JPH11344239A - Dehumidifier and vehicle air conditioner - Google Patents

Dehumidifier and vehicle air conditioner

Info

Publication number
JPH11344239A
JPH11344239A JP10151619A JP15161998A JPH11344239A JP H11344239 A JPH11344239 A JP H11344239A JP 10151619 A JP10151619 A JP 10151619A JP 15161998 A JP15161998 A JP 15161998A JP H11344239 A JPH11344239 A JP H11344239A
Authority
JP
Japan
Prior art keywords
air
desiccant
regeneration
passage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10151619A
Other languages
Japanese (ja)
Other versions
JP3669154B2 (en
Inventor
Tsunesato Takahashi
恒吏 高橋
Yoshimitsu Inoue
美光 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP15161998A priority Critical patent/JP3669154B2/en
Publication of JPH11344239A publication Critical patent/JPH11344239A/en
Application granted granted Critical
Publication of JP3669154B2 publication Critical patent/JP3669154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H2003/028Moistening ; Devices influencing humidity levels, i.e. humidity control the devices comprising regeneration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten regeneration time in a dehumidifier using a desiccant. SOLUTION: A dehumidifying side desiccant 18b of a desiccant unit 18 is located on a dehumidifying side passage 11 serving to dehumidify indoor air, and a regenerating side desiccant 18c of the desiccant unit 18 is located on a regenerating side passage 13 serving to release water from the regenerating side desiccant 18c, and further air fan means 17 and heating means are disposed on the regenerating side passage 13. The heating means is constructed with an electric heater 19 having positive resistance temperature characteristics where electric resistance is rapidly increased at a predetermined temperature, and the regenerating side desiccant 18c is regenerated with warm air heated by the electric heater 19, whereby the amount of fan air from the air fan means 17 in an initial stage of starting of the regeneration of the regenerating side desiccant 18c is increased, and the amount of fan air is reduced following the elapse of regeneration time of the regenerating side desiccant 18c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一般的に言って空調
分野における室内空気の除湿を乾燥剤を用いて行う除湿
装置、およびこれを用いた車両用空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a dehumidifier for dehumidifying indoor air in a field of air conditioning using a desiccant, and a vehicle air conditioner using the same.

【0002】[0002]

【従来の技術】車両用空調装置においては、エンジンか
らの温水(エンジン冷却水)を熱源として車室内の暖房
を行っているが、近年、車両エンジンの高効率化に伴っ
て、温水温度の低下が起こり、これが原因となって暖房
能力不足となる車両が増加している。
2. Description of the Related Art In a vehicle air conditioner, the interior of a passenger compartment is heated by using hot water (engine cooling water) from an engine as a heat source. This causes an increase in vehicles with insufficient heating capacity due to this.

【0003】この暖房能力不足を解消する対策として、
車両用空調装置の吸入空気における内気率(全吸入空気
中の内気吸入割合)を高めて、暖房熱負荷を低減するこ
とが行われている。具体的には、車両用空調装置の内外
気切替箱に外気中に内気を混入させる補助ドアを追加し
たり、あるいは、デフロスタ吹出口側には外気を、ま
た、フット吹出口側には内気をそれぞれ仕切って流す内
外気2層モードを設定したりしている。
[0003] As a countermeasure to solve the heating capacity shortage,
2. Description of the Related Art It has been practiced to increase the inside air rate (intake ratio of inside air in all intake air) of intake air of a vehicle air conditioner to reduce a heating heat load. Specifically, an auxiliary door for mixing the inside air into the outside air is added to the inside / outside air switching box of the vehicle air conditioner, or the outside air is supplied to the defroster outlet side, and the inside air is supplied to the foot outlet side. An inside / outside air two-layer mode is set to partition and flow.

【0004】[0004]

【発明が解決しようとする課題】しかし、内外気2層モ
ードにおいても、内気率が50%以上になると、車室内
湿度の上昇により窓ガラスの曇りが発生し、車両運転
上、危険となる場合が生じる。従って、内気率の増加に
よる暖房熱負荷の低減と、窓ガラスの曇り防止とを両立
させるためには、車室内雰囲気の除湿を行う必要が生じ
る。
However, even in the two-layer inside / outside air mode, if the inside air rate becomes 50% or more, the window glass becomes cloudy due to an increase in vehicle interior humidity, which is dangerous for driving the vehicle. Occurs. Therefore, in order to achieve both a reduction in heating heat load due to an increase in the inside air rate and prevention of fogging of the window glass, it is necessary to dehumidify the atmosphere in the vehicle compartment.

【0005】そこで、本出願人においては、特開平9−
156349公報において、乾燥剤を用いた除湿装置に
よって車室内雰囲気の除湿を行うことを提案している。
この乾燥剤を用いた除湿装置において、継続的に除湿
(水分吸着)を行うためには、乾燥剤の再生(すなわ
ち、乾燥剤からの水分脱離)が必要である。この乾燥剤
の再生は、通常、乾燥剤の加熱により行うのであるが、
乾燥剤の再生時間が長くかかると、乾燥剤の除湿、再生
のサイクル切替時間が長くなる。このサイクル切替時間
が長くなることは、この間の除湿作用継続のために乾燥
剤の必要量を増加しなければならない。
Therefore, the present applicant has disclosed in Japanese Patent Laid-Open No.
156349 proposes to dehumidify the atmosphere in the vehicle interior by a dehumidifier using a desiccant.
In the dehumidifier using the desiccant, it is necessary to regenerate the desiccant (that is, desorb moisture from the desiccant) in order to continuously dehumidify (adsorb moisture). The regeneration of the desiccant is usually performed by heating the desiccant,
When the regeneration time of the desiccant is long, the cycle switching time of dehumidification and regeneration of the desiccant becomes long. The prolonged cycle switching time requires an increase in the amount of desiccant required to maintain the dehumidifying action during this period.

【0006】この乾燥剤量の増加により除湿装置として
の通風抵抗が増大して、送風機の大型化を招く。以上の
結果、除湿装置の体格が大型化して、車室内等の狭隘な
スペースへの搭載が困難となる。本発明は上記点に鑑み
てなされたもので、乾燥剤を用いた除湿装置において、
乾燥剤の再生時間の短縮を図ることを目的とする。
[0006] Due to the increase in the amount of the desiccant, the ventilation resistance as a dehumidifying device is increased, and the size of the blower is increased. As a result, the physical size of the dehumidifying device becomes large, and it becomes difficult to mount the dehumidifying device in a narrow space such as a vehicle interior. The present invention has been made in view of the above points, in a dehumidifier using a desiccant,
It is intended to shorten the regeneration time of the desiccant.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載発明では、乾燥剤ユニット(18)
の乾燥剤のうち、除湿側乾燥剤(18b)が位置して、
除湿側乾燥剤(18b)により室内空気を除湿する除湿
側通路(11)と、乾燥剤ユニット(18)の乾燥剤の
うち、再生側乾燥剤(18c)が位置して、再生側乾燥
剤(18c)から水分を脱離させる再生側通路(13)
と、再生側通路(13)に空気を送風する送風手段(1
7)と、再生側通路(13)のうち、再生側乾燥剤(1
8c)の上流側に配置された加熱手段とを有し、この加
熱手段を所定温度にて電気抵抗値が急増する正の抵抗温
度特性を有する電気発熱体(19)により構成し、送風
手段(17)により送風される空気を電気発熱体(1
9)により加熱して再生側乾燥剤(18c)に吹き付
け、再生側乾燥剤(18c)から水分を脱離させること
により再生側乾燥剤(18c)の再生を行うようにし、
再生側乾燥剤(18c)の再生開始初期における送風手
段(17)による送風量を大とし、再生側乾燥剤(18
c)の再生の進行に従って送風手段(17)による送風
量を減少させることを特徴としている。
According to the first aspect of the present invention, there is provided a desiccant unit (18).
Of the desiccants, the dehumidifying desiccant (18b) is located,
The dehumidification-side passageway (11) for dehumidifying the indoor air with the dehumidification-side desiccant (18b), and the regeneration-side desiccant (18c) among the desiccants in the desiccant unit (18) are located. Regeneration side passage (13) for removing moisture from 18c)
And a blowing means (1) for blowing air to the regeneration-side passage (13).
7) and the regeneration side desiccant (1) in the regeneration side passageway (13).
8c), and a heating means disposed on the upstream side of 8c), the heating means being constituted by an electric heating element (19) having a positive resistance-temperature characteristic whose electric resistance value rapidly increases at a predetermined temperature, and a blowing means ( 17), the air blown by the electric heating element (1).
9) heating and spraying on the regeneration-side desiccant (18c) to remove moisture from the regeneration-side desiccant (18c) to regenerate the regeneration-side desiccant (18c);
The amount of air blown by the blowing means (17) in the early stage of the regeneration start of the regeneration side desiccant (18c) is increased, and the regeneration side desiccant (18c) is increased.
The amount of air blown by the air blowing means (17) is reduced in accordance with the progress of the regeneration of c).

【0008】これによると、加熱手段を構成する電気発
熱体(19)が所定温度にて電気抵抗値が急増する正の
抵抗温度特性を有しているから、再生開始初期に送風手
段(17)の送風量を大きくすると、電気発熱体(1
9)の温度が低下して、電気発熱体(19)の抵抗値減
少→電流量大→消費電力大となる。しかも、再生開始初
期では再生側乾燥剤(18c)が室温程度の低い温度に
なっているから、電気発熱体(19)の温度を下げて
も、電気発熱体(19)通過後の空気(温風)温度を再
生側乾燥剤(18c)の温度より十分高い温度とするこ
とができる。
According to this, since the electric heating element (19) constituting the heating means has a positive resistance-temperature characteristic in which the electric resistance value rapidly increases at a predetermined temperature, the blowing means (17) at the beginning of the reproduction start. When the airflow of the air is increased, the electric heating element (1
The temperature of 9) decreases, and the resistance value of the electric heating element (19) decreases → current amount increases → power consumption increases. In addition, since the temperature of the regenerating desiccant (18c) is as low as room temperature in the early stage of the regeneration, even if the temperature of the electric heating element (19) is lowered, the air (temperature) after passing through the electric heating element (19) is reduced. (Wind) temperature can be set to a temperature sufficiently higher than the temperature of the regeneration side desiccant (18c).

【0009】この結果、再生開始初期に再生側乾燥剤
(18c)に与える熱量を効果的に増大でき、再生側乾
燥剤(18c)の再生(水分脱離)を急速に行うことが
できる。しかも、再生側乾燥剤(18c)の再生の進行
に従って送風手段(17)による送風量を減少させるか
ら、再生開始後、再生側乾燥剤(18c)の温度が次第
に上昇しても、送風手段(17)の送風量減少により電
気発熱体(19)の温度が上昇し、電気発熱体(19)
通過後の空気(温風)温度が再生側乾燥剤(18c)の
温度より高い状態を維持できる。そして、電気発熱体
(19)の温度上昇→抵抗値増加→電流量小→消費電力
小となるから、再生効率の高い状態を維持できる。
As a result, the amount of heat applied to the regeneration side desiccant (18c) at the beginning of regeneration can be effectively increased, and regeneration (desorption of water) of the regeneration side desiccant (18c) can be rapidly performed. Moreover, since the amount of air blown by the air blowing means (17) is reduced in accordance with the progress of the regeneration of the regenerating side desiccant (18c), even if the temperature of the regenerating side desiccant (18c) gradually increases after the start of regeneration, the air blowing means ( The temperature of the electric heating element (19) rises due to the decrease in the amount of air blow of (17), and the electric heating element (19)
The state in which the temperature of the air (warm air) after passing is higher than the temperature of the regeneration-side desiccant (18c) can be maintained. Then, since the temperature of the electric heating element (19) rises, the resistance value increases, the current amount decreases, and the power consumption decreases, the state of high regeneration efficiency can be maintained.

【0010】以上により、再生初期から再生期間の全域
にわたって再生効率の高い状態を維持でき、電気発熱体
(19)での消費電力を有効活用して、再生側乾燥剤
(18c)の再生時間を短縮できる。この再生時間の短
縮によって乾燥剤の必要量が減少して、乾燥剤ユニット
の体格を小型化することができるので、除湿装置として
の通風抵抗が減少して、送風手段(17)を小型化でき
る。これにより、除湿装置全体を小型化でき、車室内等
の狭隘なスペースへの搭載が容易となる。
As described above, the state of high regeneration efficiency can be maintained over the entire period from the initial stage of regeneration to the regeneration period, the power consumption of the electric heating element (19) is effectively utilized, and the regeneration time of the regeneration side desiccant (18c) is reduced. Can be shortened. Since the required amount of the desiccant is reduced and the size of the desiccant unit can be reduced due to the shortening of the regeneration time, the ventilation resistance as the dehumidifier is reduced, and the size of the blowing means (17) can be reduced. . As a result, the entire dehumidifier can be reduced in size, and can be easily mounted in a narrow space such as a vehicle interior.

【0011】請求項2記載のごとく、再生側乾燥剤(1
8c)の再生開始後の時間を計測するタイマー手段(3
2d)を有し、このタイマー手段(32d)の信号に基
づいて、再生側乾燥剤(18c)の再生開始後の時間経
過に従って送風手段(17)による送風量を減少させて
もよい。再生側乾燥剤(18c)の温度は再生開始後の
時間経過に従って上昇する関係にあるので、この関係に
着目して、タイマー手段(32d)の信号に基づいて送
風手段(17)の送風量制御を行えば、特別のセンサ類
の追加なしで簡単に送風量制御を行うことができる。
[0011] As described in claim 2, the regeneration side desiccant (1)
Timer means (3) for measuring the time after the start of reproduction in 8c)
2d), and based on a signal from the timer means (32d), the amount of air blown by the blower means (17) may be reduced as time elapses after the start of regeneration of the regenerating desiccant (18c). Since the temperature of the regenerating side desiccant (18c) rises as time elapses after the start of regeneration, paying attention to this relationship, the air volume control of the air blowing means (17) is performed based on the signal of the timer means (32d). Is performed, the air volume control can be easily performed without adding special sensors.

【0012】また、請求項3記載のごとく、再生側乾燥
剤(18c)の再生開始後の温度変化に関連する情報を
検出する温度検出手段(18d、18e)を有し、この
温度検出手段(18d、18e)の検出信号に基づい
て、再生側乾燥剤(18c)の再生開始後の温度上昇に
従って送風手段(17)による送風量を減少させるよう
にしてもよい。
[0012] As described in claim 3, there is provided temperature detecting means (18d, 18e) for detecting information relating to a temperature change after the regeneration of the regeneration side desiccant (18c) is started. Based on the detection signals 18d and 18e), the amount of air blown by the air blowing means (17) may be reduced in accordance with the temperature rise after the start of the regeneration of the regeneration side desiccant (18c).

【0013】また、請求項4記載の発明は、請求項1な
いし3のいずれか1つに記載の除湿装置を備える車両用
空調装置であって、空調空気を加熱する暖房用熱交換器
(123)と、暖房用熱交換器(123)で加熱された
空気を車室内へ吹き出す空調用空気通路(108、10
9)と、空調用空気通路(108、109)に空気を送
風する空調用送風手段(111)とを有し、除湿側通路
(11)の出口側を空調用送風手段(111)の吸入側
に接続して、車室内空気を除湿側通路(11)で除湿し
た後に空調用空気通路(108、109)を通して車室
内へ吹き出すことを特徴としている。
According to a fourth aspect of the present invention, there is provided an air conditioner for a vehicle including the dehumidifying device according to any one of the first to third aspects, wherein the heating heat exchanger (123) heats conditioned air. ) And an air conditioning air passage (108, 10) for blowing air heated by the heating heat exchanger (123) into the vehicle interior.
9) and an air-conditioning air blower (111) for blowing air to the air-conditioning air passages (108, 109), and the outlet side of the dehumidifying-side passage (11) is connected to the suction side of the air-conditioning air blower (111). And air is dehumidified in the dehumidification side passageway (11) and then blown out into the vehicle interior through the air conditioning air passageways (108, 109).

【0014】これによると、空調用送風手段(111)
の送風する車室内空気を除湿側通路(11)で除湿した
後に空調用空気通路(108、109)を通して車室内
へ吹き出すことができる。従って、除湿側通路(11)
へ車室内空気の送風する送風手段として、空調用送風手
段(111)をそのまま利用でき、除湿装置の構成を簡
素化できる。
According to this, the air blowing means (111)
After dehumidifying the inside air of the vehicle that is blown by the dehumidification side passage (11), the air can be blown into the vehicle interior through the air conditioning air passages (108, 109). Therefore, the dehumidifying side passage (11)
The air-conditioning air-blowing means (111) can be used as it is as the air-blowing means for blowing the vehicle interior air, and the configuration of the dehumidifying device can be simplified.

【0015】さらに、請求項5記載の発明では、空調用
空気通路(108、109)の出口部に設けられ、空気
を乗員の足元側へ吹き出すフット開口部(124)と、
空調用空気通路(108、109)の出口部に設けら
れ、空気を車両窓ガラスへ吹き出すデフロスタ開口部
(125)とを備え、フット開口部(124)およびデ
フロスタ開口部(125)の両方を同時に開口する吹出
モードにおいて、フット開口部(124)には車室内空
気が流れ、デフロスタ開口部(125)には車室外空気
が流れる内外気2層流モードを設定し、この内外気2層
流モードの際に、除湿側通路(11)で除湿した車室内
空気に車室外空気を混合してデフロスタ開口部(12
5)から吹き出させることを特徴としている。
Further, in the invention according to claim 5, a foot opening (124) is provided at an outlet of the air conditioning air passage (108, 109) and blows air toward the occupant's feet.
A defroster opening (125) that is provided at an outlet of the air conditioning air passage (108, 109) and blows out air to the vehicle window glass, wherein both the foot opening (124) and the defroster opening (125) are simultaneously opened. In the open blowing mode, a two-layer internal / external air flow mode in which vehicle interior air flows through the foot opening (124) and air outside the vehicle interior flows through the defroster opening (125) is set. At this time, the vehicle exterior air is mixed with the vehicle interior air dehumidified in the dehumidification side passageway (11), and the defroster opening (12)
It is characterized by blowing out from 5).

【0016】これによると、内外気2層流モード時に、
デフロスタ開口部(125)側に車室内空気と車室外空
気との混合空気を吹き出すことになるが、車室内空気は
除湿後の低湿度空気であるため、窓ガラスの防曇性を確
保できる。従って、空調用送風手段(111)の全送風
量に占める車室内空気の比率(内気率)を高めることが
でき、これにより、暖房熱負荷を低減して車室内吹出空
気温度を高めることができ、冬期暖房効果を向上でき
る。
According to this, in the inside / outside air two laminar flow mode,
The mixed air of the vehicle interior air and the vehicle exterior air is blown out to the defroster opening (125) side. However, since the vehicle interior air is low-humidity air after dehumidification, the antifogging property of the window glass can be secured. Therefore, it is possible to increase the ratio (inside air rate) of the vehicle interior air to the total air flow of the air-conditioning ventilation means (111), thereby reducing the heating heat load and increasing the vehicle interior air temperature. , Can improve the heating effect in winter.

【0017】なお、上記各手段の括弧内の符号は、後述
する実施形態記載の具体的手段との対応関係を示すもの
である。
The reference numerals in parentheses of the above means indicate the correspondence with the specific means described in the embodiment described later.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図1は車両用空調装置の除湿装置に本
発明を適用した一実施形態を示しており、除湿装置10
は、本例では、車室内前方の計器盤部に配置されるフロ
ント空調ユニット100の通風系吸入側に一体に連結さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to a dehumidifier of a vehicle air conditioner.
In this example, is integrally connected to the ventilation system suction side of the front air conditioning unit 100 arranged on the instrument panel in front of the vehicle cabin.

【0019】除湿装置10は、除湿側の第1通路11を
ケース12により形成し、再生側の第2通路13をケー
ス14により形成しており、この両通路11、13は並
列に形成されている。除湿側の第1通路11の上流端は
室内空気の吸入口15により車室内の計器盤周辺に開口
している。そして、除湿側の第1通路11の下流端はフ
ロント空調ユニット100の除湿内気吸入口101に連
通している。
In the dehumidifier 10, the first passage 11 on the dehumidification side is formed by a case 12, and the second passage 13 on the regeneration side is formed by a case 14. The two passages 11, 13 are formed in parallel. I have. The upstream end of the first passage 11 on the dehumidifying side is opened around the instrument panel in the vehicle cabin through a suction port 15 for room air. The downstream end of the first passage 11 on the dehumidification side communicates with the dehumidification inside air suction port 101 of the front air conditioning unit 100.

【0020】一方、再生側の第2通路13の上流端も室
内空気の吸入口16により車室内の計器盤周辺に開口し
ている。この吸入口16の直後の部位に再生用送風機1
7を配置している。この送風機17は周知の遠心多翼フ
ァン(シロッコファン)17aと、このファン17aを
回転自在に収容しているスクロールケース17bとを有
し、モータ17cによりファン17aを回転駆動して、
ファン17aの径方向の外方へ室内空気を送風する。
On the other hand, the upstream end of the second passage 13 on the regeneration side is also opened around the instrument panel in the vehicle cabin through the suction port 16 for room air. The regeneration blower 1
7 are arranged. The blower 17 has a well-known centrifugal multi-blade fan (sirocco fan) 17a and a scroll case 17b that rotatably houses the fan 17a. The fan 17a is driven to rotate by a motor 17c.
The room air is blown radially outward of the fan 17a.

【0021】そして、再生側の第2通路13において、
スクロールケース17bの空気出口直後の部位、すなわ
ち乾燥剤ユニット18の上流側には電気発熱体19が設
置されている。この電気発熱体19は再生側の第2通路
13の空気を加熱する加熱手段としての役割を果たすも
のであって、所定のキューリ点において電気抵抗値が急
増する正の抵抗温度係数を持つ抵抗体(PTCヒータ)
からなる。
Then, in the second passage 13 on the reproduction side,
An electric heating element 19 is provided immediately after the air outlet of the scroll case 17b, that is, upstream of the desiccant unit 18. The electric heating element 19 serves as a heating means for heating the air in the second passage 13 on the reproducing side, and has a positive temperature coefficient of resistance at which the electric resistance value rapidly increases at a predetermined Curie point. (PTC heater)
Consists of

【0022】乾燥剤ユニット18は特開平9−1563
49号公報記載のものと同種のものでよく、シリカゲル
やゼオライトのような粒状の乾燥剤を通気性のある袋部
材内に収納し、この袋部材を円板状のケース体18a内
に保持するようにしてある。このケース体18aの軸方
向の両端面は袋部材保持用の仕切り部以外は全面的に開
口して、乾燥剤ユニット18の通風抵抗が極力小さくな
るようにしてある。
The desiccant unit 18 is disclosed in Japanese Unexamined Patent Publication No. 9-1563.
The same type as described in JP-A-49-49 may be used, and a granular desiccant such as silica gel or zeolite is stored in a breathable bag member, and this bag member is held in a disk-shaped case body 18a. It is like that. Both end surfaces in the axial direction of the case body 18a are fully opened except for the partition for holding the bag member, so that the ventilation resistance of the desiccant unit 18 is minimized.

【0023】乾燥剤ユニット18は下段側の除湿側の第
1通路11から上段側の再生側の第2通路13にわたっ
て設置されており、かつ、ケース体18aを両ケース1
2、14内に回転自在に設置して、モータ20(図2)
等の駆動手段によりケース体18aを回転駆動するよう
になっている。なお、図中、18bは除湿側の第1通路
11内に位置する除湿側の乾燥剤を示し、18cは再生
側の第2通路13内に位置する再生側の乾燥剤を示す。
The desiccant unit 18 is provided from the first passage 11 on the lower dehumidifying side to the second passage 13 on the upper regeneration side.
The motor 20 (FIG. 2) is installed in a freely rotatable manner in 2, 14.
The case body 18a is rotationally driven by driving means such as. In the drawing, reference numeral 18b denotes a desiccant on the dehumidification side located in the first passage 11 on the dehumidification side, and reference numeral 18c denotes a desiccant on the regeneration side located in the second passage 13 on the regeneration side.

【0024】乾燥剤ユニット18はモータ20により所
定時間間隔にて180°づつ回転駆動されることによ
り、除湿側の乾燥剤18bと再生側の乾燥剤18cは交
互に反転することになる。一方、空調ユニット100の
外気導入口102は車室外空気(外気)を導入するため
のものであり、この外気導入口102は外気切替ドア1
03により2つの外気通路104、105に分岐されて
いる。そして、一方の外気通路105に導入された外気
は、再生熱回収用の熱交換器21により加熱された後
に、除湿側の第1通路11内で、乾燥剤ユニット18の
下流側に供給される。
The desiccant unit 18 is rotated by 180 ° at predetermined time intervals by a motor 20 so that the desiccant 18b on the dehumidification side and the desiccant 18c on the regeneration side are alternately inverted. On the other hand, the outside air inlet 102 of the air conditioning unit 100 is for introducing outside air (outside air) from the vehicle interior, and this outside air inlet 102 is connected to the outside air switching door 1.
03 branches into two outside air passages 104 and 105. The outside air introduced into one of the outside air passages 105 is heated by the heat exchanger 21 for regenerating heat recovery and then supplied to the downstream side of the desiccant unit 18 in the first passage 11 on the dehumidification side. .

【0025】すなわち、熱交換器21は再生側の第2通
路13内において乾燥剤ユニット18の下流側に配置さ
れ、電気発熱体19で加熱された高温空気と低温外気と
の間で熱交換(顕熱交換)を行って、再生側からの熱回
収により、室内温度の上昇に貢献するものである。再生
側第2通路13の熱交換器21下流側は、連結ダクト2
2により空調ユニット100の凝縮水排出パイプ106
に連結されているので、熱交換器21で熱交換して温度
低下した空気は、連結ダクト22および凝縮水排出パイ
プ106を介して車室外へ排出される。
That is, the heat exchanger 21 is disposed downstream of the desiccant unit 18 in the second passage 13 on the regeneration side, and exchanges heat between the high-temperature air heated by the electric heating element 19 and the low-temperature outside air. Sensible heat exchange) to recover heat from the regeneration side, thereby contributing to an increase in room temperature. The downstream side of the heat exchanger 21 of the regeneration-side second passage 13 is connected to the connection duct 2.
2, the condensed water discharge pipe 106 of the air conditioning unit 100
The air whose temperature has been reduced by heat exchange in the heat exchanger 21 is discharged to the outside of the passenger compartment through the connection duct 22 and the condensed water discharge pipe 106.

【0026】また、外気通路105に導入された外気の
一部は連結ダクト23により、除湿側第1通路11内の
除湿側乾燥剤18bに吹きつけられ、除湿側乾燥剤18
bを冷却することにより、除湿側乾燥剤18bを通過す
る室内空気を冷却して室内空気の相対湿度を高めて、単
位乾燥剤当たりの水分吸着量を増加させるものである。
A part of the outside air introduced into the outside air passage 105 is blown to the dehumidifying desiccant 18b in the dehumidifying first passage 11 by the connecting duct 23, and the dehumidifying desiccant 18
By cooling b, the room air passing through the dehumidifying-side desiccant 18b is cooled to increase the relative humidity of the room air, thereby increasing the amount of moisture adsorbed per unit of desiccant.

【0027】次に、フロント空調ユニット100の概要
を説明すると、本例では、内外気2層流モードが設定可
能な構成になっており、そのため、空調ユニット100
のケース107の内部は下側に内気側の第1空気通路1
08を形成するとともに、上側に外気側の第2空気通路
109を形成している。この両空気通路108、109
の間は仕切り部材110により区画されている。
Next, the outline of the front air-conditioning unit 100 will be described. In this example, the inside / outside air two-layer flow mode can be set.
The inside of the case 107 is located on the lower side of the first air passage 1 on the inside air side.
08 and a second air passage 109 on the outside air side on the upper side. These two air passages 108, 109
Is partitioned by a partition member 110.

【0028】ケース107の上流側に配置された空調用
送風機111は、第1空気通路108への送風用第1フ
ァン112と第2空気通路109への送風用第2ファン
113とを独立に備え、この両ファン112、113を
共通のモータ115で回転駆動する構成になっている。
なお、両ファン112、113は、再生用送風機17の
ファン17aと同様に周知の遠心多翼ファン(シロッコ
ファン)からなる。
The air-conditioning blower 111 disposed upstream of the case 107 has a first fan 112 for blowing air to the first air passage 108 and a second fan 113 for blowing air to the second air passage 109 independently. The two fans 112 and 113 are driven to rotate by a common motor 115.
The fans 112 and 113 are each a well-known centrifugal multi-blade fan (sirocco fan) similarly to the fan 17a of the regenerative blower 17.

【0029】下側の第1ファン112の吸入口112a
には、内気吸入口116からの内気または外気吸入口1
17からの外気が吸入される。内気吸入口116と外気
吸入口117は第1内外気切替ドア118により切替開
閉される。外気吸入口117には連通路119を介して
前記の外気通路104から外気が流入するようにしてあ
る。
Inlet 112a of lower first fan 112
The inside air or outside air suction port 1 from the inside air suction port 116
The outside air from 17 is sucked. The inside air suction port 116 and the outside air suction port 117 are selectively opened and closed by a first inside / outside air switching door 118. The outside air flows into the outside air intake port 117 from the outside air passage 104 via the communication passage 119.

【0030】また、上側の第2ファン113の吸入口1
13aには、内気吸入口120からの内気、外気通路1
04に設けられた外気吸入口104aからの外気、また
は除湿内気吸入口101からの除湿内気が吸入される。
内気吸入口120と外気吸入口104aは第2内外気切
替ドア121により切替開閉される。なお、図1におけ
るドア103、118、121の操作位置は内外気2層
流モードの状態を示している。
The suction port 1 of the upper second fan 113
13a, inside air from outside air suction port 120, outside air passage 1
The outside air from the outside air suction port 104a provided in the outside air or the dehumidified inside air from the dehumidification inside air suction port 101 is sucked.
The inside / outside air suction port 120 and the outside air suction port 104a are switched by a second inside / outside air switching door 121 to be opened and closed. Note that the operation positions of the doors 103, 118, and 121 in FIG. 1 indicate the state of the inside / outside air two-layer flow mode.

【0031】ケース107内において、上流側には冷房
用の熱交換器122が配置され、下流側には暖房用の熱
交換器123が配置され、この両熱交換器122、12
3はいずれも、内気側の第1空気通路108と外気側の
第2空気通路109の両方にわたって配置されている。
冷房用の熱交換器122は冷凍サイクルの蒸発器であ
り、暖房用の熱交換器123は水冷式車両エンジンの温
水(エンジン冷却水)を熱源とする温水式ヒータコアで
ある。
In the case 107, a heat exchanger 122 for cooling is arranged on the upstream side, and a heat exchanger 123 for heating is arranged on the downstream side.
3 are arranged over both the first air passage 108 on the inside air side and the second air passage 109 on the outside air side.
The heat exchanger 122 for cooling is an evaporator of a refrigerating cycle, and the heat exchanger 123 for heating is a hot water heater core using hot water (engine cooling water) of a water-cooled vehicle engine as a heat source.

【0032】内気側の第1空気通路108の下流端部に
はフット開口部124が配置され、このフット開口部1
24を通して車室内乗員の足元側へ空気を吹き出す。ま
た、外気側の第2空気通路109の下流端部にはデフロ
スタ開口部125が配置され、このデフロスタ開口部1
25を通して車両窓ガラスの内面側へ空気を吹き出す。
At the downstream end of the first air passage 108 on the inside air side, a foot opening 124 is arranged.
The air is blown out to the foot side of the passenger in the vehicle cabin through 24. A defroster opening 125 is disposed at a downstream end of the second air passage 109 on the outside air side.
Air is blown through 25 to the inner surface side of the vehicle window glass.

【0033】なお、内外気2層流モード以外の全外気モ
ードあるいは全内気モードでは、第1、第2の両空気通
路108、109からの空気をフット開口部124また
はデフロスタ開口部125から吹き出すことを可能とす
るため、両空気通路108、109を連通させる連通手
段(図示せず)が実際には備えられている。同様に、両
空気通路108、109からの空気を車室内乗員の頭部
側へ吹き出すフェイス開口部(図示せず)も実際には備
えられている。
In the whole outside air mode other than the inside / outside air two-layer flow mode or the whole inside air mode, air from both the first and second air passages 108 and 109 is blown out from the foot opening 124 or the defroster opening 125. A communication means (not shown) for connecting the two air passages 108 and 109 is actually provided in order to enable the air passage. Similarly, a face opening (not shown) for blowing air from both air passages 108 and 109 to the head side of the passenger in the vehicle compartment is actually provided.

【0034】図2は制御ブロック図であり、30は車載
の電源バッテリ、31は空調の自動制御状態を設定する
オートスイッチ、32は車両用空調装置の制御装置であ
り、マイクロコンピュータ等を用いて構成されており、
上記した除湿装置の電気機器(17c、19、20等)
を予め設定したプログラムに従って制御するものであ
る。制御装置32には、車両用空調装置の操作パネルの
スイッチ群、および空調制御のための各種センサ群から
の信号が入力されるが、図2では本実施形態の作動説明
に直接関係する除湿作動スイッチ33のみを図示してい
る。
FIG. 2 is a control block diagram, in which reference numeral 30 denotes a vehicle-mounted power supply battery, 31 denotes an auto switch for setting an automatic control state of air conditioning, and 32 denotes a control device of a vehicle air conditioner, using a microcomputer or the like. Is composed of
Electric equipment of the above dehumidifier (17c, 19, 20, etc.)
Is controlled according to a preset program. Signals from a group of switches on an operation panel of a vehicle air conditioner and various groups of sensors for air conditioning control are input to the control device 32. FIG. 2 shows a dehumidifying operation directly related to the description of the operation of the present embodiment. Only the switch 33 is shown.

【0035】この除湿作動スイッチ33は、空調ユニッ
ト100の最大暖房状態の設定と連動してオン状態とな
るものである。ここで、空調ユニット100の最大暖房
状態とは、空調ユニット100の吹出温度制御方式がエ
アミックス方式の場合であれば、エアミックスドア(図
示せず)が冷風バイパス通路(図示せず)を全閉して、
暖房用熱交換器123を通過する温風通路を全開する状
態を言う。また、空調ユニット100の吹出温度制御方
式が温水流量制御方式の場合であれば、暖房用熱交換器
123に循環する温水流量を調整する温水弁(図示せ
ず)を全開する状態を言う。
The dehumidification operation switch 33 is turned on in conjunction with the setting of the maximum heating state of the air conditioning unit 100. Here, the maximum heating state of the air conditioning unit 100 means that, when the air temperature control system of the air conditioning unit 100 is an air mixing system, the air mixing door (not shown) completely closes the cold air bypass passage (not shown). Close it,
This refers to a state in which the warm air passage passing through the heating heat exchanger 123 is fully opened. Further, when the blow-out temperature control method of the air conditioning unit 100 is the hot water flow rate control method, this means a state in which a hot water valve (not shown) for adjusting the flow rate of the hot water circulating through the heating heat exchanger 123 is fully opened.

【0036】送風制御装置34は、制御装置32の送風
制御部32aの出力信号に基づいて再生用送風機17の
ファンモータ17cへの印加電圧を調整するものであ
る。ファンモータ17cはこの印加電圧の調整により回
転数が調整され、これにより、再生側の第2通路13へ
の送風量を調整するようになっている。また、発熱体用
リレー35は制御装置32の発熱体制御部32bの出力
信号に基づいて断続される。また、乾燥剤駆動用モータ
20は制御装置32のモータ制御部32cの出力信号に
基づいて回転が制御される。また、制御装置32は除湿
作動スイッチ33の投入により起動するタイマー部32
dを有し、このタイマー部32dの信号が送風制御部3
2aおよびモータ制御部32cに入力される。
The blower controller 34 adjusts the voltage applied to the fan motor 17c of the blower 17 for reproduction based on the output signal of the blower controller 32a of the controller 32. The rotation speed of the fan motor 17c is adjusted by adjusting the applied voltage, whereby the amount of air blown to the second passage 13 on the reproduction side is adjusted. The heating element relay 35 is turned on and off based on an output signal of the heating element control section 32b of the control device 32. The rotation of the desiccant driving motor 20 is controlled based on an output signal of the motor control unit 32 c of the control device 32. Further, the control device 32 has a timer unit 32 that is activated by turning on the dehumidification operation switch 33.
d, and the signal of the timer unit 32 d
2a and the motor control unit 32c.

【0037】次に、上記構成において第1実施形態の作
動を説明する。冬期の暖房時において、空調ユニット1
00が最大暖房状態にあると、内外気導入用のドア10
3、118、121は図1の実線位置に操作されて、内
外気2層流モードが設定される。すなわち、空調用送風
機111の第1ファン112は内気吸入口116から内
気を吸入して第1空気通路108に内気を送風し、暖房
用熱交換器123で加熱された内気の温風をフット開口
部124を通して乗員の足元部へ吹き出す。
Next, the operation of the first embodiment in the above configuration will be described. During heating in winter, the air conditioning unit 1
00 is in the maximum heating state, the door 10
3, 118 and 121 are operated to the solid line positions in FIG. 1 to set the inside / outside air two-layer flow mode. That is, the first fan 112 of the air-conditioning blower 111 sucks the inside air from the inside air suction port 116 and blows the inside air into the first air passage 108, and opens the warm air of the inside air heated by the heating heat exchanger 123 into the foot opening. It blows out to the occupant's foot through the part 124.

【0038】また、空調用送風機111の第2ファン1
13は、除湿内気吸入口101から乾燥剤ユニット18
で除湿された除湿内気と、外気導入口102から外気通
路105および連結ダクト23を介して除湿側第1通路
11内に導入される外気と、熱交換器21を介して除湿
側第1通路11内に導入される外気との混合空気を吸入
する。そして、第2ファン113により送風される内外
気混合空気は、第2空気通路109にて暖房用熱交換器
123で加熱されて低湿度の温風となり、この低湿度の
温風がデフロスタ開口部125を通して車両窓ガラスに
向けて吹き出され、窓ガラスの曇り止めを行う。
The second fan 1 of the air-conditioning blower 111
Reference numeral 13 denotes a desiccant unit 18 from the dehumidifying inside air suction port 101.
Dehumidified inside air, outside air introduced into the dehumidification side first passage 11 from the outside air introduction port 102 through the outside air passage 105 and the connection duct 23, and dehumidification side first passage 11 through the heat exchanger 21. The air mixed with the outside air introduced into the air is sucked. Then, the mixed air of inside and outside air blown by the second fan 113 is heated by the heating heat exchanger 123 in the second air passage 109 to become low-humidity hot air, and this low-humidity hot air is supplied to the defroster opening. It is blown out toward the vehicle window glass through 125 to prevent fogging of the window glass.

【0039】次に、除湿装置10部分の作動を詳細に説
明する。オートスイッチ31の投入により空調ユニット
100の作動が制御装置32により自動制御される。そ
して、空調ユニット100が最大暖房状態にあると除湿
作動スイッチ33がオン状態になる。これにより、制御
装置32内のタイマー部32dが起動し、このタイマー
部32dの信号に基づいて送風制御部32aを介して送
風制御装置34が駆動され、再生用送風機17のファン
モータ17cに車載バッテリ30から電圧を印加する。
そのため、ファンモータ17cが作動し、再生用送風機
17が作動する。送風制御部32aと送風制御装置34
による、再生用送風機17の送風量調整作用は後述す
る。
Next, the operation of the dehumidifier 10 will be described in detail. By turning on the auto switch 31, the operation of the air conditioning unit 100 is automatically controlled by the control device 32. When the air conditioning unit 100 is in the maximum heating state, the dehumidification operation switch 33 is turned on. As a result, the timer unit 32d in the control device 32 is started, and the blower control device 34 is driven via the blower controller 32a based on the signal of the timer unit 32d. A voltage is applied from 30.
Therefore, the fan motor 17c operates, and the regenerative blower 17 operates. Blow control unit 32a and blow control unit 34
Will be described later.

【0040】また、除湿作動スイッチ33がオン状態に
なると、制御装置32の発熱体制御部32bによって発
熱体用リレー35が閉状態になるので、このリレー35
を通して電気発熱体19に車載バッテリ30から電圧が
印加され電気発熱体19が発熱する。また、制御装置3
2のモータ制御部32cはタイマー部32dの出力信号
に基づいて乾燥剤用モータ20の通電を制御する。具体
的には、モータ20は所定時間間隔で通電されて乾燥剤
ユニット18を一定角度(例えば、180°)ごとに回
転して、乾燥剤ユニット18の、両通路11、13に対
する回動位置を所定時間間隔で反転させる。
When the dehumidifying operation switch 33 is turned on, the heating element relay 35 is closed by the heating element control section 32b of the control device 32.
A voltage is applied to the electric heating element 19 from the vehicle-mounted battery 30 through the electric heating element 19 to generate heat. The control device 3
The second motor control unit 32c controls the energization of the desiccant motor 20 based on the output signal of the timer unit 32d. Specifically, the motor 20 is energized at predetermined time intervals to rotate the desiccant unit 18 at a fixed angle (for example, 180 °), and to change the rotation position of the desiccant unit 18 with respect to the two passages 11 and 13. Invert at predetermined time intervals.

【0041】そして、空調用送風機111の第1ファン
112の作動により、車室内空気が除湿装置10の吸入
口15から除湿側第1通路11に吸入され、乾燥剤ユニ
ット18の除湿側乾燥剤18bを通過する。これによ
り、車室内空気の水分が除湿側乾燥剤18bに吸着さ
れ、除湿された後に、この除湿後の内気が除湿内気吸入
口101を通って第2ファン113に吸入される。
When the first fan 112 of the air-conditioning blower 111 is operated, the air in the passenger compartment is sucked into the first passage 11 on the dehumidifying side from the suction port 15 of the dehumidifier 10, and the desiccant 18b of the desiccant unit 18 is dehumidified. Pass through. As a result, the moisture in the vehicle interior air is adsorbed by the dehumidifying side desiccant 18b, and after being dehumidified, the dehumidified inside air is sucked into the second fan 113 through the dehumidified inside air suction port 101.

【0042】また、再生用送風機17の作動により、車
室内空気が吸入口16から再生側第2通路13に吸入さ
れ、そして、車室内空気は電気発熱体19により加熱さ
れて、温風となり、この温風が乾燥剤ユニット18の再
生側乾燥剤18cに吹き当てられ、再生側乾燥剤18c
の再生を行う。ここで、乾燥剤18cの再生は、乾燥剤
18cの加熱により乾燥剤18cにおける水吸着状態
(水和状態)を解除して、水蒸気の状態で水分を乾燥剤
18cから放出させるものである。
Further, by the operation of the regenerative blower 17, the air in the passenger compartment is sucked into the second regeneration passage 13 from the suction port 16, and the air in the passenger compartment is heated by the electric heating element 19 to become hot air. This warm air is blown against the regeneration-side desiccant 18c of the desiccant unit 18, and the regeneration-side desiccant 18c
Perform playback. Here, the regeneration of the desiccant 18c is to release the water adsorption state (hydration state) of the desiccant 18c by heating the desiccant 18c, and to release moisture from the desiccant 18c in the state of steam.

【0043】そして、乾燥剤18cの再生効率、すなわ
ち、電気発熱体19の発生熱量に対する乾燥剤18cの
温度上昇分および吸着水分の蒸発熱量分の割合を再生中
の間、高い状態に維持することが乾燥剤18cの再生時
間短縮のために必須である。図3は本実施形態による乾
燥剤再生作動の特徴点を図示するものであり、図3
(a)は上記再生側第2通路13の概略構成を示し、図
3(b)に示すように、再生開始後における、電気発熱
体19通過後の空気温度(乾燥剤18cへの流入空気温
度)T1 と乾燥剤18cの温度T2 との温度差T0 (T
1 −T2 )を所定値以上に維持することにより、乾燥剤
18cの再生効率を良好に維持することができる。
The regeneration efficiency of the desiccant 18c, that is, the ratio of the temperature rise of the desiccant 18c to the amount of heat generated by the electric heating element 19 and the amount of heat of evaporation of the adsorbed moisture is maintained at a high level during the regeneration. It is essential for shortening the regeneration time of the agent 18c. FIG. 3 illustrates a characteristic of the desiccant regeneration operation according to the present embodiment.
3A shows a schematic configuration of the regeneration-side second passage 13, and as shown in FIG. 3B, the air temperature after passing through the electric heating element 19 (the air temperature flowing into the desiccant 18c) after the start of the regeneration. ) Temperature difference T 0 between T 1 and temperature T 2 of desiccant 18c (T
By maintaining 1- T 2 ) at or above a predetermined value, the regeneration efficiency of the desiccant 18c can be favorably maintained.

【0044】また、再生側の乾燥剤18cの温度T
2 は、再生開始当初(除湿側からの切替直後)では室温
付近の低い温度にあるが、図3(c)に示すように、再
生開始後、経過時間τが長くなるにつれて電気発熱体1
9による加熱作用の影響で、乾燥剤18cの温度T2
上昇する関係にある。従って、乾燥剤18cの温度T2
は再生開始後の経過時間τに基づいて推定できる。
The temperature T of the drying agent 18c on the regeneration side is
2 is at a low temperature near room temperature at the beginning of the regeneration (immediately after switching from the dehumidifying side), but as shown in FIG.
The influence of the heating action by 9, are in a relationship temperature T 2 is increased desiccant 18c. Therefore, the temperature T 2 of the desiccant 18c
Can be estimated based on the elapsed time τ after the start of reproduction.

【0045】本実施形態では、上記点に着目して、乾燥
剤18cの温度T2 を直接検出する代わりに、再生開始
後の経過時間τを用いて、図2(c)に示すように、再
生経過時間τが長くなるにつれて再生用送風機17によ
る再生側風量Vを減少させるように制御する。具体的に
は、制御装置32のタイマー部32dの出力信号に基づ
いて、送風制御部32aと送風制御装置34により、再
生用送風機17のモータ17cの印加電圧を再生経過時
間τの増加につれて減少させて、再生側風量Vを減少さ
せる。
In this embodiment, focusing on the above points, instead of directly detecting the temperature T 2 of the desiccant 18c, the elapsed time τ after the start of regeneration is used as shown in FIG. Control is performed such that the regeneration-side air volume V by the regeneration blower 17 decreases as the regeneration elapsed time τ increases. Specifically, based on the output signal of the timer unit 32d of the control device 32, the blower control unit 32a and the blower control device 34 reduce the voltage applied to the motor 17c of the blower 17 for reproduction as the reproduction elapsed time τ increases. Thus, the regeneration side air volume V is reduced.

【0046】次に、上記再生側風量Vの制御による技術
的意義を説明すると、再生開始当初(除湿側からの切替
直後)では再生側の乾燥剤18cの温度T2 が室温付近
の低い温度にあるので、再生側風量Vを増大して電気発
熱体19通過後の空気温度T 1 を下げても、この空気温
度T1 を再生側の乾燥剤温度T2 に対して所定値T0
上高くすることができる。
Next, a technique based on the control of the regeneration side air volume V will be described.
Explaining the significance, at the beginning of regeneration (switching from the dehumidification side)
Immediately after), the temperature T of the drying agent 18c on the regeneration sideTwoNear room temperature
Because the temperature is low, the air volume V on the regeneration side is increased to generate electricity.
Air temperature T after passing through heating element 19 1Lower this air temperature
Degree T1The desiccant temperature T on the regeneration sideTwoPredetermined value T0Less than
Can be higher.

【0047】つまり、電気発熱体19は所定のキューリ
点(例えば、150°C)において電気抵抗値が急増す
る正の抵抗温度係数を持つ抵抗体(PTCヒータ)であ
るから、電気発熱体19への風量Vを増大すると、電気
発熱体19の空気への放熱量が増加して電気発熱体19
の温度がキューリ点以下に低下するが、再生開始初期時
には乾燥剤18cの温度T2 がそもそも室温付近の低い
温度にあるので、空気温度T1 を再生側の乾燥剤温度T
2 に対して所定値T0 以上にすることができる。 そし
て、電気発熱体19の温度低下→抵抗値減少→電流量増
加→消費電力増加となる。このように、再生開始初期時
に、再生側風量Vを増大すると電気発熱体19の温度が
下がって、電気発熱体19の消費電力増加により再生側
乾燥剤18cへの伝熱量を効果的に増大できるので、再
生開始初期時に再生側乾燥剤18cの再生を急速に行う
ことができる。
That is, since the electric heating element 19 is a resistor (PTC heater) having a positive temperature coefficient of resistance at which the electric resistance rapidly increases at a predetermined Curie point (for example, 150 ° C.), the electric heating element 19 When the air volume V of the electric heating element 19 is increased, the heat radiation amount of the electric heating element 19 to the air increases, and the electric heating element 19
Of the temperature drops below the Curie point, since the playback start initial time temperature T 2 of the drying agent 18c is at a low temperature of the first place around room temperature, drying agents the temperature T of the air temperature T 1 of the reproducing side
2 can be set to a predetermined value T 0 or more. Then, the temperature of the electric heating element 19 decreases, the resistance decreases, the current increases, and the power consumption increases. As described above, when the regeneration-side air volume V is increased at the beginning of the regeneration, the temperature of the electric heating element 19 decreases, and the amount of heat transfer to the regeneration-side desiccant 18c can be effectively increased by increasing the power consumption of the electric heating element 19. Therefore, the regeneration of the regeneration-side drying agent 18c can be rapidly performed at the beginning of the regeneration.

【0048】再生経過時間τが長くなるにつれて乾燥剤
18cの温度T2 が上昇するので、これに対応して再生
側風量Vを減少させることにより、電気発熱体19の温
度を上昇させることができるので、温度差T0 (T1
2 )を再生中の間、継続して所定値以上に維持するこ
とができ、これにより、乾燥剤18cの再生効率を良好
に維持することができる。
Since the temperature T 2 of the desiccant 18c increases as the elapsed regeneration time τ increases, the temperature of the electric heating element 19 can be increased by correspondingly decreasing the air flow V on the regeneration side. Therefore, the temperature difference T 0 (T 1
T 2 ) can be continuously maintained at or above a predetermined value during the regeneration, whereby the regeneration efficiency of the desiccant 18c can be favorably maintained.

【0049】しかも、再生側風量Vの減少という簡単な
操作だけで、電気発熱体19の抵抗値増加により消費電
力を低下させることができ、電気発熱体19の電力消費
を効率的に制御できる。なお、内外気2層流モードの具
体的設計例について説明すると、いま、乾燥剤ユニット
18を持つ除湿装置10と、内外気2層型の空調ユニッ
ト100との組み合わせにより、空調用送風機112の
第1ファン112による内気吸入量:70m3 /hと
し、空調用送風機112の第2ファン113による吸入
口15からの内気吸入量:50m3 /hとし、空調用送
風機112の第2ファン113による外気導入口102
からの外気吸入量:30m3 /hとして、内気率を80
%まで高めても、窓ガラスの防曇性を確保することがで
きた。
Moreover, the power consumption can be reduced by increasing the resistance value of the electric heating element 19, and the power consumption of the electric heating element 19 can be efficiently controlled only by a simple operation of decreasing the air volume V on the reproduction side. Note that a specific design example of the inside / outside air two-layer flow mode will be described. Now, the combination of the dehumidifier 10 having the desiccant unit 18 and the inside / outside air two-layer type air conditioning unit 100 makes the air conditioner blower 112 have the third configuration. The amount of inside air suctioned by one fan 112: 70 m 3 / h, the amount of inside air suctioned from the suction port 15 by the second fan 113 of the air conditioning blower 112: 50 m 3 / h, the outside air by the second fan 113 of the air conditioning blower 112 Inlet 102
Assuming the outside air intake volume from the air: 30 m 3 / h, the inside air rate is 80
%, The antifogging property of the window glass could be secured.

【0050】この設計例で乾燥剤ユニット18として
は、直径:240mm、厚さ:30mmの円板状(ロー
タ形状)のケース体18a内に、シリカゲルを主体とし
た材質からなる乾燥剤18b、18cを保持し、全体の
重量が500gのものを用いた。 (他の実施形態)なお、上記の実施形態は、再生側の乾
燥剤18cの温度T2 が再生開始後、経過時間τが長く
なるにつれて上昇する関係にあることに着目して、再生
開始後の経過時間τを用いて、図2(c)に示すよう
に、再生経過時間τが長くなるにつれて再生用送風機1
7による再生側風量Vを減少させるように制御している
が、例えば、非接触式の温度センサ(例えば、赤外線式
温度センサ)を用いて乾燥剤18cの温度T2 を直接検
出し、この乾燥剤18cの温度T2 の上昇に応じて再生
側風量Vを減少させるようにしてもよい。
In this design example, the desiccant unit 18 includes a desiccant 18b, 18c made of a material mainly composed of silica gel in a disk-shaped (rotor-shaped) case body 18a having a diameter of 240 mm and a thickness of 30 mm. And the total weight was 500 g. (Other embodiments) The embodiments described above, after the temperature T 2 is the reproduction start of the reproduction side of the desiccant 18c, by paying attention to a relationship that increases as the elapsed time τ becomes longer, playback start after As shown in FIG. 2 (c), as the reproduction elapsed time τ becomes longer, the regeneration blower 1 is used.
Although it controlled so as to reduce the reproduction side air volume V by 7, for example, a temperature sensor of non-contact type (e.g., an infrared temperature sensor) detects the temperature T 2 of the drying agent 18c directly with, the drying it may be to reduce the reproduction side air volume V in response to an increase in the temperature T 2 of the agent 18c.

【0051】また、再生側の第2通路13において電気
発熱体19通過後の空気温度(乾燥剤18cへの流入空
気温度)T1 と再生側の乾燥剤18cの出口空気温度T
3 (図3(a)参照)との温度差は、再生側の乾燥剤1
8cの温度T2 の上昇(再生開始後の経過時間τの増
加)につれて減少する関係にあるので、再生側の乾燥剤
18cの入口側および出口側にそれぞれ温度センサ18
d、18e(図3(a)参照)を配置して、この両温度
センサ18d、18eの検出信号に基づいて、再生側乾
燥剤18cの再生開始後の温度上昇を推定し、これによ
り再生側風量Vの制御をしてもよい。
[0051] Also, the outlet air temperature T of the reproduction side of the second air temperature (inlet air temperature to the drying agent 18c) after the electrical heating element 19 passes through the passage 13 T 1 and the reproducing side desiccant 18c
3 (see FIG. 3 (a)) is the difference between the drying agent 1 on the regeneration side.
Since the decrease is related As the rise in the temperature T 2 of 8c (increase in the elapsed time after the reproduction start tau), temperature respectively to the inlet side and the outlet side of the reproduction side desiccant 18c sensors 18
d and 18e (see FIG. 3 (a)), and based on the detection signals of the two temperature sensors 18d and 18e, the temperature rise after the start of the regeneration of the regeneration side desiccant 18c is estimated. The air volume V may be controlled.

【0052】また、図3(c)では再生側風量Vを連続
的に減少させる制御特性を示しているが、再生側風量V
を連続的でなく、段階的に減少させてもよいことはもち
ろんである。また、再生用送風機17のモータ回転数の
制御を印加電圧の制御でなく、モータ17cにパルス電
圧を印加するとともに、このパルス電圧のパルス幅を調
整してモータ回転数を制御するパルス幅変調方式(PW
M方式)を採用することもできる。
FIG. 3C shows a control characteristic for continuously reducing the reproduction-side air volume V.
Of course, may be reduced stepwise instead of continuously. In addition, the control of the motor speed of the regenerative blower 17 is performed not by controlling the applied voltage but by applying a pulse voltage to the motor 17c and adjusting the pulse width of the pulse voltage to control the motor speed. (PW
M method).

【0053】また、上記の実施形態では、乾燥剤ユニッ
ト18を回転式として乾燥剤の再生を行っているが、特
開平9−156349号公報に記載のごとく、乾燥剤を
2つの群に分けて、一方の乾燥剤群で除湿を行い、他方
の乾燥剤群では再生を行うようし、通風路の切替により
2つの群の乾燥剤の除湿と再生を交互に行うようにして
もよい。
In the above embodiment, the desiccant is regenerated by rotating the desiccant unit 18, but the desiccant is divided into two groups as described in JP-A-9-156349. Alternatively, dehumidification may be performed by one desiccant group and regeneration may be performed by the other desiccant group, and dehumidification and regeneration of the two groups of desiccants may be alternately performed by switching the ventilation path.

【0054】また、上記の実施形態では、除湿装置10
を、車室内前方の計器盤部に配置されるフロント空調ユ
ニット100の通風系吸入側に連結するタイプについて
説明したが、車室内後方のトランクルーム等に、除湿装
置10を空調ユニット100の通風系と独立に設けても
よい。また、本発明は車両用以外の用途にも適用可能で
ある。
In the above embodiment, the dehumidifier 10
Has been described with respect to a type in which the dehumidifier 10 is connected to the ventilation system of the air conditioning unit 100 in a trunk room or the like at the rear of the vehicle interior, in which the dehumidifier 10 is connected to the ventilation system suction side of the front air conditioning unit 100 arranged on the instrument panel in front of the vehicle interior. They may be provided independently. The present invention is also applicable to uses other than those for vehicles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す概略断面図である。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】本発明の一実施形態の電気制御ブロック図であ
る。
FIG. 2 is an electric control block diagram of one embodiment of the present invention.

【図3】本発明における乾燥剤の再生作動の説明図であ
る。
FIG. 3 is an explanatory diagram of a regenerating operation of a desiccant in the present invention.

【符号の説明】[Explanation of symbols]

11…除湿側通路、13…再生側通路、17…再生用送
風機、18…乾燥剤ユニット、18b…除湿側乾燥剤、
18c…再生側乾燥剤、19…電気発熱体、32…制御
装置。
11: dehumidifying side passage, 13: regeneration side passage, 17: regeneration blower, 18: desiccant unit, 18b: dehumidification side desiccant,
18c: regeneration side desiccant, 19: electric heating element, 32: control device.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 乾燥剤を有する乾燥剤ユニット(18)
を用いて室内空気を除湿する除湿装置において、 前記乾燥剤ユニット(18)の乾燥剤のうち、除湿側乾
燥剤(18b)が位置して、前記除湿側乾燥剤(18
b)により室内空気を除湿する除湿側通路(11)と、 前記乾燥剤ユニット(18)の乾燥剤のうち、再生側乾
燥剤(18c)が位置して、前記再生側乾燥剤(18
c)から水分を脱離させる再生側通路(13)と、 前記再生側通路(13)に空気を送風する送風手段(1
7)と、 前記再生側通路(13)のうち、前記再生側乾燥剤(1
8c)の上流側に配置された加熱手段とを有し、 前記加熱手段を所定温度にて電気抵抗値が急増する正の
抵抗温度特性を有する電気発熱体(19)により構成
し、 前記送風手段(17)により送風される空気を前記電気
発熱体(19)により加熱して前記再生側乾燥剤(18
c)に吹き付け、前記再生側乾燥剤(18c)から水分
を脱離させることにより前記再生側乾燥剤(18c)の
再生を行うようにし、 前記再生側乾燥剤(18c)の再生開始初期における前
記送風手段(17)による送風量を大とし、前記再生側
乾燥剤(18c)の再生の進行に従って前記送風手段
(17)による送風量を減少させることを特徴とする除
湿装置。
1. A desiccant unit (18) having a desiccant.
In the dehumidifying device for dehumidifying indoor air by using the dehumidifying-side desiccant (18b), the desiccant-side desiccant (18b) is located among the desiccants of the desiccant unit (18).
b) a dehumidifying-side passageway (11) for dehumidifying indoor air; and a regenerating-side desiccant (18c) among the desiccants of the desiccant unit (18).
c) a regeneration side passage (13) for desorbing moisture from the water; and a blowing means (1) for blowing air to the regeneration side passage (13).
7), and the regeneration-side desiccant (1) in the regeneration-side passage (13).
8c) a heating means disposed on the upstream side of the heating means, wherein the heating means comprises an electric heating element (19) having a positive resistance temperature characteristic in which an electric resistance value increases rapidly at a predetermined temperature; The air blown by (17) is heated by the electric heating element (19) and the regeneration side desiccant (18) is heated.
c) to regenerate the regeneration-side desiccant (18c) by desorbing moisture from the regeneration-side desiccant (18c). A dehumidifier, wherein the amount of air blown by the air blowing means (17) is increased, and the amount of air blown by the air blowing means (17) is reduced in accordance with the progress of the regeneration of the regeneration-side desiccant (18c).
【請求項2】 前記再生側乾燥剤(18c)の再生開始
後の時間を計測するタイマー手段(32d)を有し、 前記タイマー手段(32d)の信号に基づいて、前記再
生側乾燥剤(18c)の再生開始後の時間経過に従って
前記送風手段(17)による送風量を減少させることを
特徴とする請求項1に記載の除湿装置。
2. A timer means (32d) for measuring a time after the start of regeneration of the regeneration side desiccant (18c), and based on a signal from the timer means (32d), the regeneration side desiccant (18c). 2. The dehumidifier according to claim 1, wherein the amount of air blown by the air blowing means (17) is reduced as time elapses after the start of the regeneration of (1).
【請求項3】 前記再生側乾燥剤(18c)の再生開始
後の温度変化に関連する情報を検出する温度検出手段
(18d、18e)を有し、 前記温度検出手段(18d、18e)の検出信号に基づ
いて、前記再生側乾燥剤(18c)の再生開始後の温度
上昇に従って前記送風手段(17)による送風量を減少
させることを特徴とする請求項1に記載の除湿装置。
3. A temperature detecting means (18d, 18e) for detecting information relating to a temperature change after the regeneration of the regeneration side desiccant (18c) is started, wherein the temperature detecting means (18d, 18e) detects the information. 2. The dehumidifier according to claim 1, wherein the amount of air blown by the air blowing unit (17) is reduced in accordance with a temperature rise after the start of regeneration of the regeneration side desiccant (18 c) based on the signal. 3.
【請求項4】 請求項1ないし3のいずれか1つに記載
の除湿装置を備える車両用空調装置であって、 空調空気を加熱する暖房用熱交換器(123)と、 前記暖房用熱交換器(123)で加熱された空気を車室
内へ吹き出す空調用空気通路(108、109)と、 前記空調用空気通路(108、109)に空気を送風す
る空調用送風手段(111)とを有し、 前記除湿側通路(11)の出口側を前記空調用送風手段
(111)の吸入側に接続して、車室内空気を前記除湿
側通路(11)で除湿した後に前記空調用空気通路(1
08、109)を通して車室内へ吹き出すことを特徴と
する車両用空調装置。
4. A vehicle air conditioner comprising the dehumidifying device according to claim 1, wherein the heating heat exchanger (123) heats conditioned air; and the heating heat exchange. An air-conditioning air passage (108, 109) for blowing air heated by the air heater (123) into the vehicle cabin; and an air-conditioning blower (111) for blowing air to the air-conditioning air passage (108, 109). An outlet side of the dehumidification-side passage (11) is connected to a suction side of the air-conditioning blower (111) to dehumidify vehicle interior air in the dehumidification-side passage (11), and thereafter, the air-conditioning air passage (11). 1
08, 109), and blows out into the vehicle interior.
【請求項5】 前記空調用空気通路(108、109)
の出口部に設けられ、空気を乗員の足元側へ吹き出すフ
ット開口部(124)と、 前記空調用空気通路(108、109)の出口部に設け
られ、空気を車両窓ガラスへ吹き出すデフロスタ開口部
(125)とを備え、 前記フット開口部(124)および前記デフロスタ開口
部(125)の両方を同時に開口する吹出モードにおい
て、 前記フット開口部(124)には車室内空気が流れ、前
記デフロスタ開口部(125)には車室外空気が流れる
内外気2層流モードを設定し、 前記内外気2層流モードの際に、前記除湿側通路(1
1)で除湿した車室内空気に前記車室外空気を混合して
前記デフロスタ開口部(125)から吹き出させること
を特徴とする請求項4に記載の車両用空調装置。
5. The air passage for air conditioning (108, 109).
And a defroster opening provided at the outlet of the air-conditioning air passages (108, 109) and blowing air to the vehicle window glass. (125), in a blowing mode in which both the foot opening (124) and the defroster opening (125) are simultaneously opened, vehicle interior air flows through the foot opening (124), and the defroster opening In the section (125), an inside / outside air two-layer flow mode in which air outside the vehicle compartment flows is set, and in the inside / outside air two-layer flow mode, the dehumidification-side passage (1) is set.
The vehicle air conditioner according to claim 4, wherein the air outside the vehicle interior is mixed with the air inside the vehicle interior dehumidified in (1), and is blown out from the defroster opening (125).
JP15161998A 1998-06-01 1998-06-01 Dehumidifier and air conditioner for vehicle Expired - Fee Related JP3669154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15161998A JP3669154B2 (en) 1998-06-01 1998-06-01 Dehumidifier and air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15161998A JP3669154B2 (en) 1998-06-01 1998-06-01 Dehumidifier and air conditioner for vehicle

Publications (2)

Publication Number Publication Date
JPH11344239A true JPH11344239A (en) 1999-12-14
JP3669154B2 JP3669154B2 (en) 2005-07-06

Family

ID=15522508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15161998A Expired - Fee Related JP3669154B2 (en) 1998-06-01 1998-06-01 Dehumidifier and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP3669154B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530973B2 (en) * 2001-01-16 2003-03-11 Visteion Global Technologies, Inc. Air desiccant system and method for automotive climate control
EP1450113A1 (en) * 2001-11-26 2004-08-25 Daikin Industries, Ltd. Humidity controller
WO2005103577A1 (en) * 2004-04-27 2005-11-03 Daikin Industries, Ltd. Humidity controller
JP2008137421A (en) * 2006-11-30 2008-06-19 Denso Corp Air conditioner for vehicle
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2010091155A (en) * 2008-10-06 2010-04-22 Autonetworks Technologies Ltd Ptc heater control device and room temperature change determination device
JP2011064407A (en) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp Air conditioning device
US7946056B2 (en) * 2008-01-23 2011-05-24 Kroll Family Trust Ambulatory hairdryer
JP2014210241A (en) * 2013-04-19 2014-11-13 エクアールシー株式会社 Drier for low humidity storage
JP2016135653A (en) * 2015-01-23 2016-07-28 三菱自動車工業株式会社 Vehicular air conditioner
JP2019051776A (en) * 2017-09-13 2019-04-04 カルソニックカンセイ株式会社 Vehicular air conditioner
US10625569B2 (en) 2015-09-15 2020-04-21 Denso Corporation Engine controller, air conditioning system, and program for air-conditioning controller
CN113306368A (en) * 2020-02-26 2021-08-27 本田技研工业株式会社 Dehumidifying device for vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530973B2 (en) * 2001-01-16 2003-03-11 Visteion Global Technologies, Inc. Air desiccant system and method for automotive climate control
EP1450113A1 (en) * 2001-11-26 2004-08-25 Daikin Industries, Ltd. Humidity controller
EP1450113A4 (en) * 2001-11-26 2009-11-18 Daikin Ind Ltd Humidity controller
WO2005103577A1 (en) * 2004-04-27 2005-11-03 Daikin Industries, Ltd. Humidity controller
JP2008137421A (en) * 2006-11-30 2008-06-19 Denso Corp Air conditioner for vehicle
US7946056B2 (en) * 2008-01-23 2011-05-24 Kroll Family Trust Ambulatory hairdryer
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2010091155A (en) * 2008-10-06 2010-04-22 Autonetworks Technologies Ltd Ptc heater control device and room temperature change determination device
JP2011064407A (en) * 2009-09-17 2011-03-31 Mitsubishi Electric Corp Air conditioning device
JP2014210241A (en) * 2013-04-19 2014-11-13 エクアールシー株式会社 Drier for low humidity storage
JP2016135653A (en) * 2015-01-23 2016-07-28 三菱自動車工業株式会社 Vehicular air conditioner
US10625569B2 (en) 2015-09-15 2020-04-21 Denso Corporation Engine controller, air conditioning system, and program for air-conditioning controller
JP2019051776A (en) * 2017-09-13 2019-04-04 カルソニックカンセイ株式会社 Vehicular air conditioner
CN113306368A (en) * 2020-02-26 2021-08-27 本田技研工业株式会社 Dehumidifying device for vehicle

Also Published As

Publication number Publication date
JP3669154B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US6205805B1 (en) Motor vehicle dehumidifier with drying agent and drying agent regenerative control
JP4539343B2 (en) Air conditioner
JP3669154B2 (en) Dehumidifier and air conditioner for vehicle
JPH0867136A (en) Air conditioner for vehicle
JP2008137420A (en) Air conditioner for vehicle
JP4538846B2 (en) Air conditioner
JP3617157B2 (en) Air conditioner for vehicles
JP3567857B2 (en) Humidifier and air conditioner using the same
JP2000264054A (en) Air conditioner for vehicle
JP3991465B2 (en) Air conditioner for vehicles
JP2000280724A (en) Vehicular air conditioner
KR101403448B1 (en) Air conditioner for vehicle
KR101584112B1 (en) Air cleaner for vehicles
JP2000318422A (en) Air conditioner for vehicle
JP3084936B2 (en) Vehicle air conditioner
JP2013014307A (en) Vehicle air conditioning apparatus
KR102056790B1 (en) Air conditioner for vehicle
JP3335465B2 (en) Electric vehicle air conditioner
JP4876874B2 (en) Air conditioner for vehicles
JP2018118630A (en) Humidifier
JPH09156349A (en) Vehicular air conditioner
JP2006143042A (en) Air conditioner for vehicle
JP3814351B2 (en) Dehumidification heat exchange air fan
JP6079564B2 (en) Air conditioning control device for vehicles
JP2023150283A (en) Vehicle anti-fogging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees