JP3687264B2 - Optical information recording medium and manufacturing method thereof - Google Patents

Optical information recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP3687264B2
JP3687264B2 JP09878997A JP9878997A JP3687264B2 JP 3687264 B2 JP3687264 B2 JP 3687264B2 JP 09878997 A JP09878997 A JP 09878997A JP 9878997 A JP9878997 A JP 9878997A JP 3687264 B2 JP3687264 B2 JP 3687264B2
Authority
JP
Japan
Prior art keywords
optical information
layer
recording medium
information recording
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09878997A
Other languages
Japanese (ja)
Other versions
JPH10289478A (en
Inventor
哲也 秋山
鋭二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09878997A priority Critical patent/JP3687264B2/en
Publication of JPH10289478A publication Critical patent/JPH10289478A/en
Application granted granted Critical
Publication of JP3687264B2 publication Critical patent/JP3687264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レーザー光等のいわゆるエネルギービームの照射により、情報の記録、再生及び消去を行う光学式情報記録媒体、及びその製造方法に関するものである。
【0002】
【従来の技術】
大容量で高密度なメモリーとして光学式情報記録媒体が注目されており、現在書換えが可能な消去型と呼ばれるものの開発が進められている。この消去型光学式情報記録媒体の一つとして、アモルファス状態と結晶状態の間で相変化する薄膜を記録層として用い、レーザー光の照射による熱エネルギーによって情報の記録及び消去を行うものがある。
【0003】
この記録層用の相変化材料としては、Ge,Sb,Te,In等を主成分とする合金膜が一般的に知られており、例えばGeSbTe,GeSbTeSe,InSb,InSbTe,InSbTeAg等がある。
【0004】
情報の記録は、一般的に記録層の部分的なアモルファス化によってマークを形成して行い、消去はこのアモルファスマークの結晶化によって行う場合が多い。アモルファス化は、記録層を融点以上に加熱した後に一定値以上の速さで冷却することによって行われる。また、結晶化は記録層を結晶化温度以上、融点以下の温度に加熱することによって行われる。
【0005】
そしてこの記録層の上下に誘電体層を設けるのが一般的である。この誘電体層の目的は、第一に瞬間的に融点以上に昇温する記録層の熱から基板を保護するとともに記録層の変形や破損を防止する熱機械的な保護作用であり、第二に光干渉効果により記録情報の再生時に十分な信号強度を得る光学的作用であり、第三に記録時に良好な形状のアモルファスマークを形成するのに適した冷却速度を実現する熱的作用である。そのためにこの誘電体材料に要求される特性は、十分な耐熱性、大きな屈折率、適当な熱伝導率等である。これらの条件を満たす材料として、例えばZnS−SiO2やSi34等が多数提案されている。
【0006】
図3は従来の消去型光学式情報記録媒体の一例の断面図であり、中心孔を有し案内溝11を具備した円盤状の透明基板10上に、ZnS−SiO2からなり、膜厚約120nmの基板側誘電体層(以下、下引層と称す)12、Ge・Sb・Te合金薄膜からなり、膜厚約20nmの記録層13、ZnS−SiO2からなり、膜厚約30nmの反射層側誘電体層(以下、上引層と称す)14、Al合金からなり、膜厚約150nmの反射層15を形成し、その上に接着剤16を介して保護基板17を設けたものである。
【0007】
Ge・Sb・Te合金は極めて結晶化速度が速いため、単一のレーザー光の強度を変調して照射するだけでアモルファス化及び結晶化ができる。したがって、この光学式情報媒体は、一般にオーバライトと呼ばれる単一のレーザー光による情報の書換えが可能である。この時、下引層12、上引層14の膜厚は、光干渉効果により再生時に十分な信号強度が得られるとともに、記録時に良好な形状のアモルファスマークを形成するに十分な記録層の冷却速度が得られるように設計されている。
【0008】
このような光学式情報記録媒体では、一般的に記録層は形成時にはアモルファス状態になっているため、使用前に予め結晶状態にしておく必要がある。この処理を初期化と呼ぶ。この初期化は、光学式情報記録媒体を回転させながらスポット径数十μmに成形されたArレーザーを照射する等して、全面にわたって記録層を結晶化する方法が一般的である。
【0009】
【発明が解決しょうとする課題】
しかし、図3に示した従来の光学式情報記録媒体に記録消去を繰り返すと、再生時の信号振幅が徐々に小さくなり、情報の読み取りに誤りが生じる場合があるという課題があった。この原因として、記録層と下引層との界面または記録層と上引層との界面で相互拡散が生じ、記録層の組成が変化することが考えられる。
【0010】
これに対して、下引層及び上引層にSi34等の窒化物を用いた場合は、初期化し、室温環境から例えば90℃80%RHといった高温高湿に保たれた恒温恒湿槽中への投入及び取り出しの繰返しを行った場合、膜の部分的な剥離やクラックが発生するという課題があった。これは、記録層との付着力が弱いために、初期化や環境変化による膨張収縮によって生じると考えられる。
【0011】
本発明は上記従来の課題を解決するもので、繰り返し記録消去性能が良好で、環境変化に強い光学式情報記録媒体を提供することを目的とする。
【0012】
この目的を達成するために、本発明における光学式情報記録媒体は、記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層を設け、前記記録層とこの保護層の少なくとも一方との界面付近での窒素の含有率を、前記保護層の平均的な窒素の含有率よりも少なくしている
【0013】
また、本発明における別の光学式情報記録媒体は、記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層を設け、この保護層の少なくとも一方と記録層との界面付近での窒素の含有率が連続的に変化する構成、または、窒素の含有率が異なる複数の薄膜で構成し、この保護層の中で記録層に接する部分の窒素の含有率を少なくしている
【0014】
一方、本発明における光学式情報記録媒体の製造方法は、記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層を、前記保護層の主成分またはその窒化物からなるターゲットを用い、希ガスと窒素成分を有するガスの混合ガス中で反応性スパッタにより成膜し、前記記録層の少なくとも一方の形成において、前記記録層との界面付近で一時的にスパッタ電力を大きくする、または、一時的に前記混合ガス中の窒素成分を有するガスの割合を少なくするの何れかを行うものである
【0015】
【発明の実施の形態】
以下、本発明の光学式情報記録媒体及びその製造方法について、図面を参照しながら説明する。
【0016】
(実施の形態1)
図1は、本発明の光学式情報記録媒体の一実施態様における光学式情報記録媒体の断面図である。本実施の形態の光学式情報記録媒体は中心孔を有し、溝幅約0.7μm,ピッチ約1.5μmの螺旋状の案内溝2を具備した円盤状のポリカーボネート製透明基板1上に、ZnS−SiO2を含み膜厚約100nmの下引層3、Ge−Nを含み膜厚約20nmの保護層4、Ge・Sb・Te合金薄膜からなり膜厚約20nmの記録層5、ZnS−SiO2を含み膜厚約30nmの上引層6、Al合金で膜厚約150nmの反射層7を、それぞれスパッタリングによって形成し、その上に接着剤8を介して保護基板9を設けたものである。
【0017】
下引層3及び上引層6は、ZnS、SiO2を混合した材料の焼結体をターゲットとし、Arガスを用いてスパッタリングによって形成したものである。このとき、ターゲットは直径60mm、厚さ6mmであり、スパッタリングは圧力2mTorr、放電電力500Wの高周波マグネトロンスパッタリングであった。
【0018】
また、記録層5は、所定の組成割合のGe・Sb・Teの焼結体をターゲットとして、下引層3と同様の方法で形成した。
【0019】
保護層4は、Geをターゲットとして、まず、ArガスとN2ガスを1:1の割合で成膜装置内に導入し、圧力10mTorr、放電電力500Wの高周波マグネトロンスパッタリングで成膜を開始し、約15nm形成された時点で成膜を続けながら、放電電力を1kWに切り替えて残りの約5nmを形成した。
【0020】
オージェ電子分光法(AES)等の分析の結果、保護層4の放電電力500Wで形成した部分は窒素の含有率が約50%であり、放電電力1kWで形成した部分は窒素の含有率が約30%であった。実施の形態1の光学式情報記録媒体を媒体Aと呼ぶ。
【0021】
(実施の形態2)
図2は、本発明の光学式情報記録媒体の他の実施態様における光学式情報記録媒体の断面図である。本実施の形態の光学式情報記録媒体は実施の形態1と同様に、中心孔を有し、溝幅約0.7μm,ピッチ約1.5μmの螺旋状の案内溝2を具備した円盤状のポリカーボネート製透明基板1上に、ZnS−SiO2を含み膜厚約100nmの下引層3、Ge−Nを含み膜厚約20nmの保護層4’、Ge・Sb・Te合金薄膜からなり膜厚約20nmの記録層5、ZnS−SiO2を含み膜厚約30nmの上引層6、Al合金で膜厚約150nmの反射層7を、それぞれスパッタリングによって形成し、その上に接着剤8を介して保護基板9を設けたものであるが、保護層4’は、Geをターゲットとして、まず、ArガスとN2ガスを1:1の割合で成膜装置内に導入し、圧力10mTorr、放電電力500Wの高周波マグネトロンスパッタリングで成膜を開始し、約15nmの第1層4−1を形成した時点でシャッターにより成膜を一時的に停止した後、放電電力を1kWにして約5nmの第2層4−2を形成したものである。この実施の形態2の光学式情報記録媒体を媒体Bと呼ぶ。
【0022】
また、比較のために媒体Aと同様の構造で保護層4を全て放電電力500Wで成膜した点、即ち保護層4の記録層5との界面付近でも窒素の含有率が中心部と同様に約50%である点のみが異なる媒体Cを作成し、媒体A、媒体B、媒体C及び図3に示した従来の媒体を初期化した後、耐環境性試験及びオーバライト特性試験を行った結果を(表1)に示す。
【0023】
但し、耐環境性試験は、90℃80%RHに保たれた恒温恒湿槽中に500時間放置した後の剥離及びクラックの有無によって良否を判定した。また、オーバライト特性試験は、A〜C及び従来例の光学式情報媒体を回転させ、線速度6m/secで、波長680nmのレーザ光と開口数0.6の対物レンズとを有する光学系を用いて、PWM記録で最短記録マーク3Tがマーク長0.6μm、ビット長0.4μmとなるの信号の3T信号と11T信号とを交互に繰り返しオーバライトした際の、3T信号のC/N比が50dB以上であるオーバライト回数で判定した。
【0024】
【表1】

Figure 0003687264
【0025】
(表1)から明らかなように、媒体A、媒体Bは耐環境試験による剥離やクラックの発生がなく、オーバライト特性も良好であるのに対して、媒体Cはオーバライト特性は良好であったが、耐環境試験の結果、剥離が発生し、従来例では耐環境試験による剥離は良好であったが、オーバライト特性ではC/Nが低下した試験結果が得られた。
【0026】
つまり、媒体A及び媒体Bは、保護層4の記録層5との界面付近の窒素の含有量を少なくすることによって、耐環境性とオーバライト特性がともに良好な光学式情報記録媒体となっている。
【0027】
なお、上記各実施の形態の説明において、保護層の記録層との界面付近の窒素の含有量を少なくするために、保護層の成膜時の放電電力を該当する部分で大きくしたが、ArガスとN2ガスの混合比を変えてN2ガスの割合を少なくしても良い。また、保護層は、記録層のどちらか一方だけに設けても良いし、両側に設けても良い。さらに、下引層や上引層を保護層で置き換えることもできる。
【0028】
上記実施の形態の説明では記録層として、Ge・Sb・Te合金薄膜を用いたが、レーザ光等の照射による熱を利用して情報を記録するものであれば、他の記録層材料を用いた場合でも本発明は有効である。
【0029】
反射層の材料もAu等、他の金属を用いてもよいし省略することもできる。また、上記実施の形態の説明では、保護層の材料として、Ge−Nを用いたが、記録層を構成する元素の内少なくとも1つの元素、Siの窒化物を用いても良く、さらに、酸素等のガス元素またはCr、Al等の非ガス元素等の若干の添加物を加えることも可能である。
【0030】
【発明の効果】
以上のように本発明は、耐環境性とオーバライト特性がともに優れた光学式情報記録媒体及びその製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の光学式情報記録媒体の断面図
【図2】本発明の第2の実施形態の光学式情報記録媒体の断面図
【図3】従来の一般的な光学式情報記録媒体の断面図
【符号の説明】
1,10 透明基板
2,11 案内溝
3,12 下引層
4,4’ 保護層
5,13 記録層
6,14 上引層
7,15 反射層
8,16 接着剤
9,17 保護基板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical information recording medium for recording, reproducing and erasing information by irradiation of a so-called energy beam such as a laser beam, and a manufacturing method thereof.
[0002]
[Prior art]
Optical information recording media are attracting attention as a large-capacity, high-density memory, and development of what is called an erasable type that can be rewritten is underway. As one of the erasable optical information recording media, there is one that uses a thin film that changes phase between an amorphous state and a crystalline state as a recording layer, and records and erases information by thermal energy by laser light irradiation.
[0003]
As the phase change material for the recording layer, an alloy film containing Ge, Sb, Te, In or the like as a main component is generally known.
[0004]
Information recording is generally performed by forming marks by partially amorphizing the recording layer, and erasing is often performed by crystallization of the amorphous marks. Amorphization is performed by heating the recording layer to the melting point or higher and then cooling it at a speed equal to or higher than a certain value. Crystallization is performed by heating the recording layer to a temperature not lower than the crystallization temperature and not higher than the melting point.
[0005]
In general, dielectric layers are provided above and below the recording layer. The purpose of this dielectric layer is to protect the substrate from the heat of the recording layer that instantaneously rises above the melting point, and to protect the substrate from deformation and breakage of the recording layer. This is an optical action that obtains sufficient signal intensity during reproduction of recorded information due to the optical interference effect, and third, a thermal action that realizes a cooling rate suitable for forming an amorphous mark having a good shape during recording. . Therefore, characteristics required for this dielectric material are sufficient heat resistance, a large refractive index, an appropriate thermal conductivity, and the like. As materials satisfying these conditions, for example, many ZnS—SiO 2 and Si 3 N 4 have been proposed.
[0006]
FIG. 3 is a cross-sectional view of an example of a conventional erasable optical information recording medium, which is made of ZnS—SiO 2 on a disc-like transparent substrate 10 having a central hole and provided with a guide groove 11 and having a film thickness of about 120 nm substrate-side dielectric layer (hereinafter referred to as undercoat layer) 12, Ge · Sb · Te alloy thin film, about 20 nm thick recording layer 13, ZnS—SiO 2 , reflective about 30 nm thick A layer-side dielectric layer (hereinafter referred to as an overcoat layer) 14, an Al alloy, a reflective layer 15 having a thickness of about 150 nm is formed, and a protective substrate 17 is provided thereon with an adhesive 16 is there.
[0007]
Since the Ge.Sb.Te alloy has a very high crystallization speed, it can be amorphized and crystallized simply by modulating the intensity of a single laser beam. Therefore, this optical information medium can be rewritten by a single laser beam generally called “overwrite”. At this time, the film thickness of the undercoat layer 12 and the overcoat layer 14 is such that sufficient signal intensity can be obtained during reproduction due to the optical interference effect, and sufficient cooling of the recording layer to form an amorphous mark having a good shape during recording. Designed for speed.
[0008]
In such an optical information recording medium, since the recording layer is generally in an amorphous state at the time of formation, it needs to be in a crystalline state before use. This process is called initialization. This initialization is generally performed by irradiating an Ar laser formed with a spot diameter of several tens of μm while rotating the optical information recording medium to crystallize the recording layer over the entire surface.
[0009]
[Problems to be solved by the invention]
However, when recording and erasing is repeated on the conventional optical information recording medium shown in FIG. 3, there is a problem that the signal amplitude at the time of reproduction gradually decreases and an error may occur in reading information. As a cause of this, it is conceivable that interdiffusion occurs at the interface between the recording layer and the undercoat layer or the interface between the recording layer and the overcoat layer and the composition of the recording layer changes.
[0010]
On the other hand, when a nitride such as Si 3 N 4 is used for the undercoat layer and the overcoat layer, it is initialized and maintained at a high temperature and high humidity such as 90 ° C. and 80% RH from the room temperature environment. When repeated charging and unloading into the tank, there was a problem that partial peeling or cracking of the film occurred. This is considered to be caused by expansion and contraction due to initialization or environmental change because the adhesive force with the recording layer is weak.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems, and to provide an optical information recording medium having good repeated erasing performance and being resistant to environmental changes.
[0012]
In order to achieve this object, the optical information recording medium of the present invention is provided with a protective layer, which is a thin film mainly composed of Ge—N, on at least one side of the recording layer. The nitrogen content in the vicinity of the interface with at least one is made lower than the average nitrogen content in the protective layer .
[0013]
In another optical information recording medium of the present invention, a protective layer, which is a thin film mainly composed of Ge—N, is provided on at least one side of the recording layer, and an interface between at least one of the protective layer and the recording layer A structure in which the nitrogen content in the vicinity changes continuously, or a plurality of thin films with different nitrogen contents, and the content of nitrogen in the protective layer in contact with the recording layer is reduced. Yes .
[0014]
On the other hand, in the method for producing an optical information recording medium according to the present invention, a protective layer, which is a thin film containing Ge—N as a main component, is formed on at least one side of the recording layer, the main component of the protective layer or a nitride thereof. Using a target, a film is formed by reactive sputtering in a mixed gas of a rare gas and a gas having a nitrogen component, and in at least one of the recording layers, the sputtering power is temporarily increased near the interface with the recording layer. Or temporarily reducing the proportion of the gas having a nitrogen component in the mixed gas .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an optical information recording medium and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
[0016]
(Embodiment 1)
FIG. 1 is a cross-sectional view of an optical information recording medium according to an embodiment of the optical information recording medium of the present invention. The optical information recording medium of the present embodiment has a center hole, a disk-shaped polycarbonate transparent substrate 1 having a spiral guide groove 2 having a groove width of about 0.7 μm and a pitch of about 1.5 μm. An undercoat layer 3 containing ZnS—SiO 2 and having a thickness of about 100 nm, a protective layer 4 containing Ge—N and having a thickness of about 20 nm, a recording layer 5 made of a Ge · Sb · Te alloy thin film and having a thickness of about 20 nm, ZnS— An overcoat layer 6 containing SiO 2 and having a thickness of about 30 nm, and a reflective layer 7 made of Al alloy and having a thickness of about 150 nm are formed by sputtering, and a protective substrate 9 is provided thereon with an adhesive 8. is there.
[0017]
The undercoating layer 3 and the overcoating layer 6 are formed by sputtering using Ar gas with a sintered body made of a mixture of ZnS and SiO 2 as a target. At this time, the target had a diameter of 60 mm and a thickness of 6 mm, and the sputtering was high-frequency magnetron sputtering with a pressure of 2 mTorr and a discharge power of 500 W.
[0018]
The recording layer 5 was formed in the same manner as the undercoat layer 3 using a sintered body of Ge, Sb, and Te having a predetermined composition ratio as a target.
[0019]
The protective layer 4 is formed by using Ge as a target, first introducing Ar gas and N 2 gas into the film forming apparatus at a ratio of 1: 1, and starting film formation by high-frequency magnetron sputtering with a pressure of 10 mTorr and a discharge power of 500 W, While the film formation was continued when the film thickness was about 15 nm, the discharge power was switched to 1 kW to form the remaining about 5 nm.
[0020]
As a result of analysis such as Auger electron spectroscopy (AES), the portion of the protective layer 4 formed with a discharge power of 500 W has a nitrogen content of about 50%, and the portion formed with a discharge power of 1 kW has a nitrogen content of about 50%. 30%. The optical information recording medium of Embodiment 1 is referred to as medium A.
[0021]
(Embodiment 2)
FIG. 2 is a cross-sectional view of an optical information recording medium in another embodiment of the optical information recording medium of the present invention. As in the first embodiment, the optical information recording medium of the present embodiment has a center hole, and has a disk-like shape having a spiral guide groove 2 having a groove width of about 0.7 μm and a pitch of about 1.5 μm. On a polycarbonate transparent substrate 1, an undercoat layer 3 containing ZnS—SiO 2 and having a thickness of about 100 nm, a protective layer 4 ′ containing Ge—N and having a thickness of about 20 nm, and a Ge · Sb · Te alloy thin film. A recording layer 5 having a thickness of about 20 nm, an overcoat layer 6 containing ZnS—SiO 2 and having a thickness of about 30 nm, and a reflective layer 7 made of an Al alloy and having a thickness of about 150 nm are formed by sputtering, and an adhesive 8 is formed thereon. The protective layer 4 ′ is provided with a protective layer 4 ′. Ge is used as a target, Ar gas and N 2 gas are first introduced into the film forming apparatus at a ratio of 1: 1, and the pressure is 10 mTorr. High frequency magnetron spattering with 500W power After the film formation was started, the film formation was temporarily stopped by the shutter when the first layer 4-1 of about 15 nm was formed, and then the second layer 4-2 of about 5 nm was formed with a discharge power of 1 kW. It is a thing. This optical information recording medium of Embodiment 2 is referred to as medium B.
[0022]
For comparison, the protective layer 4 is entirely formed at a discharge power of 500 W with the same structure as that of the medium A, that is, the nitrogen content is the same as that in the central portion even near the interface of the protective layer 4 with the recording layer 5. A medium C, which differs only in that it is about 50%, was created, the medium A, medium B, medium C and the conventional medium shown in FIG. 3 were initialized, and then an environmental resistance test and an overwrite characteristic test were performed. The results are shown in (Table 1).
[0023]
However, in the environmental resistance test, pass / fail was determined by the presence or absence of peeling and cracks after leaving in a constant temperature and humidity chamber maintained at 90 ° C. and 80% RH for 500 hours. In addition, the overwrite characteristic test is performed by rotating an optical information medium of A to C and the conventional example, an optical system having a laser beam having a wavelength of 680 nm and an objective lens having a numerical aperture of 0.6 at a linear velocity of 6 m / sec. 3T signal C / N ratio when the 3T signal and 11T signal of the shortest recording mark 3T having a mark length of 0.6 μm and a bit length of 0.4 μm are overwritten alternately by PWM recording. Is determined by the number of overwriting times of 50 dB or more.
[0024]
[Table 1]
Figure 0003687264
[0025]
As is clear from Table 1, medium A and medium B are free from peeling and cracking due to the environmental resistance test, and have good overwrite characteristics, while medium C has good overwrite characteristics. However, as a result of the environmental resistance test, peeling occurred. In the conventional example, the peeling by the environmental resistance test was good, but in the overwrite characteristics, the test result in which C / N was reduced was obtained.
[0026]
That is, the medium A and the medium B are optical information recording media having both good environmental resistance and overwriting characteristics by reducing the nitrogen content in the vicinity of the interface between the protective layer 4 and the recording layer 5. Yes.
[0027]
In the description of each of the above embodiments, in order to reduce the nitrogen content in the vicinity of the interface between the protective layer and the recording layer, the discharge power at the time of forming the protective layer was increased at the corresponding part. The ratio of N 2 gas may be reduced by changing the mixing ratio of gas and N 2 gas. The protective layer may be provided on only one of the recording layers or on both sides. Furthermore, the undercoat layer and the overcoat layer can be replaced with a protective layer.
[0028]
In the description of the above embodiment, a Ge / Sb / Te alloy thin film is used as the recording layer. However, other recording layer materials may be used as long as information is recorded using heat by irradiation with laser light or the like. Even in such a case, the present invention is effective.
[0029]
The material of the reflective layer may be other metal such as Au or may be omitted. In the description of the above embodiment, Ge—N is used as the material for the protective layer. However, at least one of the elements constituting the recording layer, Si nitride, may be used, and oxygen It is also possible to add some additives such as gas elements such as Cr or non-gas elements such as Cr and Al.
[0030]
【The invention's effect】
As described above, the present invention can provide an optical information recording medium excellent in both environmental resistance and overwrite characteristics, and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a sectional view of an optical information recording medium according to an embodiment of the present invention. FIG. 2 is a sectional view of an optical information recording medium according to a second embodiment of the present invention. Sectional view of formula information recording medium [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10 Transparent substrate 2,11 Guide groove 3,12 Undercoat layer 4,4 'Protective layer 5,13 Recording layer 6,14 Overcoat layer 7,15 Reflective layer 8,16 Adhesive 9,17 Protective substrate

Claims (5)

透明基板上に少なくとも、エネルギービームの照射によって光学的に検出可能な状態変化を可逆的に起こすGe、Sb、Teを主成分とする相変化材料からなる記録層と、前記記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層を備えた光学式情報記録媒体であって、前記記録層と前記保護層の少なくとも一方との界面付近での窒素の含有率が、前記保護層の窒素の平均含有率よりも少ないことを特徴とする光学式情報記録媒体。A recording layer made of a phase change material mainly composed of Ge, Sb, and Te, which causes a state change optically detectable at least by irradiation of an energy beam on a transparent substrate, and at least one of the recording layers An optical information recording medium provided with a protective layer that is a thin film mainly composed of Ge-N on the side, wherein the nitrogen content in the vicinity of the interface between the recording layer and at least one of the protective layers is An optical information recording medium characterized by being less than the average content of nitrogen in the protective layer. 前記記録層と前記記録層に接する少なくとも一方の保護層との界面付近での窒素の含有率が、連続的に変化していることを特徴とする請求項1記載の光学式情報記録媒体。  2. The optical information recording medium according to claim 1, wherein the nitrogen content in the vicinity of the interface between the recording layer and at least one protective layer in contact with the recording layer continuously changes. 前記保護層が、窒素の含有率が異なる複数の薄膜で構成されていることを特徴とする請求項1記載の光学式情報記録媒体。  The optical information recording medium according to claim 1, wherein the protective layer is composed of a plurality of thin films having different nitrogen contents. 透明基板上に少なくとも、エネルギービームの照射によって光学的に検出可能な状態変化を可逆的に起こすGe、Sb、Teを主成分とする相変化材料からなる記録層と、前記記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層をスパッタリングによって形成する光学式情報記録媒体の製造方法であって、前記保護層の少なくとも一方の形成時において、前記保護層の主成分またはその窒化物からなるターゲットを用い、希ガスと窒素成分を有するガスの混合ガス中で反応性スパッタにより成膜し、前記記録層との界面付近で一時的にスパッタ電力を大きくすることを特徴とする光学式情報記録媒体の製造方法。A recording layer made of a phase change material mainly composed of Ge, Sb, and Te, which causes a state change optically detectable at least by irradiation of an energy beam on a transparent substrate, and at least one of the recording layers A method for producing an optical information recording medium, wherein a protective layer, which is a thin film mainly composed of Ge—N, is formed on a side by sputtering, wherein at least one of the protective layers, Using the target made of nitride, forming a film by reactive sputtering in a mixed gas of a rare gas and a gas having a nitrogen component, and temporarily increasing the sputtering power near the interface with the recording layer A method for manufacturing an optical information recording medium. 透明基板上に少なくとも、エネルギービームの照射によって光学的に検出可能な状態変化を可逆的に起こすGe、Sb、Teを主成分とする相変化材料からなる記録層と、前記記録層の少なくとも一方の側にGe−Nを主成分とする薄膜である保護層をスパッタリングによって形成する光学式情報記録媒体の製造方法であって、前記保護層の少なくとも一方の形成時において、前記保護層の主成分またはその窒化物からなるターゲットを用い、希ガスと窒素成分を有するガスの混合ガス中で反応性スパッタにより成膜し、前記記録層との界面付近で一時的に前記混合ガス中の窒素成分を有するガスの割合を少なくすることを特徴とする光学式情報記録媒体の製造方法。A recording layer made of a phase change material mainly composed of Ge, Sb, and Te, which causes a state change optically detectable at least by irradiation of an energy beam on a transparent substrate, and at least one of the recording layers A method for producing an optical information recording medium, wherein a protective layer, which is a thin film mainly composed of Ge—N, is formed on a side by sputtering, wherein at least one of the protective layers, The nitride target is used to form a film by reactive sputtering in a mixed gas of a rare gas and a gas having a nitrogen component, and temporarily has a nitrogen component in the mixed gas near the interface with the recording layer. A method for producing an optical information recording medium, wherein the ratio of gas is reduced.
JP09878997A 1997-04-16 1997-04-16 Optical information recording medium and manufacturing method thereof Expired - Fee Related JP3687264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09878997A JP3687264B2 (en) 1997-04-16 1997-04-16 Optical information recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09878997A JP3687264B2 (en) 1997-04-16 1997-04-16 Optical information recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10289478A JPH10289478A (en) 1998-10-27
JP3687264B2 true JP3687264B2 (en) 2005-08-24

Family

ID=14229145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09878997A Expired - Fee Related JP3687264B2 (en) 1997-04-16 1997-04-16 Optical information recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3687264B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042995A1 (en) * 1998-02-23 1999-08-26 Hitachi Maxell, Ltd. Information recording medium
TWI272607B (en) 2002-10-02 2007-02-01 Mitsubishi Kagaku Media Co Ltd Optical recording medium
JP2005038568A (en) 2003-06-26 2005-02-10 Hitachi Maxell Ltd Phase change optical recording medium

Also Published As

Publication number Publication date
JPH10289478A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US5523140A (en) Optical recording method and medium
WO1998038636A1 (en) Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
JPH07105574A (en) Optical information recording medium
JP2001319370A (en) Phase change optical disk
JP3687264B2 (en) Optical information recording medium and manufacturing method thereof
JP2000260073A (en) Manufacture of dielectric film, phase transition type optical disk medium using the same, and its manufacture
JPH025246A (en) Optical information recording/reproducing/erasing member and its production
JPH05144084A (en) Optical recording medium and production thereof
JP3550319B2 (en) Optical recording medium
JP2639174B2 (en) Optical recording medium
JPH09204687A (en) Optical information medium and production thereof
JP2000298874A (en) Phase-change optical disk and its manufacture
JPH10326434A (en) Optical recording medium
JP3523799B2 (en) Phase change recording medium
JP4121231B2 (en) Initializing method of optical recording medium
JP2637825B2 (en) Phase change optical disk
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH10269630A (en) Optical recording medium
JPH11265525A (en) Phase change type optical recording medium
JPH03178050A (en) Optical information recording, reproducing and erasing member
JPH0963117A (en) Optical information recording medium
JPH10106045A (en) Optical recording medium and its manufacturing method and equipment
JP2001283477A (en) Initialization method for optical recording medium
JP2002352474A (en) Optical recording medium and its manufacturing method
JPH11265524A (en) Phase change type optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees