例1および参考
例1,2として作製した7種のサンプルに対して、初期
結晶化を行った。初期結晶化には株式会社シバソク製の
バルクイレーザ装置(LK101A型)を用いた。ただ
し、光学ヘッドは、レーザビーム強度がディスク盤面で
約1watt、波長=810nm、NA(対物レンズ開
口数)=0.34、スポットサイズ=125μm×1.
27μmのものを、ディスク半径方向から30度傾けて
取り付けて用いた。初期化は、線速度5m/sec一定
でディスクを回転させながら、光学ヘッドを送り速度8
6μm/回転(ディスク1回転時に光学ヘッドは半径方
向に86μm進む。)で送りながら行った。5m/se
cと86μm/回転を一定条件にして、レーザビーム強
度を変えて初期化を行い、初期化後の膜面からの反射率
とプラスチック基板の異常の有無を調査した。以下のレ
ーザ光強度は、最大出力パワー(盤面で約1watt)
に対する割合(%)で表示する。
Initial crystallization was performed on the seven samples prepared as Examples 1 to 4, Comparative Example 1, and Reference Examples 1 and 2. For initial crystallization, a bulk eraser device (model LK101A) manufactured by Shibasoku Co., Ltd. was used. However, the optical head has a laser beam intensity of about 1 watt on the disk surface, a wavelength of 810 nm, an NA (objective lens numerical aperture) of 0.34, and a spot size of 125 μm × 1.
A disk having a diameter of 27 μm was used by being inclined by 30 degrees from the disk radial direction. Initialization is performed by rotating the disk at a constant linear speed of 5 m / sec while moving the optical head at a feed speed of 8
The optical head was fed at 6 μm / rotation (the optical head advances 86 μm in the radial direction during one rotation of the disk). 5m / se
Initialization was performed by changing the laser beam intensity while maintaining constant conditions of c and 86 μm / rotation, and the reflectance from the film surface after the initialization and the presence or absence of abnormality of the plastic substrate were examined. The following laser light intensity is the maximum output power (about 1 watt on the board)
It is displayed as a percentage (%) with respect to.

【0027】反射率は、半径24mmより内周側のグル
ーブのないフラット部をファイバー式の分光光度計で測
定した。以下に示す反射率は波長680nmでの反射率
である。スパッタ直後の記録層(GeSbTe層)が非
晶質の時の反射率は約5%であった。結晶化で反射率は
大きくなる。十分な大きさ(約30%)の反射率が得ら
れない時は結晶化が不十分と判断した。
The reflectivity was measured by a fiber type spectrophotometer at a flat portion having no groove on the inner peripheral side from a radius of 24 mm. The reflectance shown below is the reflectance at a wavelength of 680 nm. When the recording layer (GeSbTe layer) immediately after sputtering was amorphous, the reflectance was about 5%. The crystallization increases the reflectance. When a sufficient reflectance (about 30%) could not be obtained, it was judged that crystallization was insufficient.

【0028】プラスチック基板の異常の有無(ゆず肌化
現象)は、プラスチック基板の裏側の目視観察と記録膜
面の200倍から400倍の顕微鏡観察で行った。プラ
スチック基板に異常のない時は、初期結晶化したかどう
かは基板の裏面(グルーブの形成されていないフラット
面)から観察できない。これは150nmという比較的
厚いAlCr合金膜を光が十分には透過しないからであ
る。しかし、本発明者は断熱層のないディスクでは十分
に初期化した時に初期化した範囲をプラスチック基板の
裏側から観察できることを発見した。この部分を顕微鏡
で詳しく観察すると、プラスチック基板が変形(ゆず肌
化、著しい時は波打ち状)していた。以下では、プラス
チック基板の変形の程度を、目視観察と顕微鏡観察の結
果を総合して、変形小、変形中、変形大、と表記する。
変形小とは顕微鏡でわずかに基板のゆず肌化が観察され
たものであり、変形大はプラスチック基板の裏側からも
変形を目視できたものである。両者の中間を変形中と表
記する。初期結晶化後の評価結果を表2に示した。
The presence or absence of abnormalities in the plastic substrate (citrus skin phenomenon) was determined by visual observation of the back side of the plastic substrate and microscopic observation of the recording film surface at a magnification of 200 to 400 times. When there is no abnormality in the plastic substrate, it cannot be observed from the back surface of the substrate (a flat surface on which no grooves are formed) whether or not the initial crystallization has occurred. This is because light does not sufficiently pass through the relatively thick AlCr alloy film of 150 nm. However, the present inventor has found that a disk without a heat insulating layer can observe the initialized area from the back side of the plastic substrate when sufficiently initialized. When this part was observed in detail with a microscope, it was found that the plastic substrate was deformed (yuzu skin, and when it was remarkable, wavy). Hereinafter, the degree of deformation of the plastic substrate is referred to as small deformation, medium deformation, and large deformation based on the results of visual observation and microscopic observation.
The small deformation refers to a slight change in the surface of the substrate, which has been observed with a microscope, and the large deformation refers to a case in which the deformation can be visually observed from the back side of the plastic substrate. The middle of both is described as being deformed. Table 2 shows the evaluation results after the initial crystallization.

【0029】表2の評価結果より、初期化レーザパワー
と反射率との関係はサンプル間で大差ない。約60%パ
ワーにおいて反射率が最大になることより、この付近の
初期化条件で結晶化が十分になされることがわかる。6
0%以上のレーザパワーでやや反射率が減少するのは非
晶質化が過大なパワーで少し進行することが原因と考え
る。比較例での過大なパワーでの反射率の減少幅がやや
大きいのはプラスチック基板のゆず肌化などの表面荒れ
が原因と考える。
From the evaluation results shown in Table 2, the relationship between the initialization laser power and the reflectance is not significantly different between the samples. From the fact that the reflectivity is maximized at about 60% power, it can be seen that crystallization is sufficiently performed under the initialization conditions in the vicinity. 6
It is considered that the reason why the reflectivity slightly decreases at a laser power of 0% or more is that amorphization slightly progresses with excessive power. It is considered that the reason why the decrease in the reflectance with the excessive power in the comparative example is slightly large is that the surface roughness of the plastic substrate such as yellowing is caused.

【0030】いずれにしても、十分な初期結晶化の為に
は60%のレーザパワーが必要であるにもかかわらず、
比較例1のサンプルでは基板異常が発生し、実用可能な
記録媒体を得ることができなかった。完全な初期結晶化
でなくとも実用上は50%パワーの初期化程度で使用で
きる可能性がある。実施例1では50〜60%のパワー
の初期化でかろうじて実用可能である。他の実施例2〜
4では基板変形なく十分な初期結晶化を行うことがで
き、膜面入射タイプの相変化記録媒体の実用化の見通し
を得ることができた。なお、この実験例では、下部誘電
体層の膜厚が15nmという薄さであり、断熱層が20
nm以下の参考例1,2では、十分な初期化ができなか
った。
In any case, although 60% laser power is required for sufficient initial crystallization,
In the sample of Comparative Example 1, a substrate abnormality occurred, and a practically usable recording medium could not be obtained. Even if it is not complete initial crystallization, there is a possibility that it can be used with a 50% power initialization in practical use. In the first embodiment, the power can be barely practically used with an initialization of 50 to 60%. Other Examples 2
In No. 4, sufficient initial crystallization could be performed without deformation of the substrate, and the prospect of practical use of the phase change recording medium of the film surface incidence type could be obtained. In this experimental example, the thickness of the lower dielectric layer was as thin as 15 nm, and the thickness of the heat insulating layer was 20 nm.
In Reference Examples 1 and 2 of nm or less, sufficient initialization could not be performed.

【0031】[0031]

【実施例5,6,7】実施例1〜4と同様にして、表3
の膜厚のサンプルを作製した。表3記載の3種のサンプ
ルの初期結晶化を、実施例1〜4と同様に行った。初期
結晶化の評価結果を表4に示した。 なお、この実験例
では、スパッタ直後の媒体の反射率は実施例1〜4のサ
ンプルより大きく、約15%であった。また、十分に結
晶化したサンプルの反射率は約38%であった。
Examples 5, 6, and 7 In the same manner as in Examples 1-4, Table 3
A sample having a film thickness of Initial crystallization of the three samples described in Table 3 was performed in the same manner as in Examples 1 to 4. Table 4 shows the evaluation results of the initial crystallization. In this experimental example, the reflectance of the medium immediately after sputtering was larger than that of the samples of Examples 1 to 4, and was about 15%. The reflectivity of the fully crystallized sample was about 38%.

【0032】表4の評価結果より、断熱層が20nm以
下であっても、下部誘電体層の膜厚が50nmという厚
い場合は、変形が起こらない初期化パワーの範囲で十分
な初期結晶化が可能であった。
From the evaluation results in Table 4, it can be seen that even when the heat insulating layer is 20 nm or less, when the thickness of the lower dielectric layer is as thick as 50 nm, sufficient initial crystallization can be performed within the range of the initializing power at which no deformation occurs. It was possible.

【0033】以上の実施例は膜面入射タイプの相変化記
録媒体の初期化に関するものであるが、該相変化記録媒
体の記録時(記録膜の溶融、急冷による非晶質化)や光
磁気記録媒体の記録、消去時においても、熱の基板への
影響は同じ現象を生じることにより、本発明は有効であ
る。
The above embodiment relates to the initialization of a phase change recording medium of the film surface incidence type, and is performed at the time of recording on the phase change recording medium (the recording film is melted and becomes amorphous by quenching) or magneto-optical. The present invention is also effective when recording and erasing a recording medium because the same effect of heat on the substrate causes the same phenomenon.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】以上、本発明の光記録媒体によれば、記
録層の物理特性変化温度以下の熱変形温度を持つプラス
チックを基板としても、該プラスチック基板と反射層と
の間に断熱層を設けることにより、プラスチック基板の
熱変形を防止でき、膜面入射タイプの光記録媒体の実用
化を可能にした。
As described above, according to the optical recording medium of the present invention, even when a plastic having a heat deformation temperature equal to or lower than the physical property change temperature of the recording layer is used as a substrate, a heat insulating layer is provided between the plastic substrate and the reflective layer. By providing the optical recording medium, thermal deformation of the plastic substrate can be prevented, and the film-incident type optical recording medium can be put to practical use.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光の照射により生じる記録層の物理特性
の変化を利用して情報の記録を行う光記録媒体におい
て、基板上に断熱層、反射層、下部誘電体層、記録層、
上部誘電体層を少なくともこの順に設け、基板はプラス
チックよりなり、かつ基板の熱変形温度は記録層で記録
に関わる物理特性の変化が生じる温度以下であり、かつ
断熱層の膜厚が2nm以上であることを特徴とする光記
録媒体。
1. An optical recording medium for recording information by utilizing a change in physical characteristics of a recording layer caused by light irradiation, a heat insulating layer, a reflective layer, a lower dielectric layer, a recording layer,
When the upper dielectric layer is provided at least in this order, the substrate is made of plastic, and the thermal deformation temperature of the substrate is lower than the temperature at which physical characteristics related to recording change in the recording layer, and the thickness of the heat insulating layer is 2 nm or more. An optical recording medium, comprising:
【請求項2】 断熱層の熱伝導率が反射層の熱伝導率の
10分の1以下であり、かつ断熱層の膜厚が20nm以
上であることを特徴とする請求項1記載の光記録媒体。
2. The optical recording according to claim 1, wherein the heat conductivity of the heat insulating layer is one-tenth or less of the heat conductivity of the reflective layer, and the film thickness of the heat insulating layer is 20 nm or more. Medium.
【請求項3】 光記録媒体が、光の照射により生じる記
録層の構造特性の変化を利用して情報の記録を行う相変
化型光記録媒体であることを特徴とする請求項1または
2のいずれかに記載の光記録媒体。
3. The optical recording medium according to claim 1, wherein the optical recording medium is a phase-change optical recording medium for recording information by utilizing a change in the structural characteristics of a recording layer caused by light irradiation. The optical recording medium according to any one of the above.
JP11030047A 1998-04-10 1999-02-08 Optical recording medium Pending JPH11353708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11030047A JPH11353708A (en) 1998-04-10 1999-02-08 Optical recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9917698 1998-04-10
JP10-99176 1998-04-10
JP11030047A JPH11353708A (en) 1998-04-10 1999-02-08 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH11353708A true JPH11353708A (en) 1999-12-24

Family

ID=26368308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11030047A Pending JPH11353708A (en) 1998-04-10 1999-02-08 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH11353708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510157A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical record carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510157A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical record carrier

Similar Documents

Publication Publication Date Title
JP2806274B2 (en) Optical information recording medium
JPS62183042A (en) Information recording and reproducing method
US6251492B1 (en) Optical recording medium
JPH04102243A (en) Optical information recording medium
JP2000228032A (en) Optical information medium
JP2002298433A (en) Phase change optical recording medium
JPH11353708A (en) Optical recording medium
JP3080844B2 (en) Phase change optical disk
WO2005015555A1 (en) Optical information recording medium and manufacturing method thereof
JP2001209970A (en) Information recording medium, method of producing the same and method of recording and reproducing the same
JP2002542563A (en) Optical recording medium and method of using the same
JPH08329521A (en) Optical recording medium
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
JP2982329B2 (en) Information optical recording medium and recording / reproducing method thereof
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
JP2002269825A (en) Optical recording medium
JP2940176B2 (en) Optical recording medium and recording / reproducing method thereof
JP3523799B2 (en) Phase change recording medium
JPH03160634A (en) Optical recording medium
JP2810092B2 (en) Optical information recording medium
JPH0554428A (en) Optical recording medium
JPH0375940B2 (en)
JPH06150375A (en) Optical recording medium and recording-reproducing method using the same
JP2002542085A (en) Optical recording medium with enhanced erasing ability
JPH11296908A (en) Optical recording medium