JP3814351B2 - Dehumidification heat exchange air fan - Google Patents

Dehumidification heat exchange air fan Download PDF

Info

Publication number
JP3814351B2
JP3814351B2 JP31737996A JP31737996A JP3814351B2 JP 3814351 B2 JP3814351 B2 JP 3814351B2 JP 31737996 A JP31737996 A JP 31737996A JP 31737996 A JP31737996 A JP 31737996A JP 3814351 B2 JP3814351 B2 JP 3814351B2
Authority
JP
Japan
Prior art keywords
air
temperature
indoor
damper
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31737996A
Other languages
Japanese (ja)
Other versions
JPH10160224A (en
Inventor
永 長谷川
哲吏 森本
幹夫 福永
弘仁 堺
Original Assignee
松下エコシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下エコシステムズ株式会社 filed Critical 松下エコシステムズ株式会社
Priority to JP31737996A priority Critical patent/JP3814351B2/en
Publication of JPH10160224A publication Critical patent/JPH10160224A/en
Application granted granted Critical
Publication of JP3814351B2 publication Critical patent/JP3814351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、室内の高湿空気中の湿分の除湿手段に使用され、室内空気中もしくは、室内の天井や壁面などの結露を防止する空気調和技術分野の除湿熱交換気扇に関する。
【0002】
【従来の技術】
従来、この種の乾式除湿機は、特開平6−63345号公報に記載されたものが知られている。
【0003】
以下、その乾式除湿機について図12を参照しながら説明する。図に示すように、シリカゲルの除湿素子101はハニカム構造もしくは、コルゲート構造で回転体円筒状の形状である。
【0004】
そして、高湿空気を除湿素子101に接触させるための処理用送風機102と、水分吸着された除湿素子101を再生させるための再生用送風機103と再生用送風機103と除湿素子101との間にヒータ104が設けられている。
【0005】
上記構成において、高湿空気は処理用送風機102で10〜50rphで回転している除湿素子101に接触させ、高湿空気中の水分を吸着させて水分を除去された除湿空気を室内に送風する。そして、水分吸着された除湿素子101を再生させるために再生用送風機103から送られた再生空気をヒータ104で120〜140℃に加熱させて除湿素子101に接触させて除湿素子101中の水分を放出させて除湿素子101を再生する。
【0006】
【発明が解決しようとする課題】
このような従来の乾式除湿機では、室外に放出した空気量だけ室外から室内に流入することから、例えば冬季の場合、温度の低い空気が流入することで室内の温度が低下することで、室内空調負荷が大きくなるという課題があり、空調負荷を低減させることが要求されている。
【0007】
また、ヒータ再生時の消費電力が高いという課題があり、省エネルギーの観点から、電気代のかからない除湿(排湿)技術の確立が要求されている。
【0008】
また、ヒータ再生時の熱源を利用して室外からの給気空気との熱交換で室内に空気を導入する場合、夏季においては、温度の高い室外空気と再生ヒータで高温になった空気が熱交換されて室内に給気されることで、さらに室内温度が上昇し、空調負荷が大きくなるという課題があり、室外空気条件に応じた適切な給気動作が要求されている。
【0009】
また、室内の湿度が上昇することで、結露被害、微生物等による建物や健康上の被害が顕在化するなどの課題があり、建物、人を対象とした快適環境実現に対する要求がされている。
【0010】
また、除湿素子を一定回転数で回転させるためのギヤモータについて、小型化、低コスト化を実現させると、耐久寿命が短くなるという課題があり、小型、低コスト型で、かつ長寿命対応のギヤモータに対する要求がされている。
【0011】
本発明は、このような従来の課題を解決するものであり、空調負荷の低減ができ、省エネ型除湿ができ、空気条件にあわせた給気動作ができ、人・建物に対する快適環境の実現ができ、長寿命型ギヤモータを提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明の除湿熱交換気扇は上記目的を達成するために、本体内に設けられた円筒上の除湿素子と、この除湿素子を回転させるためのギヤモータと、このギヤモータの回転軸に直結されたプーリと、このプーリの回転を前記除湿素子に伝達させるための駆動ベルトと、前記本体内に設けられた室内吸込口と室内排気口と、前記室内吸込み口から前記除湿素子を通り、前記室内排気口とを連通する第一風路と、この第一風路内に設けられた処理用送風機と、前記第一風路内で前記除湿素子の下流側で分岐する第二風路と、前記第二風路内に設けられ、前記除湿素子の上流側に設けられた再生ヒータと、前記第二風路の他端に設けられた室外排気口と、前記本体内に設けられた外気吸込口と、この外気吸込口からの空気が通過するための第三風路と、この第三風路内に設けられた給気用送風機と、前記第三風路の他端に設けられた外気給気口と、前記給気用送風機の下流側で前記第三風路から分岐し、前記処理用送風機の上流側の第一風路に合流する第四風路と、前記第ニ風路と前記第三風路が交わる部分に設けられた顕熱交換素子と、前記第二風路内に設けられた第一ダンパと、前記第三風路と前記第四風路の分岐部分に設けられた第二ダンパとしたものである。
【0013】
本発明によれば、再生ヒータで高温にあたためられた空気と、室外の温度の低い空気が熱交換により、再生ヒータで高温にあたためられた空気の顕熱分が、室外の温度の低い空気に移行し室内に給気されるため、室内への温度の低い空気の流入を防止することができ、室内の空調負荷の低減ができる除湿熱交換気扇が得られる。
【0014】
また他の手段は、室外の温度を検知する室外温度検知手段と、室内の温度を検知する室内温度検知手段と、前記室外温度検知手段と前記室内温度検知手段から出力された信号から室内温度と室外温度の大小を比較する温度比較手段と、この温度比較手段から出力された信号から前記処理用送風機と前記給気用送風機を前記第一ダンパと前記第二ダンパの動作を制御する信号を出力する換気制御手段を備え、室内温度が室外温度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパを閉鎖状態、第二ダンパを開放状態とし、室外温度よりも温度の高い室内空気を前記処理用送風機で顕熱交換素子を通して室外に排気するとともに、前記給気用送風機により室外空気を前記顕熱交換素子を通じて室内に給気したものである。
【0015】
そして本発明によれば、室外の温度の低い空気を積極的に取り入れ、かつ室内室内空気を排気するという同時給排機能により、室内の絶対湿度を低下させることができ、再生ヒータの運転はなく、処理用送風機と給気用送風機の運転に必要なエネルギのみで室内の湿度低下がはかれるため、消費電力の低減ができる除湿熱交換気扇が得られる。
【0016】
また他の手段は、室外の温度を検知する室外温度検知手段と、前記室外温度検知手段から出力された信号と、あらかじめ設定された温度の大小を比較する設定温度比較手段と、この設定温度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する温度制御手段を備え、室外温度があらかじめ設定温度比較手段で設定された温度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパを開放状態、第二ダンパを閉鎖状態とし、室内空気を除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は顕熱交換素子を通して室外に排気され、前記給気用送風機により室外空気は前記顕熱交換素子を通らずに第四風路を通過し、前記処理用送風機の上流側に給気したものである。
【0017】
そして本発明によれば、給気空気による室内温度上昇を防止することができ、室外空気条件に応じた適切な給気動作ができる除湿熱交換気扇が得られる。
【0018】
また他の手段は、室内の湿度を検知する室内湿度検知手段と、室内湿度検知手段から出力された信号から、あらかじめ設定された湿度との大小を比較する湿度比較手段と、この湿度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する除湿制御手段を備え、室内湿度があらかじめ設定された湿度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパ、第二ダンパを共に開放状態にし、かつギヤモータを作動させて除湿素子を回転させるとともに、再生ヒータを通電状態とし、室内空気を前記除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は前記顕熱交換素子通して室外に排気され、前記給気用送風機からの室外空気は前記顕熱交換素子を通過して室内に給気されるようにしたものである。
【0019】
そして本発明によれば、室内の結露や微生物汚染の防止が可能となり、また建物や人にとって健康で快適な室内空間の実現が出来る除湿熱交換気扇が得られる。
【0020】
また他の手段は、回転制御手段を備え、回転制御手段から出力された信号によりギヤモータの回転を断続回転運転させる機能としたものである。
【0021】
そして本発明によれば、ギヤモータの長寿命化ができ、従来のギヤモータでは解決できなかった長寿命、小型化、低コスト型が実現できる除湿熱交換気扇が得られる。
【0022】
【発明の実施の形態】
本発明は、本体内に設けられた円筒上の除湿素子と、この除湿素子を回転させるためのギヤモータと、このギヤモータの回転軸に直結されたプーリと、このプーリの回転を前記除湿素子に伝達させるための駆動ベルトと、前記本体内に設けられた室内吸込口と室内排気口と、前記室内吸込み口から前記除湿素子を通り、前記室内排気口とを連通する第一風路と、この第一風路内に設けられた処理用送風機と、前記第一風路内で前記除湿素子の下流側で分岐する第二風路と、前記第二風路内に設けられ、前記除湿素子の上流側に設けられた再生ヒータと、前記第二風路の他端に設けられた室外排気口と、前記本体内に設けられた外気吸込み口と、この外気吸込口からの空気が通過するための第三風路と、この第三風路内に設けられた給気用送風機と、前記第三風路の他端に設けられた外気給気口と、前期給気用送風機の下流側で前期第三風路から分岐し、前記処理用送風機の上流側の第一風路に合流する第四風路と、前記第ニ風路と前記第三風路が交わる部分に設けられた顕熱交換素子と、前記第二風路内に設けられた第一ダンパと、前記第三風路と前記第四風路の分岐部分に設けられた第二ダンパを備えたものであり、再生ヒータで高温にあたためられた空気と、室外の温度の低い空気が熱交換により、再生ヒータで高温にあたためられた空気の顕熱分が、室外の温度の低い空気に移行し室内に給気されるため、室内への温度の低い空気の流入を防止することができ、室内の空調負荷の低減ができるという作用を有する。
【0023】
また、上記構成に室外の温度を検知する室外温度検知手段と、室内の温度を検知する室内温度検知手段と、前記室外温度検知手段と前記室内温度検知手段から出力された信号から室内温度と室外温度の大小を比較する温度比較手段と、この温度比較手段から出力された信号から前記処理用送風機と前記給気用送風機を前記第一ダンパと前記第二ダンパの動作を制御する信号を出力する換気制御手段を備え、室内温度が室外温度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパを閉鎖状態、第二ダンパを開放状態に備え、室外温度よりも温度の高い室内空気を前記処理用送風機で顕熱交換素子を通して室外に排気するとともに、前記給気用送風機により室外空気を前記顕熱交換素子を通じて室内に給気してなるものであり、室内外の温度を比較することで、室外の温度の低い空気を積極的に取り入れ、かつ室内室内空気を排気するという同時給排機能により、室内の絶対湿度を低下させることができ、かつ再生ヒータの運転はなく、処理用送風機と給気用送風機の運転に必要なエネルギのみで室内の湿度低下がはかれ消費電力の低減ができるという作用を有する。
【0024】
また、上記構成に室外の温度を検知する室外温度検知手段と、前記室外温度検知手段から出力された信号と、あらかじめ設定された温度の大小を比較する設定温度比較手段と、この設定温度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する温度制御手段を備え、室外温度があらかじめ設定温度比較手段で設定された温度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパを開放状態、第二ダンパを閉鎖状態に備え、室内空気を除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は顕熱交換素子を通して室外に排気され、前記給気用送風機により室外空気は前記顕熱交換素子を通らずに第四風路を通過し、前記処理用送風機の上流側に給気されてなるものであり、給気空気による室内温度上昇を防止と、室外空気条件に応じた適切な給気動作ができ、室内空調負荷の低減することができるという作用を有する。
【0025】
また、上記構成に室内の湿度を検知する室内湿度検知手段と、室内湿度検知手段から出力された信号から、あらかじめ設定された湿度との大小を比較する湿度比較手段と、この湿度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する除湿制御手段を備え、室内湿度があらかじめ設定された湿度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパ、第二ダンパを共に開放状態にし、かつギヤモータを作動させて除湿素子を回転させるとともに、再生ヒータを通電状態に備え、室内空気を前記除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は前記顕熱交換素子通して室外に排気され、前記給気用送風機からの室外空気は前記顕熱交換素子を通過して室内に給気されるようにしてなるものであり、室内の結露や微生物汚染の防止が可能となり、また建物や人にとって健康で快適な室内空間の実現ができるという作用を有する。
【0026】
また、上記構成に回転制御手段を備え、回転制御手段から出力された信号によりギヤモータの回転を断続回転運転させる機能を備えたものであり、ギヤモータの長寿命化ができるという作用を有する。
【0027】
以下、本発明の実施例について図面を参照しながら説明する。
【0028】
【実施例】
(実施例1)
従来例と同一部分は同一番号を付し、詳細の説明は省略する。
【0029】
図1に示すように、円筒状の除湿素子101は、シリガゲルでできたコルゲート構造で、第一風路1と第二風路2で処理側と再生側に分割する。この処理側の第一風路1に処理用送風機102を設け、室内の高湿空気を室内吸込口3から吸い込み除湿素子101に送風し水分を吸湿し乾燥空気を室内排気口4より排気する。再生側の第二風路2は、除湿素子101の下流側で第一風路1から分岐し、第二風路2側の除湿素子101の上流側に再生ヒータ104を設け、処理用送風機102から送風された空気が第一風路1から分岐し、再生ヒータ104で70〜200℃まで加熱され、除湿素子101の再生側に送風される。そして、加熱され送風された空気は、第二風路2の下流側にある顕熱交換素子5を通り、室外排気口6より室外に排気される。ギヤモータ7にプーリ8が接続され、ギヤモータ7の回転をプーリ8に伝達され、プーリ8の回転は、プーリ8と除湿素子101を接続している駆動ベルト9により除湿素子101に回転が伝達される構成となっている。
【0030】
なお、除湿素子101の材質は、ゼオライトでも同等の効果が得られる。
また、再生ヒータ104は、セラミックヒータを用いているが、シーズヒータ、ニクロムヒータ、赤外線ヒータ、コイルヒータでもよく、形状は問わない。
【0031】
上記構成により、以下その動作について説明する。
室内の高湿空気は、処理用送風機102で風路が分割されている除湿素子101処理部分で吸湿され乾燥空気として室内に排気される。水分飽和状態となって吸湿性能が劣化した除湿素子101の再生部分では、再生ヒータ104で70〜200℃で加熱されて水分が脱離し再生される。除湿素子の回転数は、10〜50rphで回転しているため、上述した処理(吸湿)と再生を連続的にしかも繰返し行うことができる。
【0032】
そして、再生され加熱された第二風路2中の空気は、顕熱交換素子5で室外から外気吸込口10を通じて給気用送風機11で給気された新鮮な空気と熱交換され、室外の空気は外気給気口12から室内に給気される。
【0033】
なお、第一風路1内の第一ダンパ13および、第三風路14内の第二ダンパ15はともに開放状態に固定される。
【0034】
このように本発明の第1実施例の除湿熱交換気扇によれば、再生ヒータ104で高温にあたためられた空気と、室外の温度の低い空気が熱交換により、再生ヒータ104で高温にあたためられた空気の顕熱分が、室外の温度の低い空気に移行し室内に給気されるため、室内への温度の低い空気の流入を防止することができ、室内の空調負荷の低減が可能となる。
【0035】
(実施例2)
従来例と同一部分は同一番号を付し、詳細の説明は省略する。
【0036】
図2および図3に示すように、第三風路14内に室外温度検知手段16が、第一風路1内に室内温度検知手段17がそれぞれ設けられている。そして、室外温度検知手段16、室内温度検知手段17は温度比較手段18にそれぞれ接続され、室外温度検知手段16、室内温度検知手段17からの出力信号を受け取ること(入力)ができる構造となっている。また、温度比較手段18と換気制御手段19は接続されており、温度比較手段18から出力された信号を受け取る(入力)ことが可能な構造となっている。そして、換気制御手段19は、処理用送風機102、給気用送風機11、第一ダンパ13、第二ダンパ15に接続されており、換気制御手段19からの信号を受け取る(入力)ことができる構造となっている。
【0037】
なお、室外温度検出手段16、室内温度検出手段17は、ともにPt100Ω/0.2級の温度センサ(0−50℃、精度±0.5℃)を用いているが、低コストのサーミスタでも同様の効果が得られる。
【0038】
上記構成により、以下その動作について説明する。
室内温度検知手段17および室外温度検知手段16で室内および室外の温度を計測する。そして、計測された各々の温度を信号として温度比較手段18に入力する。そして、温度比較手段18で室内温度と室外温度を比較して、室外温度のほうが低いと判定した場合、処理用送風機102、給気用送風機11を作動させるとともに、第一ダンパ13を閉鎖状態、第二ダンパ15を開放状態にすると、室外温度よりも温度の高い室内空気を処理用送風機102で顕熱交換素子5を通して室外に排気するとともに、給気用送風機11により室外空気を顕熱交換素子5を通じて室内に給気する。このとき、顕熱交換素子5中で室内空気と室外空気の顕熱分だけ熱交換することで、室外の低湿空気はそのまま室内に給気され、温度のみ熱回収することができるので、室内の空調負荷の影響はない。
【0039】
このように本発明の第2実施例の除湿熱交換気扇によれば、室内外の温度を比較することで、室外の温度の低い空気を積極的に取り入れ、かつ室内室内空気を排気するという同時給排機能により、室内の絶対湿度を低下させることができ、かつ再生ヒータ104の運転はなく、処理用送風機102と給気用送風機11の運転に必要なエネルギのみで室内の湿度低下がはかれ消費電力の低減が可能となる。
【0040】
(実施例3)
従来例と同一部分は同一番号を付し、詳細の説明は省略する。
【0041】
図4および図5および図6および図7に示すように、第三風路14内に室外温度検知手段16が設けられている。そして、室外温度検知手段16は設定温度比較手段20にそれぞれ接続され、室外温度検知手段16からの出力信号を受け取ること(入力)ができる構造となっている。また、設定温度比較手段20と温度制御手段21は接続されており、設定温度比較手段20から出力された信号を受け取る(入力)ことが可能な構造となっている。そして、温度制御手段21は、処理用送風機102、給気用送風機11、第一ダンパ13、第二ダンパ15、再生ヒータ104に接続されており、温度制御手段21からの信号を受け取る(入力)ことができる構造となっている。
【0042】
なお、室外温度検出手段16は、Pt100Ω/0.2級の温度センサ(0−50℃、精度±0.5℃)を用いているが、低コストのサーミスタでも同様の効果が得られる。
【0043】
また、設定温度比較手段20にはあらかじめ設定温度15℃を入力しておく。
この15℃は、図7に示すように通季にわたり室外気温のデータを整理し、冷房期(夏季)、暖房期(冬季)、中間期(春・秋)の室外気温の境目の値となり、顕熱交換時での熱のやりとりの上で空調負荷にならない領域の温度として採用する。但し、地域性も考慮して、任意に設定温度値を変更できるものとする。
【0044】
上記構成により、以下その動作について説明する。
室外温度検知手段16で室外温度を計測する。そして、計測された温度を信号として設定温度比較手段20に入力する。そして、設定温度比較手段20で室外温度とあらかじめ設定された設定温度(15℃)を比較して、室外温度のほうが高いと判定した場合、処理用送風機102、給気用送風機11を作動させるとともに、第一ダンパ13を開放状態、第二ダンパ15を閉鎖状態にするとともに再生ヒータ104を作動させる。そして、室内空気を除湿素子101で除湿するとともに、再生ヒータ104で加熱された湿気を含んだ空気は顕熱交換素子5を通して室外に排気される。そして、給気用送風機11により室外空気は顕熱交換素子5を通らずに第四風路22を通過し、処理用送風機102の上流側に給気される。
【0045】
このとき温度の高い室外空気は顕熱交換素子5を通らずに処理用送風機102の上流側に送風されるので、湿気が高く温度も高い室外空気をそのまま室内に導入することがないので、室内の温度上昇を防止することができ、かつ湿気の負荷も除湿素子101で除湿されてから室内に導入されることとなる。
【0046】
なお、設定温度が室外温度よりも高いときは、第二ダンパ15を開放状態とする。このときは、給気用送風機11から導入された室外空気は顕熱交換素子5を通り、再生ヒータ104で加熱された室内空気の顕熱分を熱回収し、熱回収された顕熱分だけ室外空気は温度上昇し室内側に給気される。
【0047】
このように本発明の第3実施例の除湿熱交換気扇によれば、給気空気による室内温度上昇を防止することができ、かつ、湿気の負荷も除湿素子101で除湿されてから室内に導入されることから、室外空気条件に応じた適切な給気動作が可能となる。
【0048】
(実施例4)
従来例と同一部分は同一番号を付し、詳細の説明は省略する。
【0049】
図8および図9および図10に示すように、第一風路1内に室内湿度検知手段21が設けられている。そして、室内湿度検知手段23は湿度比較手段24に接続され、室内湿度検知手段23からの出力信号を受け取ること(入力)ができる構造となっている。また、湿度比較手段24と除湿制御手段25は接続されており、湿度比較手段24から出力された信号を受け取る(入力)ことが可能な構造となっている。そして、除湿制御手段25は、処理用送風機102、給気用送風機11、第一ダンパ13、第二ダンパ15、再生ヒータ104に接続されており、除湿制御手段25からの信号を受け取る(入力)ことができる構造となっている。
【0050】
なお、室内湿度検知手段23は、高分子湿度センサ(0−100%RH、精度±0.5%RH)を用いる。
【0051】
また、湿度比較手段24にはあらかじめ設定湿度70%RHを入力しておく。
この70%RHは、図10に示すように、室内に放置したもちにカビが繁殖する温湿度範囲のデータから算出し、このデータを用いて、70%以下であれば室内でのカビ繁殖が抑えられるということから、カビが繁殖するかしないかの範囲のしきい値をして採用する。
【0052】
但し、室内の環境の違いや、使用者の判断により任意に設定湿度値を変更できるものとする。
【0053】
上記構成により、以下その動作について説明する。
室内湿度検知手段23で室内湿度を計測する。そして、計測された湿度を信号として湿度比較手段24に入力する。そして、湿度比較手段24で室内湿度とあらかじめ設定された設定湿度(70%RH)を比較して、室内湿度のほうが高いと判定した場合、処理用送風機102、給気用送風機11を作動させるとともに、第一ダンパ11開放状態にするとともに再生ヒータ104を作動させる。そして、室内空気を除湿素子101で除湿するとともに、再生ヒータで加熱された湿気を含んだ空気はで顕熱交換素子5を通して室外に排気される。
【0054】
このとき、室外温度検知手段16から検出された温度が設定温度15℃以上のときは、第二ダンパ15を閉鎖状態にして給気用送風機11からの室外空気は顕熱交換素子5を通過せずに第四風路22を通過して処理用送風機102の上流側に給気されるようにする。また、室外温度検知手段16から検出された温度が設定温度15℃以下のときは、第二ダンパ15を開放状態にして給気用送風機11からの室外空気は顕熱交換素子5を通過し、再生ヒータ104で加熱された空気の顕熱分を熱回収して第三風路14を通過して室内に給気されるようにする。
【0055】
ここで、省エネルギ運転での室内除湿運転について説明する。
まず室内および室外温度をそれぞれ室内温度検知手段17、室外温度検知手段16で検知し、各々の信号を温度比較手段18で比較し、室外温度の方が低いとき、処理用送風機102と給気用送風機11と第一ダンパ13と第二ダンパ15を作動させて室内空気と室外空気とを同時給排させることにより換気除湿させて室内の湿度低下をはかる。このとき、設定温度比較手段20にあらかじめ入力されている設定温度が15℃以下の場合は第二ダンパ15を開放状態にし給気空気を顕熱交換素子5内を通過させて熱回収しながら室内に給気する。また、設定温度が15℃以上のときは、第二ダンパ15を閉鎖状態にして、顕熱交換素子5を通過しないようにして室外空気を処理用送風機102の上流側に給気する。そして、室内湿度検知手段23より、室内湿度が70%RH以上になれば、第一ダンパ13を開放状態にしかつ再生ヒータ104、ギヤモータ7を作動させて、除湿素子101により70%RH以上の室内空気中の湿気分を吸湿して乾燥空気のみ室内に排出するようにする。
【0056】
なお、この場合でも室外温度と設定温度を逐次比較しながら第二ダンパ15を開放または閉鎖しながら室外空気を顕熱交換するかどうか判断しながら室内に給気するものとする。
【0057】
このように本発明の第4実施例の除湿熱交換気扇によれば、除湿熱交換気扇の運転モードを室内湿度検知および、室内外の温度検知により換気除湿もしくは、除湿素子101による除湿手段、そして、顕熱交換による熱回収を実施することにより、室内空調負荷を抑え、除湿動作の低入力化を実現させ、自動運転による室内の結露や微生物汚染の防止が可能となり、また建物や人にとって健康で快適な室内空間の実現ができる。
【0058】
(実施例5)
従来例と同一部分は同一番号を付し、詳細の説明は省略する。
【0059】
図11に示すように、回転数制御手段26は、ギヤモータ7に接続されており、回転数制御手段26からの出力された信号をうけとることができる構造となっている。また、回転数制御手段26は、ギヤモータ7に対して、瞬時停止および瞬時起動可能でかつ、断続運転が制御できる構造となっている。
【0060】
上記構成により、以下その動作について説明する。
除湿素子101の回転数制御について、除湿素子が1回転に要する時間を連続運転時と同一になるように瞬時起動時・停止時の回転数制御と、起動時・停止時の時間タイミングを制御し、除湿素子101を回転させる。
【0061】
除湿素子が1回転する時間が同一であれば、連続回転でも断続回転でも同一の除湿能力が得られることから、例えば、連続回転時で45rphの運転制御を実施している場合、1秒運転し2秒停止の断続タイミングで回転数を135rphにすると、除湿素子が1回転する時間は同一となり、除湿能力は連続回転時と同一で、ギヤモータ7の総運転時間は連続運転時に比べ3倍の寿命が稼げることとなる。
【0062】
なお、起動時・停止時の回転数制御、起動時・停止時の時間タイミングについては、設定条件を任意に変更できるものとする。
【0063】
このように本発明の第5実施例の除湿熱交換気扇によれば、ギヤモータ7の連続運転時間を断続運転することにより、ギヤモータの総運転時間を稼ぎ、ギヤモータの長寿命化が可能となり、同等の連続運転時間可能な現行のギヤモータよりも小型化、低コスト化が実現できる。
【0064】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、温度の低い空気の流入を防止することができ、また室内の空調負荷の低減ができるという効果のある除湿熱交換気扇を提供できる。
【0065】
また、室外の温度の低い空気を積極的に取り入れ、かつ室内室内空気を排気するという同時給排機能により、室内の絶対湿度を低下させることができ、また消費電力の低減ができるという効果のある除湿熱交換気扇を提供できる。
【0066】
また、給気空気による室内温度上昇を防止することができ、室外空気条件に応じた適切な給気動作ができるという効果のある除湿熱交換気扇が提供できる。
【0067】
また、室内の結露や微生物汚染の防止が可能となり、また建物や人にとって健康で快適な室内空間の実現ができるという効果のある除湿熱交換気扇を提供できる。
【0068】
また、ギヤモータの長寿命化ができ、従来のギヤモータでは解決できなかった長寿命、小型化、低コスト型が実現できるという効果のある除湿熱交換気扇を提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1の除湿熱交換気扇の構成図
【図2】本発明の実施例2の除湿熱交換気扇の構成図
【図3】 同第2実施例の除湿熱交換気扇の制御フローチャート
【図4】 本発明の実施例3の除湿熱交換気扇の構成図
【図5】同第3実施例の除湿熱交換気扇の制御フローチャート
【図6】同第3実施例の除湿熱交換気扇の動作モード図
【図7】通季にわたる室外温度結果を示す図
【図8】本発明の実施例4の除湿熱交換気扇の構成図
【図9】同第4実施例の除湿熱交換気扇の制御フローチャート
【図10】もちについてのカビが繁殖する温度と湿度の範囲図
【図11】本発明の実施例5の除湿熱交換気扇の構成図
【図12】従来の乾式除湿機の構成図
【符号の説明】
1 第一風路
2 第二風路
3 室内吸込口
4 室内排気口
5 顕熱交換素子
6 室外排気口
7 ギヤモータ
8 プーリ
9 駆動ベルト
10 外気吸込口
11 給気用送風機
12 外気給気口
13 第一ダンパ
14 第三風路
15 第二ダンパ
16 室外温度検知手段
17 室内温度検知手段
18 温度比較手段
19 換気制御手段
20 設定温度比較手段
21 温度制御手段
22 第四風路
23 室内湿度検知手段
24 湿度比較手段
25 除湿制御手段
26 回転数制御手段
101 除湿素子
102 処理用送風機
104 再生ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying heat exchange fan in the field of air conditioning technology that is used as a means for dehumidifying moisture in indoor high-humidity air and prevents condensation in indoor air or indoor ceilings and wall surfaces.
[0002]
[Prior art]
Conventionally, this type of dry-type dehumidifier has been known as disclosed in JP-A-6-63345.
[0003]
Hereinafter, the dry dehumidifier will be described with reference to FIG. As shown in the figure, the silica gel dehumidifying element 101 has a honeycomb structure or a corrugated structure and has a rotating cylindrical shape.
[0004]
A processing blower 102 for bringing high-humidity air into contact with the dehumidifying element 101, a regenerating blower 103 for regenerating the dehumidifying element 101 that has absorbed moisture, a regenerating blower 103, and a dehumidifying element 101 are provided with a heater 104 is provided.
[0005]
In the above configuration, the high-humidity air is brought into contact with the dehumidifying element 101 rotating at 10 to 50 rph by the processing blower 102, and the dehumidified air from which moisture has been removed by adsorbing moisture in the high-humidity air is blown into the room . Then, in order to regenerate the dehumidifying element 101 on which moisture has been adsorbed, the regenerated air sent from the regenerating blower 103 is heated to 120 to 140 ° C. by the heater 104 and brought into contact with the dehumidifying element 101, so The dehumidifying element 101 is regenerated by discharging.
[0006]
[Problems to be solved by the invention]
In such a conventional dry type dehumidifier, since the amount of air released to the outside flows into the room from the outside, for example, in the winter season, the temperature of the room decreases due to the flow of low-temperature air. There is a problem that the air conditioning load increases, and it is required to reduce the air conditioning load.
[0007]
In addition, there is a problem of high power consumption during heater regeneration, and establishment of a dehumidification (humidification) technique that does not require an electricity bill is required from the viewpoint of energy saving.
[0008]
In addition, when air is introduced into the room by heat exchange with the air supplied from outside using a heat source during heater regeneration, hot outdoor air and air heated by the regenerative heater are heated in summer. There is a problem that the room temperature further increases and the air conditioning load increases due to the exchange and supply to the room, and an appropriate supply operation according to the outdoor air condition is required.
[0009]
In addition, the increase in indoor humidity causes problems such as condensation damage, microbial and other buildings and health damage, and there is a demand for a comfortable environment for buildings and people.
[0010]
In addition, there is a problem that if the gear motor for rotating the dehumidifying element at a constant rotational speed is reduced in size and cost, there is a problem that the durability life is shortened. Has been requested.
[0011]
The present invention solves such conventional problems, can reduce the air conditioning load, can perform energy saving dehumidification, can perform an air supply operation according to air conditions, and can realize a comfortable environment for people and buildings. It is possible to provide a long-life gear motor.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the dehumidifying heat exchange air fan of the present invention includes a dehumidifying element on a cylinder provided in the main body, a gear motor for rotating the dehumidifying element, and a pulley directly connected to the rotating shaft of the gear motor. A drive belt for transmitting the rotation of the pulley to the dehumidifying element, an indoor suction port and an indoor exhaust port provided in the main body, and the indoor exhaust port from the indoor suction port through the dehumidifying element. A first air passage communicating with the first air passage, a processing fan provided in the first air passage, a second air passage branching downstream of the dehumidifying element in the first air passage, and the second air passage A regenerative heater provided in the air path and provided on the upstream side of the dehumidifying element; an outdoor exhaust port provided in the other end of the second air path; and an outdoor air inlet provided in the main body; A third air passage through which air from the outside air inlet passes. An air supply fan provided in the third air passage, an outside air supply port provided at the other end of the third air passage, and a branch from the third air passage on the downstream side of the air supply fan A fourth air passage that merges with the first air passage on the upstream side of the processing blower, a sensible heat exchange element provided at a portion where the second air passage and the third air passage intersect, and the second air passage A first damper provided in the air passage and a second damper provided at a branch portion of the third air passage and the fourth air passage.
[0013]
According to the present invention, the air heated to a high temperature by the regenerative heater and the air having a low outdoor temperature are subjected to heat exchange, and the sensible heat of the air heated to a high temperature by the regenerative heater is converted into the air having a low outdoor temperature. Since the air is transferred and supplied into the room, the dehumidifying heat exchange fan can be obtained, which can prevent the flow of air having a low temperature into the room and can reduce the air conditioning load in the room.
[0014]
The other means includes an outdoor temperature detecting means for detecting the outdoor temperature, an indoor temperature detecting means for detecting the indoor temperature, and the room temperature from the signals output from the outdoor temperature detecting means and the indoor temperature detecting means. Temperature comparison means for comparing the magnitude of the outdoor temperature, and a signal for controlling the operation of the first damper and the second damper for the processing blower and the air supply blower from the signal outputted from the temperature comparison means When the indoor temperature is higher than the outdoor temperature, the processing blower and the supply blower are operated, the first damper is closed, and the second damper is opened. The indoor air having a temperature higher than the outdoor temperature is exhausted to the outside through the sensible heat exchange element by the processing fan, and the outdoor air is supplied to the room through the sensible heat exchange element by the air supply fan. It is a thing.
[0015]
According to the present invention, the indoor indoor humidity can be lowered by the simultaneous supply and discharge function of actively taking in air having a low outdoor temperature and exhausting indoor air, and there is no operation of the regenerative heater. Since the indoor humidity is reduced only by the energy required for the operation of the processing blower and the air supply blower, a dehumidifying heat exchange air fan capable of reducing power consumption is obtained.
[0016]
The other means includes an outdoor temperature detecting means for detecting an outdoor temperature, a signal output from the outdoor temperature detecting means, a set temperature comparing means for comparing the magnitude of a preset temperature, and the set temperature comparison. Temperature control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regenerative heater from the signal output from the means; When the outdoor temperature is higher than the temperature set in advance by the set temperature comparison means, the processing blower and the supply blower are operated, the first damper is opened, and the second damper is closed. The indoor air is dehumidified by the dehumidifying element, and the air containing moisture heated by the regenerative heater is exhausted to the outside through the sensible heat exchange element, and the outdoor air passes through the sensible heat exchange element by the air supply fan. Without passing through the fourth air passage and supplying air to the upstream side of the processing fan. It is a thing.
[0017]
And according to this invention, the indoor temperature rise by supply air can be prevented, and the dehumidification heat exchange air fan which can perform an appropriate supply operation according to outdoor air conditions is obtained.
[0018]
Other means include an indoor humidity detecting means for detecting indoor humidity, a humidity comparing means for comparing the magnitude of the humidity set in advance with a signal output from the indoor humidity detecting means, and the humidity comparing means. A dehumidification control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regenerative heater from the output signal; When the humidity is higher than the preset humidity, the processing fan and the air supply fan are operated, the first damper and the second damper are both opened, and the dehumidifying element is rotated by operating the gear motor. The regenerative heater is energized, the room air is dehumidified by the dehumidifying element, and the air heated by the regenerative heater is converted into the sensible heat exchange element. The The outdoor air from the air supply fan passes through the sensible heat exchange element and is supplied into the room.
[0019]
According to the present invention, it is possible to prevent dew condensation and microbial contamination in the room, and to obtain a dehumidifying heat exchange air fan that can realize a healthy and comfortable indoor space for buildings and people.
[0020]
The other means is provided with a rotation control means and has a function of intermittently rotating the gear motor by a signal output from the rotation control means.
[0021]
According to the present invention, it is possible to obtain a dehumidifying heat exchange fan that can extend the life of the gear motor and can realize a long life, downsizing, and low cost that cannot be solved by the conventional gear motor.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a dehumidifying element on a cylinder provided in a main body, a gear motor for rotating the dehumidifying element, a pulley directly connected to a rotating shaft of the gear motor, and transmission of rotation of the pulley to the dehumidifying element. And a first air passage communicating with the indoor exhaust port through the dehumidifying element from the indoor intake port, and a first air passage provided in the main body. A processing blower provided in one air passage, a second air passage branched downstream of the dehumidifying element in the first air passage, and provided upstream in the second air passage and upstream of the dehumidifying element A regenerative heater provided on the side, an outdoor exhaust port provided at the other end of the second air passage, an outside air inlet provided in the main body, and air from the outside air inlet for passing through Third air passage and air supply air supply in this third air passage And an outside air supply port provided at the other end of the third air passage, a first air passage on the upstream side of the processing fan, and a branch from the third air passage on the downstream side of the air blower for the previous period. A sensible heat exchange element provided at a portion where the second air passage and the third air passage intersect, a first damper provided in the second air passage, A regenerative heater is provided with a second damper provided at a branch portion of the three air passages and the fourth air passage, and the air heated to a high temperature by the regenerative heater and the air having a low outdoor temperature are exchanged by heat exchange. Since the sensible heat of the air heated to a high temperature is transferred to the outdoor low-temperature air and supplied to the room, it is possible to prevent the inflow of the low-temperature air into the room. It has the effect | action that it can reduce.
[0023]
Further, in the above configuration, the outdoor temperature detecting means for detecting the outdoor temperature, the indoor temperature detecting means for detecting the indoor temperature, and the signals output from the outdoor temperature detecting means and the indoor temperature detecting means, the indoor temperature and the outdoor temperature are detected. A temperature comparison means for comparing the magnitudes of the temperatures, and a signal for controlling the operation of the first damper and the second damper for the processing fan and the supply fan from the signal output from the temperature comparison means. Ventilation control means is provided, and when the room temperature is higher than the outdoor temperature, the processing blower and the supply blower are operated, the first damper is closed, and the second damper is opened. The indoor air having a temperature higher than the outdoor temperature is exhausted to the outside through the sensible heat exchange element by the processing fan, and the outdoor air is supplied to the room through the sensible heat exchange element by the air supply fan. By comparing the indoor and outdoor temperatures, the indoor indoor humidity can be lowered by the simultaneous supply and discharge function of actively taking in air with low outdoor temperatures and exhausting indoor indoor air. In addition, there is no operation of the regenerative heater, and there is an effect that the humidity in the room is lowered and the power consumption can be reduced only by the energy required for the operation of the processing fan and the air supply fan.
[0024]
Further, in the above configuration, an outdoor temperature detecting means for detecting the outdoor temperature, a signal output from the outdoor temperature detecting means, a set temperature comparing means for comparing the magnitude of a preset temperature, and the set temperature comparing means Temperature control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regenerative heater from the signal output from When the temperature is higher than the temperature set in advance by the set temperature comparison means, the processing fan and the supply fan are operated, the first damper is opened, and the second damper is closed. The indoor air is dehumidified by the dehumidifying element, and the air containing moisture heated by the regenerative heater is exhausted to the outside through the sensible heat exchange element, and the outdoor air passes through the sensible heat exchange element by the air supply fan. Without passing through the fourth air passage and being supplied to the upstream side of the processing fan Therefore, it is possible to prevent an increase in the indoor temperature due to the supply air, to perform an appropriate supply operation according to the outdoor air condition, and to reduce the indoor air conditioning load.
[0025]
In addition, an indoor humidity detecting means for detecting indoor humidity in the above configuration, a humidity comparing means for comparing the magnitude of a preset humidity with a signal output from the indoor humidity detecting means, and an output from the humidity comparing means And a dehumidification control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regenerative heater from the generated signal. When the humidity is higher than the preset humidity, the processing fan and the supply fan are operated, the first damper and the second damper are both opened, and the gear motor is operated to rotate the dehumidifying element. The regenerative heater is energized, the room air is dehumidified by the dehumidifying element, and the air containing the moisture heated by the regenerative heater is the sensible heat exchange element The The outdoor air from the air supply fan passes through the sensible heat exchange element and is supplied to the room indoors, which can prevent indoor condensation and microbial contamination. In addition, it has the effect of realizing a healthy and comfortable indoor space for buildings and people.
[0026]
Further, the above-described configuration is provided with a rotation control means, and has a function of intermittently rotating the gear motor by a signal output from the rotation control means, and has the effect of extending the life of the gear motor.
[0027]
Embodiments of the present invention will be described below with reference to the drawings.
[0028]
【Example】
Example 1
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0029]
As shown in FIG. 1, a cylindrical dehumidifying element 101 has a corrugated structure made of silica gel, and is divided into a processing side and a regeneration side by a first air passage 1 and a second air passage 2. A processing blower 102 is provided in the first air passage 1 on the processing side, sucks indoor high-humidity air from the indoor suction port 3, blows it to the dehumidifying element 101, absorbs moisture, and exhausts dry air from the indoor exhaust port 4. The second air path 2 on the regeneration side branches from the first air path 1 on the downstream side of the dehumidifying element 101, and a regeneration heater 104 is provided on the upstream side of the dehumidifying element 101 on the second air path 2 side. The air blown from the first air passage 1 is branched from the first air passage 1, heated to 70 to 200 ° C. by the regenerative heater 104, and blown to the regeneration side of the dehumidifying element 101. The heated and blown air passes through the sensible heat exchange element 5 on the downstream side of the second air passage 2 and is exhausted from the outdoor exhaust port 6 to the outside. A pulley 8 is connected to the gear motor 7, and the rotation of the gear motor 7 is transmitted to the pulley 8. The rotation of the pulley 8 is transmitted to the dehumidifying element 101 by the drive belt 9 connecting the pulley 8 and the dehumidifying element 101. It has a configuration.
[0030]
Note that the same effect can be obtained even if the material of the dehumidifying element 101 is zeolite.
Further, although the regenerative heater 104 uses a ceramic heater, it may be a sheathed heater, a nichrome heater, an infrared heater, or a coil heater, and the shape is not limited.
[0031]
The operation of the above configuration will be described below.
The high humidity air in the room is absorbed by the processing portion of the dehumidifying element 101 where the air path is divided by the processing blower 102 and is exhausted into the room as dry air. In the regenerated portion of the dehumidifying element 101 in which moisture absorption performance has deteriorated due to moisture saturation, the regenerative heater 104 is heated at 70 to 200 ° C. to desorb and regenerate moisture. Since the rotation speed of the dehumidifying element rotates at 10 to 50 rph, the above-described treatment (moisture absorption) and regeneration can be performed continuously and repeatedly.
[0032]
Then, the regenerated and heated air in the second air passage 2 is heat-exchanged by the sensible heat exchange element 5 from fresh air supplied from the outside through the outside air suction port 10 by the air supply blower 11, Air is supplied into the room through the outside air supply port 12.
[0033]
Note that the first damper 13 in the first air passage 1 and the second damper 15 in the third air passage 14 are both fixed in an open state.
[0034]
Thus, according to the dehumidifying heat exchange air fan of the first embodiment of the present invention, the air heated to a high temperature by the regenerative heater 104 and the air having a low outdoor temperature are heated to a high temperature by the regenerative heater 104 by heat exchange. Since the sensible heat of the air is transferred to the outdoor low-temperature air and supplied to the room, the inflow of low-temperature air into the room can be prevented, and the indoor air conditioning load can be reduced. Become.
[0035]
(Example 2)
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0036]
As shown in FIGS. 2 and 3, an outdoor temperature detecting means 16 is provided in the third air passage 14, and an indoor temperature detecting means 17 is provided in the first air passage 1. The outdoor temperature detection means 16 and the indoor temperature detection means 17 are connected to the temperature comparison means 18, respectively, so that output signals from the outdoor temperature detection means 16 and the indoor temperature detection means 17 can be received (input). Yes. Further, the temperature comparison means 18 and the ventilation control means 19 are connected to each other so that a signal output from the temperature comparison means 18 can be received (input). The ventilation control means 19 is connected to the processing blower 102, the air supply blower 11, the first damper 13, and the second damper 15, and can receive (input) a signal from the ventilation control means 19. It has become.
[0037]
The outdoor temperature detecting means 16 and the indoor temperature detecting means 17 both use Pt100Ω / 0.2 class temperature sensors (0-50 ° C, accuracy ± 0.5 ° C), but the same applies to low-cost thermistors. The effect is obtained.
[0038]
The operation of the above configuration will be described below.
The indoor temperature detection means 17 and the outdoor temperature detection means 16 measure the indoor and outdoor temperatures. Then, each measured temperature is input to the temperature comparison means 18 as a signal. And when the indoor temperature and the outdoor temperature are compared by the temperature comparison means 18 and it is determined that the outdoor temperature is lower, the processing blower 102 and the air supply blower 11 are operated, and the first damper 13 is closed. When the second damper 15 is opened, indoor air having a temperature higher than the outdoor temperature is exhausted to the outside through the sensible heat exchange element 5 by the processing fan 102 and the outdoor air is sensible by the air supply fan 11. Air is supplied to the room through 5. At this time, by exchanging heat in the sensible heat exchange element 5 for the sensible heat of the indoor air and the outdoor air, the outdoor low-humidity air is supplied to the room as it is, and only the temperature can be recovered. There is no effect of air conditioning load.
[0039]
As described above, according to the dehumidifying heat exchange air fan of the second embodiment of the present invention, by comparing the indoor and outdoor temperatures, the outdoor indoor air is actively taken in and the indoor indoor air is exhausted simultaneously. With the supply / exhaust function, the indoor absolute humidity can be reduced, the regenerative heater 104 is not operated, and the indoor humidity is reduced only by the energy required for the operation of the processing fan 102 and the supply fan 11. The power consumption can be reduced.
[0040]
(Example 3)
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0041]
As shown in FIGS. 4, 5, 6, and 7, outdoor temperature detection means 16 is provided in the third air passage 14. The outdoor temperature detection means 16 is connected to the set temperature comparison means 20 and has a structure capable of receiving (inputting) an output signal from the outdoor temperature detection means 16. The set temperature comparison means 20 and the temperature control means 21 are connected to each other, and have a structure that can receive (input) a signal output from the set temperature comparison means 20. The temperature control means 21 is connected to the processing blower 102, the air supply blower 11, the first damper 13, the second damper 15, and the regenerative heater 104, and receives a signal from the temperature control means 21 (input). It has a structure that can.
[0042]
The outdoor temperature detecting means 16 uses a Pt100Ω / 0.2 grade temperature sensor (0-50 ° C., accuracy ± 0.5 ° C.), but the same effect can be obtained even with a low-cost thermistor.
[0043]
A preset temperature of 15 ° C. is input to the preset temperature comparison means 20 in advance.
As shown in FIG. 7, this 15 ° C. organizes outdoor temperature data throughout the season, and becomes the boundary value of the outdoor temperature during the cooling period (summer), heating period (winter), and intermediate period (spring / autumn), Adopted as the temperature in the area where air conditioning load does not occur due to heat exchange during sensible heat exchange. However, the set temperature value can be arbitrarily changed in consideration of regional characteristics.
[0044]
The operation of the above configuration will be described below.
The outdoor temperature detecting means 16 measures the outdoor temperature. Then, the measured temperature is input to the set temperature comparison unit 20 as a signal. When the set temperature comparison means 20 compares the outdoor temperature with a preset set temperature (15 ° C.) and determines that the outdoor temperature is higher, the processing blower 102 and the supply blower 11 are activated. The first damper 13 is opened, the second damper 15 is closed, and the regenerative heater 104 is operated. The room air is dehumidified by the dehumidifying element 101, and the air containing moisture heated by the regenerative heater 104 is exhausted to the outside through the sensible heat exchange element 5. Then, the outdoor air passes through the fourth air passage 22 without passing through the sensible heat exchange element 5 and is supplied to the upstream side of the processing fan 102 by the air supply fan 11.
[0045]
At this time, since the outdoor air having a high temperature is blown to the upstream side of the processing fan 102 without passing through the sensible heat exchange element 5, the outdoor air having a high humidity and a high temperature is not introduced into the room as it is. Thus, the humidity load is introduced into the room after being dehumidified by the dehumidifying element 101.
[0046]
When the set temperature is higher than the outdoor temperature, the second damper 15 is opened. At this time, the outdoor air introduced from the air supply blower 11 passes through the sensible heat exchange element 5, recovers the sensible heat of the indoor air heated by the regenerative heater 104, and only the sensible heat recovered. The outdoor air rises in temperature and is supplied indoors.
[0047]
As described above, according to the dehumidifying heat exchange air fan of the third embodiment of the present invention, it is possible to prevent the indoor temperature from rising due to the supplied air, and the humidity load is introduced into the room after being dehumidified by the dehumidifying element 101. Therefore, an appropriate air supply operation according to the outdoor air condition is possible.
[0048]
(Example 4)
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0049]
As shown in FIGS. 8, 9, and 10, indoor humidity detection means 21 is provided in the first air passage 1. The indoor humidity detecting means 23 is connected to the humidity comparing means 24 and has a structure capable of receiving (inputting) an output signal from the indoor humidity detecting means 23. Further, the humidity comparison unit 24 and the dehumidification control unit 25 are connected to each other, and have a structure capable of receiving (inputting) a signal output from the humidity comparison unit 24. The dehumidification control means 25 is connected to the processing fan 102, the air supply fan 11, the first damper 13, the second damper 15, and the regenerative heater 104, and receives a signal from the dehumidification control means 25 (input). It has a structure that can.
[0050]
The indoor humidity detection means 23 uses a polymer humidity sensor (0-100% RH, accuracy ± 0.5% RH).
[0051]
In addition, a set humidity of 70% RH is input to the humidity comparison unit 24 in advance.
As shown in FIG. 10, this 70% RH is calculated from data on the temperature and humidity range in which mold grows after being left indoors. Using this data, indoor mold propagation is less than 70%. Since it can be suppressed, a threshold value in the range of whether or not mold will breed is adopted.
[0052]
However, it is assumed that the set humidity value can be arbitrarily changed according to the difference in the indoor environment or the judgment of the user.
[0053]
The operation of the above configuration will be described below.
The room humidity is measured by the room humidity detecting means 23. Then, the measured humidity is input to the humidity comparison means 24 as a signal. When the humidity comparing means 24 compares the indoor humidity with a preset set humidity (70% RH) and determines that the indoor humidity is higher, the processing blower 102 and the air supply blower 11 are activated. Then, the first damper 11 is opened and the regenerative heater 104 is operated. The room air is dehumidified by the dehumidifying element 101 and the air containing moisture heated by the regenerative heater is exhausted to the outside through the sensible heat exchange element 5.
[0054]
At this time, when the temperature detected by the outdoor temperature detecting means 16 is equal to or higher than the set temperature 15 ° C., the second damper 15 is closed and the outdoor air from the air supply blower 11 does not pass through the sensible heat exchange element 5. Without passing through the fourth air passage 22, the air is supplied to the upstream side of the processing fan 102. Further, when the temperature detected from the outdoor temperature detection means 16 is a set temperature of 15 ° C. or less, the outdoor air from the air supply blower 11 with the second damper 15 opened is passed through the sensible heat exchange element 5, The sensible heat of the air heated by the regenerative heater 104 is recovered by heat and supplied to the room through the third air passage 14.
[0055]
Here, the indoor dehumidifying operation in the energy saving operation will be described.
First, the indoor temperature and the outdoor temperature are detected by the indoor temperature detecting means 17 and the outdoor temperature detecting means 16, respectively, and the respective signals are compared by the temperature comparing means 18. When the outdoor temperature is lower, the processing blower 102 and the supply air are supplied. The blower 11, the first damper 13, and the second damper 15 are operated to simultaneously supply and discharge indoor air and outdoor air, thereby dehumidifying and dehumidifying the room. At this time, when the preset temperature inputted in advance to the preset temperature comparing means 20 is 15 ° C. or less, the second damper 15 is opened and the supply air is passed through the sensible heat exchange element 5 while recovering heat. To air. When the set temperature is 15 ° C. or higher, the second damper 15 is closed, and outdoor air is supplied to the upstream side of the processing fan 102 so as not to pass through the sensible heat exchange element 5. If the indoor humidity becomes 70% RH or more from the indoor humidity detecting means 23, the first damper 13 is opened and the regenerative heater 104 and the gear motor 7 are operated, and the dehumidifying element 101 causes the indoor humidity of 70% RH or more. Moisture in the air is absorbed and only dry air is discharged into the room.
[0056]
Even in this case, it is assumed that the outdoor air is supplied to the room while judging whether or not to exchange the sensible heat of the outdoor air while opening or closing the second damper 15 while sequentially comparing the outdoor temperature and the set temperature.
[0057]
Thus, according to the dehumidifying heat exchange air fan of the fourth embodiment of the present invention, the operation mode of the dehumidifying heat exchange air fan is set to the indoor humidity detection and the indoor / outdoor temperature detection to ventilate dehumidification or the dehumidifying means by the dehumidifying element 101, and By implementing heat recovery by sensible heat exchange, the indoor air conditioning load is reduced, the input of dehumidifying operation is reduced, indoor condensation and microbial contamination can be prevented by automatic operation, and it is healthy for buildings and people A comfortable indoor space can be realized.
[0058]
(Example 5)
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
[0059]
As shown in FIG. 11, the rotation speed control means 26 is connected to the gear motor 7 and has a structure capable of receiving a signal output from the rotation speed control means 26. Further, the rotation speed control means 26 has a structure capable of instantaneously stopping and instantaneously starting the gear motor 7 and controlling intermittent operation.
[0060]
The operation of the above configuration will be described below.
Regarding the rotational speed control of the dehumidifying element 101, the rotational speed control at the momentary start / stop and the time timing at the start / stop are controlled so that the time required for one rotation of the dehumidifying element is the same as that during continuous operation. Then, the dehumidifying element 101 is rotated.
[0061]
Since the same dehumidifying ability can be obtained in continuous rotation and intermittent rotation if the time required for one rotation of the dehumidifying element is the same, for example, when the operation control of 45 rph is performed during the continuous rotation, the operation is performed for 1 second. If the rotation speed is set to 135 rph at the intermittent timing of the 2 second stop, the time for the dehumidifying element to make one rotation is the same, the dehumidifying capacity is the same as for continuous rotation, and the total operation time of the gear motor 7 is three times the life of continuous operation. Will earn.
[0062]
It should be noted that the setting conditions can be arbitrarily changed for the rotational speed control at the start / stop and the time timing at the start / stop.
[0063]
Thus, according to the dehumidifying heat exchange air fan of the fifth embodiment of the present invention, by intermittently operating the continuous operation time of the gear motor 7, it is possible to increase the total operation time of the gear motor and to extend the service life of the gear motor. Compared to current gear motors that can be operated continuously, the size and cost can be reduced.
[0064]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, it is possible to provide a dehumidifying heat exchange fan that can prevent inflow of air at a low temperature and can reduce the air conditioning load in the room.
[0065]
In addition, the simultaneous intake and exhaust function of positively taking in outdoor low-temperature air and exhausting indoor indoor air can reduce the absolute humidity in the room and reduce power consumption. A dehumidifying heat exchange fan can be provided.
[0066]
In addition, it is possible to provide a dehumidifying heat exchange air fan that can prevent an increase in the indoor temperature due to the supply air and can perform an appropriate supply operation according to outdoor air conditions.
[0067]
In addition, it is possible to provide a dehumidifying heat exchange air fan that can prevent indoor condensation and microbial contamination, and can achieve a healthy and comfortable indoor space for buildings and people.
[0068]
Further, it is possible to provide a dehumidifying heat exchange fan that can extend the life of the gear motor and can realize a long life, downsizing, and low cost that cannot be solved by a conventional gear motor.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a dehumidifying heat exchange fan according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a dehumidifying heat exchange air fan according to a second embodiment of the present invention.
FIG. 3 is a control flowchart of the dehumidifying heat exchange fan according to the second embodiment.
FIG. 4 is a configuration diagram of a dehumidifying heat exchange air fan according to a third embodiment of the present invention.
FIG. 5 is a control flowchart of the dehumidifying heat exchange fan according to the third embodiment.
FIG. 6 is an operation mode diagram of the dehumidifying heat exchange air fan of the third embodiment.
FIG. 7 is a diagram showing outdoor temperature results over the season
FIG. 8 is a configuration diagram of a dehumidifying heat exchange air fan according to a fourth embodiment of the present invention.
FIG. 9 is a control flowchart of the dehumidifying heat exchange fan according to the fourth embodiment.
Fig. 10 Range of temperature and humidity at which mold grows on rice cake
FIG. 11 is a configuration diagram of a dehumidifying heat exchange fan according to a fifth embodiment of the present invention.
FIG. 12 is a configuration diagram of a conventional dry dehumidifier
[Explanation of symbols]
1 First airway
2 Second wind path
3 Indoor inlet
4 Indoor exhaust
5 Sensible heat exchange element
6 Outdoor exhaust
7 Gear motor
8 pulley
9 Drive belt
10 Outside air inlet
11 Blower for air supply
12 Outside air supply port
13 First damper
14 Third wind path
15 Second damper
16 Outdoor temperature detection means
17 Indoor temperature detection means
18 Temperature comparison means
19 Ventilation control means
20 Setting temperature comparison means
21 Temperature control means
22 The fourth wind path
23 Indoor humidity detection means
24 Humidity comparison means
25 Dehumidification control means
26 Rotational speed control means
101 Dehumidifying element
102 processing fan
104 Regenerative heater

Claims (5)

本体内に設けられた円筒上の除湿素子と、この除湿素子を回転させるためのギヤモータと、このギヤモータの回転軸に直結されたプーリと、このプーリの回転を前記除湿素子に伝達させるための駆動ベルトと、前記本体内に設けられた室内吸込口と室内排気口と、前記室内吸込み口から前記除湿素子を通り、前記室内排気口とを連通する第一風路と、この第一風路内に設けられた処理用送風機と、前記第一風路内で前記除湿素子の下流側で分岐する第二風路と、前記第二風路内に設けられ、前記除湿素子の上流側に設けられた再生ヒータと、前記第二風路の他端に設けられた室外排気口と、前記本体内に設けられた外気吸込口と、この外気吸込口からの空気が通過するための第三風路と、この第三風路内に設けられた給気用送風機と、前記第三風路の他端に設けられた外気給気口と、前記給気用送風機の下流側で前記第三風路から分岐し、前記処理用送風機の上流側の第一風路に合流する第四風路と、前記第二風路と前記第三風路が交わる部分に設けられた顕熱交換素子と、前記第二風路内に設けられた第一ダンパと、前記第三風路と前記第四風路の分岐部分に設けられた第二ダンパを配してなる除湿熱交換気扇。  A dehumidifying element on a cylinder provided in the body, a gear motor for rotating the dehumidifying element, a pulley directly connected to the rotating shaft of the gear motor, and a drive for transmitting the rotation of the pulley to the dehumidifying element A belt, an indoor air inlet and an indoor air outlet provided in the main body, a first air passage communicating from the indoor air inlet to the indoor air outlet through the dehumidifying element, and the inside of the first air passage A processing blower provided in the first air passage, a second air passage branching downstream of the dehumidifying element in the first air passage, provided in the second air passage, and provided upstream of the dehumidifying element. A regenerative heater, an outdoor exhaust port provided at the other end of the second air channel, an outdoor air inlet port provided in the main body, and a third air channel for the passage of air from the outdoor air inlet port And an air supply fan provided in the third air passage, An outside air supply port provided at the other end of the air passage, and a fourth branch branched from the third air passage on the downstream side of the air supply fan and joined to the first air passage on the upstream side of the processing fan. An air passage, a sensible heat exchange element provided at a portion where the second air passage and the third air passage intersect, a first damper provided in the second air passage, the third air passage, and the A dehumidifying heat exchange air fan comprising a second damper provided at a branch portion of the fourth air passage. 室外の温度を検知する室外温度検知手段と、室内の温度を検知する室内温度検知手段と、前記室外温度検知手段と前記室内温度検知手段から出力された信号から室内温度と室外温度の大小を比較する温度比較手段と、この温度比較手段から出力された信号から前記処理用送風機と前記給気用送風機と前記第一ダンパと前記第二ダンパの動作を制御する信号を出力する換気制御手段を備え、室内温度が室外温度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパを閉鎖状態、第二ダンパを開放状態に配して、室外温度よりも温度の高い室内空気を前記処理用送風機で顕熱交換素子を通して室外に排気するとともに、前記給気用送風機により室外空気を前記顕熱交換素子を通じて室内に給気してなる請求項1記載の除湿熱交換気扇。Comparison between the outdoor temperature detection means for detecting the outdoor temperature, the indoor temperature detection means for detecting the indoor temperature, and the signal output from the outdoor temperature detection means and the indoor temperature detection means. And a ventilation control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, and the second damper from a signal output from the temperature comparison means. When the indoor temperature is higher than the outdoor temperature, the processing blower and the supply blower are operated, and the first damper is closed and the second damper is open, and the temperature is higher than the outdoor temperature. with exhausted outdoors through sensible heat exchange element the indoor air in the processing blower, removal of formed by the air supply to the room according to claim 1, wherein moisture through the sensible heat exchange elements the outdoor air by the air supply blower Exchange Kiogi. 室外の温度を検知する室外温度検知手段と、前記室外温度検知手段から出力された信号と、あらかじめ設定された温度の大小を比較する設定温度比較手段と、この設定温度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する温度制御手段を備え、室外温度があらかじめ設定温度比較手段で設定された温度よりも高いときは、処理用送風機、給気用送風機、ギヤモータ、再生ヒータを作動させ、かつ第一ダンパを開放状態、第二ダンパを閉鎖状態に配して、室内空気を除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は顕熱交換素子を通して室外に排気され、前記給気用送風機により室外空気は前記顕熱交換素子を通らずに第四風路を通過し、前記処理用送風機の上流側に給気されてなる請求項1記載の除湿熱交換気扇。An outdoor temperature detecting means for detecting the outdoor temperature, a signal output from the outdoor temperature detecting means, a set temperature comparing means for comparing the magnitudes of preset temperatures, and a signal output from the set temperature comparing means Temperature control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regenerative heater, and the outdoor temperature is a preset temperature. when higher than the set temperature in the comparison means, the process blower, air supply fan, gear motor actuates the regeneration heater, and the first damper open, by disposing a second damper in the closed state, the indoor The dehumidifying element dehumidifies the air, and the air containing moisture heated by the regenerative heater is exhausted to the outside through the sensible heat exchange element. Gas passes through the fourth air passage without passing through the sensible heat exchange element, except heat and moisture exchanging Kiogi according to claim 1, wherein formed by the air supply upstream of the processing blower. 室内の湿度を検知する室内湿度検知手段と、室内湿度検知手段から出力された信号から、あらかじめ設定された湿度との大小を比較する湿度比較手段と、この湿度比較手段から出力された信号から、前記処理用送風機、前記給気用送風機、前記第一ダンパ、前記第二ダンパ、前記ギヤモータ、前記再生ヒータの動作を制御する信号を出力する除湿制御手段を備え、室内湿度があらかじめ設定された湿度よりも高いときは、処理用送風機、給気用送風機を作動させ、かつ第一ダンパ、第二ダンパを共に開放状態にし、かつギヤモータを作動させて除湿素子を回転させるとともに、再生ヒータを通電状態に配して、室内空気を前記除湿素子で除湿するとともに、前記再生ヒータで加熱された湿気を含んだ空気は前記顕熱交換素子通して室外に排気され、前記給気用送風機からの室外空気は前記顕熱交換素子を通過して室内に給気されるようにしてなる請求項1記載の除湿熱交換気扇。From the indoor humidity detection means for detecting the humidity in the room, the signal output from the indoor humidity detection means, the humidity comparison means for comparing the magnitude with a preset humidity, and the signal output from the humidity comparison means, Humidity having dehumidification control means for outputting a signal for controlling the operation of the processing blower, the air supply blower, the first damper, the second damper, the gear motor, and the regeneration heater, and the room humidity is set in advance Higher than that, the processing fan and the supply fan are operated, the first damper and the second damper are both opened, the gear motor is operated to rotate the dehumidifying element, and the regeneration heater is energized. by placement into, as well as dehumidified by the dehumidifier indoor air, air containing moisture which is heated by the regeneration heater exhaust to the outdoor through the sensible heat exchange element Is, removal heat and moisture exchanging Kiogi of the outdoor air according to claim 1 wherein comprising as the supply air into the room through the sensible heat exchange element from the air supply blower. 回転制御手段を備え、回転制御手段から出力された信号によりギヤモータの回転を断続回転運転させる機能を配してなる請求項1または2または3記載の除湿熱交換気扇。  4. The dehumidifying heat exchange air fan according to claim 1, further comprising a rotation control means, and having a function of intermittently rotating the gear motor by a signal output from the rotation control means.
JP31737996A 1996-11-28 1996-11-28 Dehumidification heat exchange air fan Expired - Fee Related JP3814351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31737996A JP3814351B2 (en) 1996-11-28 1996-11-28 Dehumidification heat exchange air fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31737996A JP3814351B2 (en) 1996-11-28 1996-11-28 Dehumidification heat exchange air fan

Publications (2)

Publication Number Publication Date
JPH10160224A JPH10160224A (en) 1998-06-19
JP3814351B2 true JP3814351B2 (en) 2006-08-30

Family

ID=18087600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31737996A Expired - Fee Related JP3814351B2 (en) 1996-11-28 1996-11-28 Dehumidification heat exchange air fan

Country Status (1)

Country Link
JP (1) JP3814351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162083A (en) * 2000-11-27 2002-06-07 Matsushita Seiko Co Ltd Ventilating humidity control system
CN110617567A (en) * 2019-08-30 2019-12-27 江苏致远高科能源科技有限公司 Method for designing double-cold-source fresh air dehumidifier according to cold quantity division ratio

Also Published As

Publication number Publication date
JPH10160224A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
JP3835413B2 (en) Dehumidifying air conditioner
KR100675802B1 (en) An apparatus to remove or humidity moisture
KR101594422B1 (en) Solar energy dehumidifying and cooling air system
CA2793159C (en) Energy recovery ventilation control system
JP3543784B2 (en) Humidity control ventilator
JP4341244B2 (en) Humidifier and air conditioner using the same
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP3555590B2 (en) Humidity control device
JP3821371B2 (en) Dehumidifier
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JPH09329371A (en) Air conditioning system
JP3567857B2 (en) Humidifier and air conditioner using the same
JP6532270B2 (en) Low temperature regeneration desiccant air conditioner
JPH11344239A (en) Dehumidifier and vehicle air conditioner
JP3814351B2 (en) Dehumidification heat exchange air fan
JP2006266607A (en) Bathroom dryer
JP3408024B2 (en) Desiccant air conditioner
JP3980215B2 (en) Heat exchange ventilator
JP4391125B2 (en) Heat exchange ventilator
JP7129281B2 (en) Desiccant air conditioner
JPH10141730A (en) Heat-exchange ventilation device
JP6854099B2 (en) Humidity control ventilation system
JP3539127B2 (en) Ventilation dehumidifier
JPH04283332A (en) Drying type dehumidifying/moistening device
JP2002317964A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20031212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees