JPH11345981A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11345981A
JPH11345981A JP13921699A JP13921699A JPH11345981A JP H11345981 A JPH11345981 A JP H11345981A JP 13921699 A JP13921699 A JP 13921699A JP 13921699 A JP13921699 A JP 13921699A JP H11345981 A JPH11345981 A JP H11345981A
Authority
JP
Japan
Prior art keywords
thin film
gate
drain
input
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13921699A
Other languages
Japanese (ja)
Other versions
JP3065077B2 (en
Inventor
Yoshio Nakazawa
良雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11139216A priority Critical patent/JP3065077B2/en
Publication of JPH11345981A publication Critical patent/JPH11345981A/en
Application granted granted Critical
Publication of JP3065077B2 publication Critical patent/JP3065077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the manufacturing process of the static electricity protective circuit of a semiconductor device by simultaneously forming the area which becomes the source-drain of a thin film transistor and the area which becomes the input resistor of the static electricity protective circuit by using amorphous silicon, and doping the amorphous silicon with ions. SOLUTION: After an amorphous silicon thin film 2 is formed to a prescribed thickness on an insulating substrate 1 by using an amorphous silicon material, a gate oxide film 4 is formed by patterning the thin film 2 in a required pattern and oxidizing the surface of the thin film 2. Then a gate section 5 is formed by forming a film of an amorphous material and etching the film in a required pattern. Thereafter, the source section 30 and drain section 31 of a thin film transistor 8 are activated by doping the sections 30 and 31 with ions by using the gate section 5 as a mask. As a result, the portion masked with the gate section 5 functions as a channel. Thus, the input resistor 32 of a static electricity protective circuit is collectively formed together with the source section, gate section 5, and drain section 31 of the transistor 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁基板上に形成さ
れる半導体装置の静電気保護回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic protection circuit for a semiconductor device formed on an insulating substrate.

【0002】[0002]

【従来の技術】従来は絶縁基板上に薄膜トランジスタを
形成した場合に寄生ダイオードが同時形成されるという
ことはなかった。これは半導体基板上にバイポーラトラ
ンジスタやMOSトランジスタを形成すると同時に寄生
ダイオードが形成されるのとは大きな相違点であった。
2. Description of the Related Art Conventionally, when a thin film transistor is formed on an insulating substrate, a parasitic diode has not been formed at the same time. This is a big difference from forming a bipolar transistor or a MOS transistor on a semiconductor substrate and forming a parasitic diode at the same time.

【0003】半導体基板上に形成される半導体装置の静
電気保護回路は前記寄生ダイオードを利用して構成され
ていた。
A static electricity protection circuit of a semiconductor device formed on a semiconductor substrate has been configured using the parasitic diode.

【0004】[0004]

【発明が解決しようとする課題】しかし、絶縁基板上で
は薄膜トランジスタを形成する際に、寄生ダイオードが
同時形成されることがないので、製造工程数を増やさず
に、ダイオードを用いた、静電気保護性能が高い静電気
保護回路を構成できないという問題点を有する。
However, when a thin film transistor is formed on an insulating substrate, a parasitic diode is not formed at the same time. Therefore, without increasing the number of manufacturing steps, the static electricity protection performance using the diode is reduced. However, there is a problem that a high static electricity protection circuit cannot be formed.

【0005】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは、絶縁基板上に形成
される半導体装置に形成される薄膜トランジスタの製造
工程と同時に形成されかつ静電気保護性能が高い静電気
保護回路を提供するところにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has as its object to form a thin film transistor simultaneously with a process of manufacturing a thin film transistor formed on a semiconductor device formed on an insulating substrate. To provide a high static electricity protection circuit.

【0006】[0006]

【課題を解決するための手投】本発明の静電気保護回路
は、絶縁基板上に形成されるものであって、薄膜トラン
ジスタのソース、ゲート、ドレイン部として形成される
イオンドープされた非結晶シリコン材料と同一の材料で
かつ薄膜トランジスタのソース、ゲート、ドレイン部と
同一の製造工程で形成される静電気保護回路の入力抵抗
を有することを特徴とする。
An electrostatic protection circuit according to the present invention is formed on an insulating substrate, and is formed of an ion-doped amorphous silicon material formed as a source, a gate, and a drain of a thin film transistor. And the input resistance of an electrostatic protection circuit formed in the same manufacturing process as the source, gate and drain of the thin film transistor.

【0007】[0007]

【実施例】第1図は本発明の実施例における静電気保護
回路を用いた半導体装置の断面図である。第1図におい
て1は絶縁基板である。機能的には透明基板でも良く、
導電体で裏打ちされた絶縁基板でも良い。材料的には石
英板、サファイヤ基板、水晶板、ガラス板など特に制限
は無く、前記材料を多層化したものでも良い。2、3
0、31、32は非結晶シリコン材料が、たとえば10
00オングストロームから5000オングストローム程
度の厚さで絶縁基板1上成膜され、次に所用のパターン
にフォトリソグラフグラフィ技術によってパターニング
され、次に非結晶シリコン薄膜2、30、31、32の
表面を酸化してゲート酸化膜4を1000オングストロ
ーム程度成膜する。次に非結晶シリコン材料をたとえば
6000オングストロームから1μm程度の厚さで成膜
して所用のパターンでエッチングしてゲート部5を形成
する。次にゲート部5をマスクとしてイオンドープをす
ることによって薄膜トランジスタ8のソース部30、ド
レイン部31が活性化され、ゲート部5にマスクされた
部分がチャネル部2として機能する。イオンドープする
ことによって入力抵抗32、ソース部30、ドレイン部
31のシート抵抗は3K〜50KΩ/□程度の値にな
る。またゲート部のシート抵抗は20〜40Ω/□程度
になるように不純物を混入して成膜される。これらのシ
ート抵抗値は膜厚、イオンドープする材料及びイオンド
ープ量によって前後するのは当然である。6は層間絶縁
膜であり、70、71、72は金属配線膜である。層間
絶縁膜6は例えばCVDSiO2が1μm程度成膜され
る。また金属配線膜70、71、72はアルミニウムな
どを1μm程度スパッタして形成し、そのシート抵抗は
0.2Ω/□程度である。なお第1図においてパッシベ
ーション膜は省略してある。
1 is a sectional view of a semiconductor device using an electrostatic protection circuit according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an insulating substrate. Functionally, it may be a transparent substrate,
An insulating substrate lined with a conductor may be used. The material is not particularly limited, such as a quartz plate, a sapphire substrate, a quartz plate, and a glass plate, and a multilayer of the above materials may be used. Two, three
0, 31, 32 are amorphous silicon materials, for example, 10
A film is formed on the insulating substrate 1 to a thickness of about 00 Å to 5000 Å, then patterned into a desired pattern by a photolithographic technique, and then the surfaces of the amorphous silicon thin films 2, 30, 31, 32 are oxidized. Then, a gate oxide film 4 is formed to a thickness of about 1000 angstroms. Next, a gate portion 5 is formed by etching an amorphous silicon material to a thickness of, for example, about 6000 Å to about 1 μm and etching it in a required pattern. Next, the source portion 30 and the drain portion 31 of the thin film transistor 8 are activated by ion doping using the gate portion 5 as a mask, and the portion masked by the gate portion 5 functions as the channel portion 2. By the ion doping, the sheet resistance of the input resistor 32, the source section 30, and the drain section 31 becomes a value of about 3K to 50KΩ / □. Further, the film is formed by mixing impurities so that the sheet resistance of the gate portion is about 20 to 40 Ω / □. Naturally, these sheet resistance values vary depending on the film thickness, the material to be ion-doped, and the ion doping amount. 6 is an interlayer insulating film, and 70, 71 and 72 are metal wiring films. The interlayer insulating film 6 is formed, for example, by CVD SiO 2 of about 1 μm. The metal wiring films 70, 71, and 72 are formed by sputtering aluminum or the like at about 1 μm, and have a sheet resistance of about 0.2 Ω / □. In FIG. 1, the passivation film is omitted.

【0008】以上のような構造および製造過程によって
静電気保護回路は提供されるわけであるが、次に第2図
に示す本発明の静電気保護回路の実施例の回路図を説明
する。第2図は薄膜トランジスタが相補型で形成される
CMOS構成の回路を用いている。第1図と対応する部
分は同一番号を付した。202はNチャネル薄膜トラン
ジスタ、203はPチャネル薄膜トランジスタ、206
は電源、205は入力インバータである。72は外部入
力端子であり、静電気保護回路はこの外部入力端子72
に印加される過大な電気ストレス(電圧や電荷の形で印
加される。)に対して半導体装置内部の素子が破壊しな
いように保護する機能を有するものである。32は入力
抵抗である。第1図の実施例では、入力抵抗32を、ソ
ース部30とドレイン部31と一括形成しているが、入
力抵抗32をゲート部32と一括形成しても良い。また
ドレイン部31と入力抵抗32を金属配線膜71で接続
する代りに、ドレイン部31あるいはソース部30を入
力抵抗32と連続したパターンとして形成しても良い。
入力抵抗32はPチャネル薄膜トランジスタ203、N
チャネル薄膜トランジスタ202、どちらのトランジス
タのソース部、ゲート部、ドレイン部と同一工程で形成
しても良い。通常CMOS構成の半導体装置の場合、イ
オンドープがPチャネルあるいはNチャネルのトランジ
スタのどちらかに対して2度行なわれる場合がある。2
度イオンドープしたソース部、ドレイン部のシート抵抗
はバラツキが大きくなるので、イオンドープが1回だけ
行なわれたソース部、ドレイン部と一括して形成される
入力抵抗32が望ましい。
An electrostatic protection circuit is provided by the above-described structure and manufacturing process. Next, a circuit diagram of an embodiment of the electrostatic protection circuit of the present invention shown in FIG. 2 will be described. FIG. 2 uses a circuit having a CMOS structure in which thin film transistors are formed in a complementary manner. Parts corresponding to those in FIG. 1 are given the same numbers. 202 is an N-channel thin film transistor, 203 is a P-channel thin film transistor, 206
Is a power supply and 205 is an input inverter. Reference numeral 72 denotes an external input terminal.
Has a function of protecting the elements inside the semiconductor device from being destroyed against excessive electric stress (applied in the form of voltage or electric charge) applied to the semiconductor device. 32 is an input resistance. In the embodiment of FIG. 1, the input resistor 32 is formed integrally with the source portion 30 and the drain portion 31. However, the input resistor 32 may be formed integrally with the gate portion 32. Instead of connecting the drain portion 31 and the input resistor 32 with the metal wiring film 71, the drain portion 31 or the source portion 30 may be formed as a pattern continuous with the input resistor 32.
The input resistance 32 is a P-channel thin film transistor 203, N
The channel thin film transistor 202 and the source, gate, and drain of any of the transistors may be formed in the same step. Normally, in the case of a semiconductor device having a CMOS structure, ion doping may be performed twice on either a P-channel or N-channel transistor. 2
Since the sheet resistance of the source portion and the drain portion that are heavily ion-doped greatly varies, the input resistor 32 that is formed collectively with the source portion and the drain portion that are ion-doped only once is desirable.

【0009】次に第3、4図を用いて第2図に示した本
発明の静電気保護回路の回路動作をを説明する。第3図
は本発明の静電気保護回路の等価回路を示す回路図であ
る。抵抗RTは第2図におけるPチャネル薄膜トランジ
スタ203とNチャネル薄膜トランジスタ202を電圧
可変抵抗として置換したものである。また抵抗RTに印
加される電圧VTと電流ITの関係を示した特性図が第4
図である。入力静電容量CINは入力インバータ205の
入力静電容量とPチャネル薄膜トランジスタ203とN
チャネル薄膜トランジスタ202のドレインゲート間静
電気容量を置換したコンデンサである。またコンデンサ
Dは疑似的に初期電圧Vを蓄えた電気ストレス源であ
る。スイッチSを閉じると入力端子72に初期電圧Vが
印加される。その際に入力抵抗32に流れる電流をiと
し、入力抵抗32の値をR32とするとi=V/R32
(時間はスイッチSを閉じた時間)である。この電流値
i=V/R32は入力静電容量CINをすべて流れる。入
力静電容量CINがある程度充電されて、端子71の電圧
が上昇するに従って抵抗RTからコンデンサCD及入力静
電容量CINの電荷が放電(第4図参照)される。抵抗R
Tの端子電圧は端子71の電圧に示されるように0から
Pまで上昇し次に0まで下降する。すなわち抵抗RT
動作点は第4図において電圧VT=0からVT=VPに移
動し、次にTT=0に移動する。
Next, the circuit operation of the electrostatic protection circuit of the present invention shown in FIG. 2 will be described with reference to FIGS. FIG. 3 is a circuit diagram showing an equivalent circuit of the electrostatic protection circuit of the present invention. The resistor RT is obtained by replacing the P-channel thin film transistor 203 and the N-channel thin film transistor 202 in FIG. 2 with a voltage variable resistor. The characteristic diagram showing the relationship between the resistor R the voltage applied to the T V T and the current I T is the fourth
FIG. The input capacitance C IN is the input capacitance of the input inverter 205, the P-channel thin film transistor 203, and N
This is a capacitor in which the capacitance between the drain and the gate of the channel thin film transistor 202 is replaced. The capacitor C D is an electric source of stress which artificially stored the initial voltage V. When the switch S is closed, the initial voltage V is applied to the input terminal 72. At this time, if the current flowing through the input resistor 32 is i and the value of the input resistor 32 is R32, i = V / R32
(The time is the time when the switch S is closed.) This current value i = V / R32 flows through the entire input capacitance C IN . Is charged to a certain extent the input capacitance C IN, the charge of the capacitor C D及入force the capacitance C IN from R T resistor according to the voltage on the terminal 71 is increased is discharged (see FIG. 4). Resistance R
The terminal voltage of the T drops from 0 as shown in the voltage at the terminal 71 to zero elevated to the next until V P. That operating point of the R T resistor is moved from the voltage V T = 0 to V T = V P in FIG. 4, then moves to T T = 0.

【0010】前述の説明のとおり、電流iの尖頭値N/
32はすべて入力静電容量CINを流れる。(端子71の
電圧の初期値が0なので)ここで入力静電容量CINとは
第1図に示すゲート酸化膜4が誘電体としてサンドイッ
チされているコンデンサである。非結晶シリコンを酸化
させて形成したゲート酸化膜は従来の単結晶シリコンの
酸化膜に比べてピンホールが多く、欠陥も多いので、耐
圧が低く、大きな充電電流に耐えられず、静電気ストレ
スに弱かった。そこで入力抵抗32の値を大きく設定し
電流iの尖頭値V/R32の値を小さくすると静電気スト
レスに強くなることがわかった。また、入力抵抗32を
大きくすると、入力抵抗32と入力静電容量CINの積に
比例する入力遅延が大きくなる。そこで入力インバータ
205のトランジスタサイズを小さくして入力静電容量
INを小さくする。また抵抗RTの最小値RTminの10
倍程度の大きさ以上に入力抵抗32の抵抗値R32を設
定すると端子71の尖頭電圧VPは印可電圧Vの0.1
倍以下になるので望ましい。絶縁基板上に形成された半
導体装置では寄生ダイオードが存在しないので、不要な
入力容量がつかず、そのため入力抵抗32を大きくして
静電気保護性能を高めることができる。入力インバータ
205のトランジスタサイズを小さくして入力抵抗32
の値を大きくすることによって静電気保護性能が高まる
が、入力インバータ205のトランジスタサイズを小さ
くすると、ゲート酸化膜4の欠陥が含まれる確率が低く
なるので飛躍的に静電気ストレスに強くなる。入力抵抗
32が特に、薄膜トランジスタのソース部、ドレイン部
と一括して形成される場合には次のような効果がある。
ゲート部に比ベシート抵抗が100倍程度高いので同
じ抵抗値を形成する場合スペースを必要としない。また
浮遊静電容量がほとんどなくなるので、入力静電容量C
INが小さくなり、入力遅延が減少する。ゲート酸化膜
4におおわれているので抵抗値の安定性が良い。
As described above, the peak value N /
R 32 all flow through the input capacitance C IN . Here, the input capacitance C IN is a capacitor in which the gate oxide film 4 shown in FIG. 1 is sandwiched as a dielectric (because the initial value of the voltage of the terminal 71 is 0). A gate oxide film formed by oxidizing amorphous silicon has more pinholes and more defects than a conventional single-crystal silicon oxide film, so it has a low withstand voltage, cannot withstand a large charging current, and is susceptible to electrostatic stress. Was. Therefore set to a large value of the input resistor 32 Lower values of peak value V / R 32 of the current i was found to be resistant to electrostatic stress. When the input resistance 32 is increased, the input delay proportional to the product of the input resistance 32 and the input capacitance C IN increases. Therefore, the transistor size of the input inverter 205 is reduced to reduce the input capacitance C IN . In addition, the minimum value R Tmin of the resistance R T is 10
Setting the resistance value R32 of the input resistor 32 to the above about doubled magnitude peak voltage V P of the terminal 71 of the applied voltage V 0.1
It is desirable because it becomes twice or less. In the semiconductor device formed on the insulating substrate, there is no parasitic diode, so that an unnecessary input capacitance is not applied. Therefore, the input resistance 32 can be increased to improve the electrostatic protection performance. Reduce the transistor size of the input inverter 205 and reduce the input resistance 32
Is increased by increasing the value of .times., But when the transistor size of the input inverter 205 is reduced, the probability that a defect of the gate oxide film 4 is included is reduced, so that the resistance is dramatically increased. The following effects are obtained particularly when the input resistor 32 is formed integrally with the source and drain portions of the thin film transistor.
Since the sheet resistance is about 100 times higher than that of the gate, no space is required for forming the same resistance. Also, since the floating capacitance almost disappears, the input capacitance C
IN is smaller and input delay is reduced. Since it is covered with the gate oxide film 4, the resistance value is stable.

【0011】[0011]

【発明の効果】以上のように本発明によれば次のような
効果を有する。静電気保護回路の入力抵抗は薄膜トラン
ジスタのソース部、ゲート部、ドレイン部と一括形成さ
れるので、製造工程が簡略である。絶縁基板上に形成さ
れる半導体装置の特徴を生かして、抵抗RTの最小値R
Tminの10倍程度の大きさ以上に入力抵抗32の値をす
ることによって静電気保護性能が向上する。
As described above, the present invention has the following effects. Since the input resistance of the static electricity protection circuit is formed collectively with the source, gate, and drain of the thin film transistor, the manufacturing process is simplified. By taking advantage of the semiconductor device formed on an insulating substrate, the minimum value R of the R T resistor
By setting the value of the input resistor 32 to at least about 10 times Tmin, the electrostatic protection performance is improved.

【0012】本発明はドライバー内蔵アクティブマトリ
ックスディスプレイ、イメージセンサなどに効果的であ
る。
The present invention is effective for active matrix displays with built-in drivers, image sensors, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電気保護回路を用いた半導体装置の
一実施例を示す断面図。
FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor device using an electrostatic protection circuit of the present invention.

【図2】本発明の静電気保護回路の一実施例を示す回路
図。
FIG. 2 is a circuit diagram showing an embodiment of an electrostatic protection circuit according to the present invention.

【図3】本発明の静電気保護回路を説明するための等価
回路図。
FIG. 3 is an equivalent circuit diagram for explaining the electrostatic protection circuit of the present invention.

【図4】抵抗RTの電圧電流特製図。FIG. 4 is a special drawing of the voltage and current of the resistor RT .

【符号の説明】[Explanation of symbols]

1…絶縁基板 2…薄膜トランジスタ 30…ソース部 5…ゲート部 31…ドレイン部 32…入力抵抗 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Thin film transistor 30 ... Source part 5 ... Gate part 31 ... Drain part 32 ... Input resistance

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年6月3日[Submission date] June 3, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 半導体装置の製造方法Patent application title: Method of manufacturing semiconductor device

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は基板上に形成される
半導体装置の静電気保護回路の製造方法に関する。
The present invention relates to a method for manufacturing an electrostatic protection circuit for a semiconductor device formed on a substrate.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】本発明は基板上に形成さ
れる半導体装置の製造方法において、薄膜トランジスタ
のソース・ドレインとなる領域と、静電気保護回路の入
力抵抗となる領域を非結晶シリコンで同時に形成する工
程と、前記非結晶シリコンにイオンドープする工程とを
有することを特徴とする。本発明は基板上に形成される
半導体装置の製造方法において、薄膜トランジスタのゲ
ートとなる領域と、静電気保護回路の入力抵抗となる領
域とを同時に同一材料で形成する工程を有することを特
徴とする。
According to the present invention, in a method of manufacturing a semiconductor device formed on a substrate, a region serving as a source / drain of a thin film transistor and a region serving as an input resistance of an electrostatic protection circuit are simultaneously formed of amorphous silicon. Forming, and a step of ion-doping the amorphous silicon. According to the present invention, in a method for manufacturing a semiconductor device formed over a substrate, a step of simultaneously forming a region to be a gate of a thin film transistor and a region to be an input resistance of an electrostatic protection circuit with the same material is provided.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】[0011]

【発明の効果】以上のように本発明によれば静電気保護
回路の入力抵抗は薄膜トランジスタのソース・ドレイン
部、あるいはゲート部と一括形成されるので製造工程を
簡略化できる。
As described above, according to the present invention, since the input resistance of the static electricity protection circuit is formed together with the source / drain portion or the gate portion of the thin film transistor, the manufacturing process can be simplified.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に形成される半導体装置の静電
気保護回路において、薄膜トランジスタのソース、ゲー
ト、ドレイン部として形成されるイオンドープされた非
結晶シリコン材料と同一の材料でかつ薄膜トランジスタ
のソース、ゲート、ドレイン部と同一工程で形成される
入力抵抗を有する静電気保護回路。
In a static electricity protection circuit for a semiconductor device formed on an insulating substrate, the source, the gate, and the drain of the thin film transistor are formed of the same material as the ion-doped amorphous silicon material formed as the source, gate, and drain of the thin film transistor. An electrostatic protection circuit having an input resistance formed in the same process as the gate and drain portions.
JP11139216A 1999-05-19 1999-05-19 Method for manufacturing semiconductor device Expired - Fee Related JP3065077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11139216A JP3065077B2 (en) 1999-05-19 1999-05-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11139216A JP3065077B2 (en) 1999-05-19 1999-05-19 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21772990A Division JP2959077B2 (en) 1990-08-18 1990-08-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11345981A true JPH11345981A (en) 1999-12-14
JP3065077B2 JP3065077B2 (en) 2000-07-12

Family

ID=15240231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11139216A Expired - Fee Related JP3065077B2 (en) 1999-05-19 1999-05-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3065077B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302917A (en) * 2002-04-09 2003-10-24 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP2003308027A (en) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP2004004757A (en) * 2002-04-15 2004-01-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
US8328105B2 (en) 2009-03-31 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements
CN108172631A (en) * 2018-01-02 2018-06-15 上海天马微电子有限公司 Thin film transistor (TFT) and preparation method thereof and array substrate

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
JP2003302917A (en) * 2002-04-09 2003-10-24 Semiconductor Energy Lab Co Ltd Semiconductor display device
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
JP2003308027A (en) * 2002-04-15 2003-10-31 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP2004004757A (en) * 2002-04-15 2004-01-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US8328105B2 (en) 2009-03-31 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN108172631B (en) * 2018-01-02 2020-08-25 上海天马微电子有限公司 Thin film transistor, manufacturing method thereof and array substrate
CN108172631A (en) * 2018-01-02 2018-06-15 上海天马微电子有限公司 Thin film transistor (TFT) and preparation method thereof and array substrate

Also Published As

Publication number Publication date
JP3065077B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
TW560075B (en) Semiconductor device
US20030124778A1 (en) Thin film transistor device and method of manufacturing the same, and liquid crystal display device
US7880235B2 (en) Semiconductor integrated circuit device
JP2001257581A (en) Level filter
JP2000196093A5 (en)
US20060176628A1 (en) Semiconductor integrated circuit device and method of manufacturing the same
WO2020015493A1 (en) Electrostatic protection circuit, array substrate and display device
JP3065077B2 (en) Method for manufacturing semiconductor device
EP0814508B1 (en) Semiconductor device having element with high breakdown voltage
JP2959077B2 (en) Semiconductor device
US10816865B2 (en) Active matrix substrate
JP3358526B2 (en) Driving method of high breakdown voltage thin film transistor
GB2064866A (en) Field effect semiconductor device
JP3061907B2 (en) Semiconductor device and manufacturing method thereof
WO2020031488A1 (en) Thin film transistor and electronic circuit
US5285095A (en) Semiconductor integrated circuit with input protective transistor effective against electric surge
JPH06275826A (en) Semiconductor device
JP2002083968A (en) Input/output protective circuit, liquid-crystal display device, and image display application device
JP2564502B2 (en) Semiconductor device
JPS6110992B2 (en)
US20040185607A1 (en) Thin film transistor having LDD region and process for producing same
JPS6179258A (en) Thin-film two terminal element
JPH0992825A (en) Semiconductor device and its manufacture
JP2682528B2 (en) Active matrix panel
JPH02122648A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees