JP3821371B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP3821371B2
JP3821371B2 JP2002012491A JP2002012491A JP3821371B2 JP 3821371 B2 JP3821371 B2 JP 3821371B2 JP 2002012491 A JP2002012491 A JP 2002012491A JP 2002012491 A JP2002012491 A JP 2002012491A JP 3821371 B2 JP3821371 B2 JP 3821371B2
Authority
JP
Japan
Prior art keywords
air
regeneration
processing
rotor
relative humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002012491A
Other languages
Japanese (ja)
Other versions
JP2003210929A (en
Inventor
康博 頭島
匠 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002012491A priority Critical patent/JP3821371B2/en
Publication of JP2003210929A publication Critical patent/JP2003210929A/en
Application granted granted Critical
Publication of JP3821371B2 publication Critical patent/JP3821371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Description

【0001】
【発明の属する技術分野】
本発明は除湿装置に係り、特にリチウムイオン電池を製造するクリーンルームや、低湿度環境を必要とするビル設備などに用いられる除湿装置に関する。
【0002】
【従来の技術】
ビル設備やクリーンルーム設備では、多量の外気を取り入れ、冷却コイル等で湿度を調節し、被空調室に供給している。このため、夏季などの外気湿度が高い時季は、冷却コイルの冷熱源に多大な負荷がかかるという問題がある。そこで、ビル設備やクリーンルーム設備では、外気の潜熱負荷を小さくするために、乾式の除湿装置を外気調和機として使用している。
【0003】
乾式の除湿装置は、図5に示すように、筒状のケーシング1を有し、このケーシング1の内部が隔壁によって処理部1Aと再生部1Bに隔てられている。また、ケーシング1の内部には、円盤状の除湿ロータ2と顕熱交換器3が設けられている。この除湿ロータ2と顕熱交換器3はそれぞれ所定の速度で回転し、処理部1Aと再生部1Bとを交互に通過するようになっている。
【0004】
処理部1Aには、処理側フィルタ4と処理側ファン5が設けられ、この処理側ファン5を駆動することによって処理用エアが処理部1Aに導入される。導入された処理用エアは、まず、処理側フィルタ4を通過して除塵された後、除湿ロータ2を通過して除湿される。除湿された処理用エアは、除湿時の吸着熱によって昇温しているので、顕熱交換器3を通過させて冷却する。これにより、除湿、冷却された処理用エアが処理部1Aから送出される。この処理用エアは、不図示の内調機等へ供給され、この内調機で温湿度が調節された後、被空調室に給気される。
【0005】
一方、再生部1Bには、再生側フィルタ6と再生側ファン7が設けられ、この再生側ファン7を駆動することによって再生部1Bに再生用エアが導入される。導入された再生用エアは、まず、再生側フィルタ6を通過して除塵された後、顕熱交換器3を通過して加熱される。次いで、再生用エアは、温度センサ9の検出値が所定の設定値になるように、加熱コイル8によってさらに加熱される。これにより、十分に加熱された再生用エアが除湿ロータ2に導入されるので、除湿ロータ2の除湿剤に吸着していた水分が脱着し、除湿ロータ2の除湿性能が再生される。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の除湿装置は、除湿ロータ2の再生を確実に行うため、処理部1Aの最大負荷に合わせて、再生側ファン7による送風量と加熱コイル8による加熱温度を決定していたので、処理部1Aの負荷が小さい場合に、再生側ファン7や加熱コイル8を無駄に稼働することになり、改善が望まれていた。
【0007】
また、従来の除湿装置は、再生用エアによって過剰の熱が除湿ロータ2に持ち込まれるため、除湿ロータ2が高温になり、除湿ロータ2を通過した処理用エアの温度が必要以上に上昇するという問題があった。このため、処理用エアを冷却する内調機の負荷が大きくなり、省エネの観点から改善が望まれていた。
【0008】
本発明はこのような事情に鑑みて成されたもので、省エネ性の優れた除湿装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の発明は前記目的を達成するために、ケーシングの内部に処理部と再生部を有するとともに、前記処理部と前記再生部を移動する除湿ロータを備え、前記処理部に処理用エアを送気して前記除湿ロータで除湿するとともに、前記再生部に再生用エアを送気して前記除湿ロータを再生する除湿装置において、前記処理部に設けられ、前記除湿ロータに導入される処理用エアの相対湿度を検出する処理側検出手段と、前記再生部に設けられ、前記除湿ロータを通過した再生用エアの相対湿度を検出する再生側検出手段と、前記再生部の除湿ロータに導入される再生用エアの流量を調節する流量調節手段と、前記処理側検出手段の検出値に基づいて前記再生側検出手段の最適値を演算し、該最適値になるように前記流量調節手段を制御する制御手段と、を備え、前記除湿ロータを通過した処理用エアを冷却し、前記除湿ロータに送気される再生用エアを加熱する熱交換器と、該熱交換器と前記除湿ロータとの間で前記再生用エアを加熱する加熱手段とを備え、前記流量調節手段は、前記熱交換器と前記加熱手段との間に接続される分岐ダクトと、該分岐ダクトに配設されるダンパとから成り、前記制御手段は、前記ダンパの開度を調節することを特徴としている。
【0010】
本発明によれば、処理部の除湿ロータに導入される処理用エアの相対湿度に基づいて、再生部の除湿ロータを通過した再生用エアの相対湿度の最適値を求め、この最適値となるように、再生部の除湿ロータに導入される再生用エアの流量を制御している。このような制御を行うと、除湿ロータに導入される再生用エアの流量が、処理部の負荷に応じた流量となり、エネルギー効率が上昇する。
【0011】
本発明によれば、分岐ダクトを再生部に接続し、再生用エアの一部を分流させて排出するとともに、その排出流量をダンパで調節するようにしたので、除湿ロータへの再生用エアの流量を簡単に制御することができる。また、分岐ダクトを熱交換器と加熱手段との間に接続し、熱交換器に分流前の再生用エアが流れるようにしたので、熱交換器による処理用エアの冷却を効果的に行うことができる。また、分流後の最適流量の再生用エアが加熱手段を通過するようにしたので、加熱手段による加熱を効率よく行うことができる。
【0014】
【発明の実施の形態】
以下、添付図面に従って本発明に係る除湿装置の好ましい実施の形態について詳説する。
【0015】
図1は、本発明に係る除湿装置10の構成を示す断面図である。
【0016】
同図に示すように、除湿装置10は円筒状のケーシング12を有しており、このケーシング12の内部は、隔壁14によって処理部16と再生部18とに隔てられている。また、ケーシング12の内部には、円盤状の除湿ロータ20と顕熱交換機22が設けられている。除湿ロータ20は、塩化リチウムやシリカゲル等の除湿剤を含浸させたハニカム状の不織布によって構成されており、不図示の駆動手段によって所定速度で回転して、処理部16と再生部18とを交互に通過するようになっている。顕熱交換器22は、所定速度で回転することによって処理部16と再生部18とを交互に移動し、顕熱のみの移動によって熱交換を行うように構成されている。
【0017】
処理部16には、処理側フィルタ24と処理側ファン26が設けられ、この処理側ファン26によって、処理用エアが処理部16に導入される。導入された処理用エアは、まず、処理側フィルタ24を通過して除塵された後、除湿ロータ20を通過して除湿され、さらに顕熱交換器22を通過して冷却される。処理用エアは、除湿ロータ20を通過した際に吸着熱によって昇温しており、顕熱交換器22を通過した際に、再生部18の再生用エアと熱交換して冷却される。冷却された処理用エアは、内調機(不図示)などに送気され、この内調機で温湿度調整された後、クリーンルームなどの被空調室(不図示)に供給される。
【0018】
一方、再生部18には、再生側フィルタ28、再生側ファン30、加熱コイル32が設けられ、再生側ファン30によって、再生用エアが再生部18に導入される。再生用エアとしては、絶対湿度の低いエア、例えば、被空調室からの室内排気、或いは外気などが用いられる。再生部18に導入された再生用エアは、まず、顕熱交換器22を通過することにより、処理部16の処理用エアと熱交換して加熱される。加熱された再生用エアは、加熱コイル32によってさらに加熱される。加熱コイル32は、循環ライン34を介して不図示の加熱源に接続されており、蒸気や温水などの加熱媒体が循環するようになっている。循環ライン34には、開度調整弁36が配設され、この開度調整弁36によって加熱媒体の循環流量が調節される。開度調整弁36は、開度制御装置38に接続され、開度制御装置38は、加熱コイル32の下流側に配した温度センサ40に接続されている。開度制御装置38は、温度センサ40の検出値が設定温度となるように、開度調整弁36の開度を制御する。これにより、再生用エアが設定温度に加熱され、除湿ロータ20に導入される。再生用エアが除湿ロータ20に導入されることによって、除湿ロータ20に吸着していた水分が脱着され、除湿ロータ20の除湿性能が再生される。除湿ロータ20を通過した再生用エアは、脱着反応によって冷却された状態で外部に排気される。
【0019】
ところで、再生部18には、顕熱交換器22と加熱コイル32との間に、分岐ダクト42が接続されており、この分岐ダクト42にダンパ44が配設されている。これにより、再生用エアが分岐ダクト42から排気されるとともに、その排気流量をダンパ44によって調節することができる。すなわち、ダンパ44の開度を調節することによって、除湿ロータ20に導入される再生用エアの流量を調節することができる。
【0020】
ダンパ44は、制御装置46に接続されており、制御装置46は、相対湿度センサ48(処理側検出手段に相当)と相対湿度センサ50(再生側検出手段に相当)に接続されている。相対湿度センサ48は、処理部16の除湿ロータ20の上流側に設けられ、除湿ロータ20に導入される処理用エアの相対湿度を検出する。また、相対湿度センサ50は、再生部18の除湿ロータ20の下流側で除湿ロータ20の近傍に、且つ、除湿ロータ20の回転方向の終端部の隔壁14付近に配設され、除湿ロータ20を通過した再生用エアの相対湿度を検出する。制御装置46は、相対湿度センサ48、50の検出値に基づいて、ダンパ44の開度を調節するようになっている。具体的には、相対湿度センサ48の検出値に基づいて、相対湿度センサ50の検出値の最適値を求める。例えば相対湿度センサ48の検出値よりも0〜5℃低い値を最適値として求める。そして、相対湿度センサ50の検出値がその最適値になるように、ダンパ44の開度を制御する。これにより、適切な流量の再生用エアが除湿ロータ20を通過し、除湿ロータ20の除湿性能が再生される。
【0021】
次に上記の如く構成された除湿装置10の作用について、図2に示す試験結果に基づいて説明する。
【0022】
図2は、図1の除湿装置10において、処理部16に一定の負荷を与えながら、再生用エアの風量を変化させて試験を行った結果である。具体的には、27.8℃、42%、9.8g/kgDA の処理用エアを一定風量2000m3/hで処理部16に送風するとともに、80℃の再生用エアを、風量を変えながら再生部18に送風した。図2には、その際の相対湿度センサ48の検出値(処理入口相対湿度)と、相対湿度センサ50の検出値(終端部相対湿度)、及び、除湿ロータ20による除湿量が示されている。
【0023】
図2に示すように、再生風量が1500m3/hまでは、再生風量が増加するにつれて、除湿ロータ20による除湿量も徐々に大きくなっている。これは、再生用エアの風量が増加するにつれて、除湿ロータ20の再生量が増加し、除湿ロータ20の除湿性能が大きく回復するからである。しかし、再生風量が1500m3/hを超えると、再生風量を増加させても除湿ロータ20による除湿量は殆ど変化しない。したがって、再生風量を1500m3/hより大きくしても、エネルギーを無駄に消費するだけであることが分かる。これにより、エネルギー効率の良い最適制御範囲は、除湿量が変化しなくなる1500m3/hの直前であり、この範囲に再生風量を制御することが望ましい。ただし、最適な再生風量の範囲は、処理部16の負荷(処理用エアの湿度や風量など)によって変化する。
【0024】
一方、図2から分かるように、再生用エアの風量が増加するにつれて、除湿ロータ20の通過後の再生用エアの相対湿度(終端部相対湿度)が低下し、前述した最適制御範囲においては、処理用エアの相対湿度(処理入口相対湿度)よりも約0〜5%低い値になっている。したがって、再生用エアの相対湿度を処理用エアの相対湿度よりも約0〜5%低くすれば、エネルギー効率を向上できることが分かる。このように、再生用エアの相対湿度を処理用エアの相対湿度に応じて調節することによって、処理用エアの状態が変化した場合にも対応することができ、確実に再生風量を最適な範囲に制御することができる。
【0025】
本実施の形態の除湿装置10は、除湿ロータ20に導入される処理用エアの相対湿度を相対湿度センサ48で検出し、この検出値よりも0〜5%低い値を最適値として求め、相対湿度センサ50の検出値が最適値になるようにダンパ44を制御し、加熱コイル32への再生用エアの流量を調節している。したがって、処理用エアの相対湿度が減少した場合には、相対湿度センサ48の検出値が小さくなって最適値が小さく修正され、これに応じて加熱コイル32への再生用エアの流量が減少する。これにより、加熱コイル32における再生用エアの加熱量が少なくなるので、消費エネルギー量は減少する。
【0026】
このように除湿装置10によれば、処理部16の負荷に応じて、加熱コイル32における消費エネルギー量が変化するので、常に高いエネルギー効率を維持することができる。
【0027】
また、除湿装置10は、分岐ダクト42を顕熱交換器22と加熱コイル32との間に接続するようにしたので、顕熱交換器22には、分流前の大きな流量の再生用エアが流れる。したがって、顕熱交換器22によって処理用エアを効率よく冷却することができる。
【0028】
なお、上述した実施の形態は、ダンパ44の開度を調節することによって、加熱コイル32への再生用エアの流量を調節したが、流量調節手段は、これに限定するものではない。例えば、再生側ファン30としてインバータ付きのファンを使用し、再生側ファン30による送風量そのものを変えるようにしてもよい。
【0029】
図3は、第2の実施の形態の除湿装置の構成を示す断面図である。同図に示すように、第2の実施の形態の除湿装置は、処理部16の除湿ロータ20の上流側にエア状態検出装置52(処理側エア状態検出手段に相当)が設けられるとともに、再生部18の顕熱交換器22の上流側にエア状態検出装置54(再生側エア状態検出手段に相当)が設けられている。エア状態検出装置52、54はそれぞれ、エアの相対湿度と温度を検出するように構成されるとともに、制御装置56(流量制御手段に相当)に接続されている。制御装置56は、エア状態検出装置52、54の検出値に基づいて、再生用エアの最適流量を演算し、この最適流量の再生用エアが除湿ロータ20に流れるようにダンパ44の開度を調節する。
【0030】
最適流量の演算方法としては、図4に示すように、まず、エア状態検出装置54で検出した再生用エアの相対湿度(再生入口相対湿度)と、同じくエア状態検出装置54で検出した再生エアの温度(再生入口温度)と、温度センサ40で検出した再生用エアの温度(再生温度)と、さらにエア状態検出装置52で検出した処理用エアの相対湿度(処理入口相対湿度)とから、再生用エアの出口側での理想状態(温度、相対湿度、絶対湿度)を、空気線図上で演算する。
【0031】
一方で、エア状態検出手段52で検出した処理用エアの相対湿度(処理入口相対湿度)、処理用エアの温度(処理入口温度)、除湿ロータ20の入口での再生用エアの相対湿度から、処理用エアの出口側での理想状態(温度、相対湿度、絶対湿度)を空気線図上で演算する。
【0032】
そして、これらの理想状態に基づいて、再生用エアの最適流量を算出する。制御装置56は、ダンパ44を開閉し、除湿ロータ20に流れる再生用エアが最適流量となるようにする。
【0033】
上記の如く構成された第2の実施の形態の除湿装置は、処理部16に導入される処理用エアの状態と、再生部18に導入される再生用エアの状態とに応じて、再生用エアの最適流量を演算し、この最適流量となるように制御を行うので、エネルギー効率よく除湿ロータ20を再生させることができる。
【0034】
【発明の効果】
以上説明したように本発明に係る除湿装置によれば、処理部の除湿ロータに導入される処理用エアの相対湿度に基づいて、再生部の除湿ロータを通過した再生用エアの相対湿度の最適値を求め、この最適値になるように、除湿ロータに導入される再生用エアの流量を制御したので、エネルギー効率良く除湿ロータを再生することができる。
【0035】
また、本発明に係る除湿装置によれば、除湿ロータに導入される処理用エアの状態と再生用エアの状態とによって再生用エアの最適流量を求め、この最適流量となるように制御するので、エネルギー効率良く除湿ロータを再生することができる。
【図面の簡単な説明】
【図1】第1の実施の形態の除湿装置の構成を示す断面図
【図2】除湿装置の作用を説明する図
【図3】第2の実施の形態の除湿装置の構成を示す断面図
【図4】制御フローを説明するブロック図
【図5】従来の除湿装置の構成を示す断面図
【符号の説明】
10…除湿装置、12…ケーシング、14…隔壁、16…処理部、18…再生部、20…除湿ロータ、22…顕熱交換器、24…処理側フィルタ、26…処理側ファン、28…再生側フィルタ、30…再生側ファン、32…加熱コイル、34…循環ライン、36…開度調整弁、38…開度制御装置、40…温度センサ、42…分岐ダクト、44…ダンパ、46…制御装置、48…相対湿度センサ、50…相対湿度センサ、52、54…エア状態検出装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying device, and more particularly to a dehumidifying device used in a clean room for manufacturing a lithium ion battery, a building facility requiring a low humidity environment, or the like.
[0002]
[Prior art]
Building facilities and clean room facilities take in a large amount of outside air, adjust the humidity with a cooling coil, etc., and supply it to the air-conditioned room. For this reason, there is a problem that a great load is applied to the cooling heat source of the cooling coil in the season when the outside air humidity is high such as summer. Therefore, in building facilities and clean room facilities, in order to reduce the latent heat load of outside air, a dry-type dehumidifier is used as an outside air conditioner.
[0003]
As shown in FIG. 5, the dry dehumidifier has a cylindrical casing 1, and the inside of the casing 1 is separated by a partition into a processing section 1A and a regeneration section 1B. In addition, a disc-shaped dehumidifying rotor 2 and a sensible heat exchanger 3 are provided inside the casing 1. The dehumidifying rotor 2 and the sensible heat exchanger 3 rotate at predetermined speeds, respectively, and pass through the processing unit 1A and the regeneration unit 1B alternately.
[0004]
The processing unit 1A is provided with a processing side filter 4 and a processing side fan 5. By driving the processing side fan 5, processing air is introduced into the processing unit 1A. The introduced processing air first passes through the processing-side filter 4 and is dedusted, and then passes through the dehumidifying rotor 2 and is dehumidified. Since the dehumidified processing air is heated by the heat of adsorption during dehumidification, it is cooled by passing through the sensible heat exchanger 3. Thereby, the processing air dehumidified and cooled is sent out from the processing unit 1A. This processing air is supplied to an unillustrated internal air conditioner and the like, and after the temperature and humidity are adjusted by the internal air conditioner, the air is supplied to the air-conditioned room.
[0005]
On the other hand, the regeneration unit 1B is provided with a regeneration-side filter 6 and a regeneration-side fan 7. By driving the regeneration-side fan 7, regeneration air is introduced into the regeneration unit 1B. The introduced regeneration air first passes through the regeneration filter 6 and is dedusted, and then passes through the sensible heat exchanger 3 and is heated. Next, the regeneration air is further heated by the heating coil 8 so that the detection value of the temperature sensor 9 becomes a predetermined set value. As a result, the sufficiently heated regeneration air is introduced into the dehumidifying rotor 2, so that the moisture adsorbed on the dehumidifying agent of the dehumidifying rotor 2 is desorbed, and the dehumidifying performance of the dehumidifying rotor 2 is regenerated.
[0006]
[Problems to be solved by the invention]
However, since the conventional dehumidifier reliably determines the regeneration of the dehumidification rotor 2, the amount of air blown by the regeneration-side fan 7 and the heating temperature of the heating coil 8 are determined in accordance with the maximum load of the processing unit 1A. When the load on the processing unit 1A is small, the reproduction-side fan 7 and the heating coil 8 are used wastefully, and improvement has been desired.
[0007]
Further, in the conventional dehumidifying device, excessive heat is brought into the dehumidifying rotor 2 by the regeneration air, so that the dehumidifying rotor 2 becomes high temperature, and the temperature of the processing air that has passed through the dehumidifying rotor 2 is increased more than necessary. There was a problem. For this reason, the load of the internal air conditioner for cooling the processing air is increased, and improvement has been desired from the viewpoint of energy saving.
[0008]
This invention is made | formed in view of such a situation, and it aims at providing the dehumidification apparatus excellent in energy-saving property.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention includes a processing unit and a regenerating unit inside a casing, a dehumidification rotor that moves the processing unit and the regenerating unit, and a processing air in the processing unit. In the dehumidifying device that regenerates the dehumidification rotor by supplying the regeneration air to the regeneration unit while being dehumidified by the dehumidification rotor, the process provided in the processing unit and introduced into the dehumidification rotor Introducing the processing side detection means for detecting the relative humidity of the regenerative air, the regeneration side detection means for detecting the relative humidity of the regenerating air that has passed through the dehumidification rotor, and the dehumidification rotor of the regeneration section. A flow rate adjusting means for adjusting the flow rate of the regeneration air, and an optimum value of the regeneration side detecting means based on a detection value of the processing side detecting means, and the flow rate adjusting means being adjusted to the optimum value. control That a control means, wherein the cooling the process air that has passed through the dehumidification rotor, and a heat exchanger for heating the regeneration air to be air in the dehumidification rotor, and the dehumidification rotor and the heat exchanger Heating means for heating the regeneration air between, the flow rate adjusting means, a branch duct connected between the heat exchanger and the heating means, a damper disposed in the branch duct, And the control means adjusts the opening of the damper .
[0010]
According to the present invention, based on the relative humidity of the processing air introduced into the dehumidification rotor of the processing unit, the optimum value of the relative humidity of the regeneration air that has passed through the dehumidification rotor of the regeneration unit is obtained, and becomes this optimal value. As described above, the flow rate of the regeneration air introduced into the dehumidification rotor of the regeneration unit is controlled. When such control is performed, the flow rate of the regeneration air introduced into the dehumidification rotor becomes a flow rate according to the load of the processing unit, and the energy efficiency is increased.
[0011]
According to the present invention , the branch duct is connected to the regeneration unit, and a part of the regeneration air is shunted and discharged, and the discharge flow rate is adjusted by the damper. The flow rate can be easily controlled. In addition, since the branch duct is connected between the heat exchanger and the heating means so that the regeneration air before diversion flows to the heat exchanger, the processing air can be effectively cooled by the heat exchanger. Can do. In addition, since the regeneration air having the optimum flow rate after the diversion passes through the heating means, heating by the heating means can be performed efficiently.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a dehumidifying device according to the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 is a cross-sectional view showing a configuration of a dehumidifying device 10 according to the present invention.
[0016]
As shown in the figure, the dehumidifying device 10 has a cylindrical casing 12, and the inside of the casing 12 is separated by a partition wall 14 into a processing unit 16 and a regeneration unit 18. In addition, a disc-shaped dehumidifying rotor 20 and a sensible heat exchanger 22 are provided inside the casing 12. The dehumidification rotor 20 is composed of a honeycomb-shaped nonwoven fabric impregnated with a dehumidifying agent such as lithium chloride or silica gel, and is rotated at a predetermined speed by a driving means (not shown) to alternate between the processing unit 16 and the regeneration unit 18. To pass through. The sensible heat exchanger 22 is configured to alternately move between the processing unit 16 and the regenerating unit 18 by rotating at a predetermined speed, and to perform heat exchange only by movement of sensible heat.
[0017]
The processing unit 16 is provided with a processing side filter 24 and a processing side fan 26, and processing air is introduced into the processing unit 16 by the processing side fan 26. The introduced processing air first passes through the processing-side filter 24 and is dedusted, then passes through the dehumidifying rotor 20, and then passes through the sensible heat exchanger 22 to be cooled. The processing air is heated by adsorption heat when it passes through the dehumidification rotor 20, and is cooled by exchanging heat with the regeneration air of the regeneration unit 18 when it passes through the sensible heat exchanger 22. The cooled processing air is sent to an internal air conditioner (not shown) and the like, and after the temperature and humidity are adjusted by the internal air conditioner, it is supplied to an air-conditioned room (not shown) such as a clean room.
[0018]
On the other hand, the regeneration unit 18 is provided with a regeneration side filter 28, a regeneration side fan 30, and a heating coil 32, and regeneration air is introduced into the regeneration unit 18 by the regeneration side fan 30. As the regeneration air, air having a low absolute humidity, for example, indoor exhaust from an air-conditioned room or outside air is used. The regeneration air introduced into the regeneration unit 18 first passes through the sensible heat exchanger 22 and is heated by exchanging heat with the treatment air of the processing unit 16. The heated regeneration air is further heated by the heating coil 32. The heating coil 32 is connected to a heating source (not shown) via a circulation line 34 so that a heating medium such as steam or hot water circulates. In the circulation line 34, an opening degree adjusting valve 36 is disposed, and the opening degree adjusting valve 36 adjusts the circulation flow rate of the heating medium. The opening degree adjustment valve 36 is connected to an opening degree control device 38, and the opening degree control device 38 is connected to a temperature sensor 40 disposed on the downstream side of the heating coil 32. The opening control device 38 controls the opening of the opening adjustment valve 36 so that the detected value of the temperature sensor 40 becomes the set temperature. As a result, the regeneration air is heated to the set temperature and introduced into the dehumidifying rotor 20. By introducing the regeneration air into the dehumidification rotor 20, the moisture adsorbed on the dehumidification rotor 20 is desorbed, and the dehumidification performance of the dehumidification rotor 20 is regenerated. The regeneration air that has passed through the dehumidifying rotor 20 is exhausted to the outside while being cooled by the desorption reaction.
[0019]
Incidentally, a branch duct 42 is connected to the regeneration unit 18 between the sensible heat exchanger 22 and the heating coil 32, and a damper 44 is disposed in the branch duct 42. Thus, the regeneration air is exhausted from the branch duct 42, and the exhaust flow rate can be adjusted by the damper 44. That is, the flow rate of the regeneration air introduced into the dehumidifying rotor 20 can be adjusted by adjusting the opening degree of the damper 44.
[0020]
The damper 44 is connected to a control device 46, and the control device 46 is connected to a relative humidity sensor 48 (corresponding to the processing side detection means) and a relative humidity sensor 50 (corresponding to the reproduction side detection means). The relative humidity sensor 48 is provided on the upstream side of the dehumidification rotor 20 of the processing unit 16 and detects the relative humidity of the processing air introduced into the dehumidification rotor 20. The relative humidity sensor 50 is disposed in the vicinity of the dehumidification rotor 20 on the downstream side of the dehumidification rotor 20 of the regeneration unit 18 and in the vicinity of the partition wall 14 at the terminal end in the rotation direction of the dehumidification rotor 20. The relative humidity of the regeneration air that has passed is detected. The control device 46 adjusts the opening degree of the damper 44 based on the detection values of the relative humidity sensors 48 and 50. Specifically, the optimum value of the detection value of the relative humidity sensor 50 is obtained based on the detection value of the relative humidity sensor 48. For example, a value 0 to 5 ° C. lower than the detection value of the relative humidity sensor 48 is obtained as the optimum value. Then, the opening degree of the damper 44 is controlled so that the detection value of the relative humidity sensor 50 becomes the optimum value. Thereby, the regeneration air having an appropriate flow rate passes through the dehumidification rotor 20, and the dehumidification performance of the dehumidification rotor 20 is regenerated.
[0021]
Next, the operation of the dehumidifier 10 configured as described above will be described based on the test results shown in FIG.
[0022]
FIG. 2 shows a result of the test performed by changing the air volume of the regeneration air while applying a constant load to the processing unit 16 in the dehumidifying apparatus 10 of FIG. Specifically, 27.8 ° C., 42%, 9.8 g / kgDA of processing air is blown to the processing unit 16 at a constant air volume of 2000 m 3 / h, and 80 ° C. regeneration air is changed while the air volume is changed. It was blown into. FIG. 2 shows the detected value of the relative humidity sensor 48 (processing inlet relative humidity), the detected value of the relative humidity sensor 50 (terminal relative humidity), and the dehumidifying amount by the dehumidifying rotor 20. .
[0023]
As shown in FIG. 2, the amount of dehumidification by the dehumidification rotor 20 gradually increases as the amount of regeneration air increases until the amount of regeneration air reaches 1500 m 3 / h. This is because the amount of regeneration of the dehumidification rotor 20 increases as the air volume of the regeneration air increases, and the dehumidification performance of the dehumidification rotor 20 greatly recovers. However, if the regeneration air volume exceeds 1500 m 3 / h, the dehumidification amount by the dehumidification rotor 20 hardly changes even if the regeneration air volume is increased. Therefore, it can be seen that even if the regeneration air volume is greater than 1500 m 3 / h, energy is only wasted. Thereby, the optimum control range with good energy efficiency is immediately before 1500 m 3 / h at which the dehumidification amount does not change, and it is desirable to control the regeneration air volume within this range. However, the optimum range of the regeneration air volume varies depending on the load of the processing unit 16 (humidity of the processing air, air volume, etc.).
[0024]
On the other hand, as can be seen from FIG. 2, as the air volume of the regeneration air increases, the relative humidity (end relative humidity) of the regeneration air after passing through the dehumidifying rotor 20 decreases, and in the above-described optimum control range, The value is about 0 to 5% lower than the relative humidity of the processing air (processing inlet relative humidity). Therefore, it can be seen that the energy efficiency can be improved by making the relative humidity of the regeneration air about 0 to 5% lower than the relative humidity of the processing air. In this way, by adjusting the relative humidity of the regeneration air in accordance with the relative humidity of the processing air, it is possible to cope with changes in the state of the processing air, and to ensure that the regeneration air volume is within the optimum range. Can be controlled.
[0025]
The dehumidifying device 10 of the present embodiment detects the relative humidity of the processing air introduced into the dehumidifying rotor 20 with the relative humidity sensor 48, obtains a value 0 to 5% lower than the detected value as an optimum value, The damper 44 is controlled so that the detection value of the humidity sensor 50 becomes an optimum value, and the flow rate of the regeneration air to the heating coil 32 is adjusted. Therefore, when the relative humidity of the processing air decreases, the detection value of the relative humidity sensor 48 becomes smaller and the optimum value is corrected to be smaller, and the flow rate of the regeneration air to the heating coil 32 decreases accordingly. . Thereby, since the heating amount of the regeneration air in the heating coil 32 is reduced, the amount of energy consumption is reduced.
[0026]
As described above, according to the dehumidifier 10, the amount of energy consumed in the heating coil 32 changes according to the load of the processing unit 16, so that high energy efficiency can always be maintained.
[0027]
Further, since the dehumidifying apparatus 10 connects the branch duct 42 between the sensible heat exchanger 22 and the heating coil 32, a large flow of regeneration air before the diversion flows to the sensible heat exchanger 22. . Therefore, the processing air can be efficiently cooled by the sensible heat exchanger 22.
[0028]
In the above-described embodiment, the flow rate of the regeneration air to the heating coil 32 is adjusted by adjusting the opening degree of the damper 44, but the flow rate adjusting means is not limited to this. For example, a fan with an inverter may be used as the regeneration-side fan 30 and the amount of air blown by the regeneration-side fan 30 itself may be changed.
[0029]
FIG. 3 is a cross-sectional view illustrating the configuration of the dehumidifying device according to the second embodiment. As shown in the figure, the dehumidifier of the second embodiment is provided with an air condition detection device 52 (corresponding to a process-side air condition detection means) on the upstream side of the dehumidification rotor 20 of the processing unit 16, and the regeneration. An air condition detection device 54 (corresponding to a regeneration-side air condition detection means) is provided on the upstream side of the sensible heat exchanger 22 in the section 18. Each of the air condition detection devices 52 and 54 is configured to detect the relative humidity and temperature of air, and is connected to a control device 56 (corresponding to a flow rate control means). The control device 56 calculates the optimum flow rate of the regeneration air based on the detection values of the air condition detection devices 52 and 54, and the opening degree of the damper 44 is adjusted so that the regeneration air having the optimum flow rate flows to the dehumidification rotor 20. Adjust.
[0030]
As shown in FIG. 4, the optimum flow rate calculation method is as follows. First, the relative humidity of the regeneration air detected by the air condition detection device 54 (regeneration inlet relative humidity) and the regeneration air detected by the air condition detection device 54 are used. Of the air (regeneration inlet temperature), the temperature of the regeneration air detected by the temperature sensor 40 (regeneration temperature), and the relative humidity of the processing air (processing inlet relative humidity) detected by the air state detection device 52, The ideal state (temperature, relative humidity, absolute humidity) on the outlet side of the regeneration air is calculated on the air diagram.
[0031]
On the other hand, from the relative humidity of the processing air (processing inlet relative humidity) detected by the air state detection means 52, the temperature of the processing air (processing inlet temperature), and the relative humidity of the regeneration air at the inlet of the dehumidification rotor 20, The ideal state (temperature, relative humidity, absolute humidity) on the outlet side of the processing air is calculated on the air diagram.
[0032]
Based on these ideal states, the optimum flow rate of the regeneration air is calculated. The control device 56 opens and closes the damper 44 so that the regeneration air flowing through the dehumidifying rotor 20 has an optimal flow rate.
[0033]
The dehumidifying device of the second embodiment configured as described above is adapted for the regeneration depending on the state of the processing air introduced into the processing unit 16 and the state of the regeneration air introduced into the regeneration unit 18. Since the optimal flow rate of air is calculated and control is performed so as to achieve this optimal flow rate, the dehumidifying rotor 20 can be regenerated with high energy efficiency.
[0034]
【The invention's effect】
As described above, according to the dehumidifying device of the present invention, the optimum relative humidity of the regenerating air that has passed through the dehumidifying rotor of the regenerating unit is based on the relative humidity of the processing air introduced into the dehumidifying rotor of the processing unit. Since the value is obtained and the flow rate of the regeneration air introduced into the dehumidification rotor is controlled so as to be the optimum value, the dehumidification rotor can be regenerated with high energy efficiency.
[0035]
Further, according to the dehumidifying device of the present invention, the optimum flow rate of the regeneration air is obtained from the state of the processing air introduced into the dehumidification rotor and the state of the regeneration air, and the control is performed so as to obtain this optimum flow rate. In addition, the dehumidifying rotor can be regenerated efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a dehumidifying apparatus according to a first embodiment. FIG. 2 is a cross-sectional view showing a configuration of a dehumidifying apparatus according to a second embodiment. FIG. 4 is a block diagram for explaining a control flow. FIG. 5 is a cross-sectional view showing a configuration of a conventional dehumidifying apparatus.
DESCRIPTION OF SYMBOLS 10 ... Dehumidification apparatus, 12 ... Casing, 14 ... Partition, 16 ... Processing part, 18 ... Regeneration part, 20 ... Dehumidification rotor, 22 ... Sensible heat exchanger, 24 ... Processing side filter, 26 ... Processing side fan, 28 ... Regeneration Side filter, 30 ... regeneration side fan, 32 ... heating coil, 34 ... circulation line, 36 ... opening adjustment valve, 38 ... opening control device, 40 ... temperature sensor, 42 ... branch duct, 44 ... damper, 46 ... control 48 ... Relative humidity sensor 50 ... Relative humidity sensor 52, 54 ... Air condition detection device

Claims (1)

ケーシングの内部に処理部と再生部を有するとともに、前記処理部と前記再生部を移動する除湿ロータを備え、前記処理部に処理用エアを送気して前記除湿ロータで除湿するとともに、前記再生部に再生用エアを送気して前記除湿ロータを再生する除湿装置において、
前記処理部に設けられ、前記除湿ロータに導入される処理用エアの相対湿度を検出する処理側検出手段と、前記再生部に設けられ、前記除湿ロータを通過した再生用エアの相対湿度を検出する再生側検出手段と、前記再生部の除湿ロータに導入される再生用エアの流量を調節する流量調節手段と、前記処理側検出手段の検出値に基づいて前記再生側検出手段の最適値を演算し、該最適値になるように前記流量調節手段を制御する制御手段と、を備え、
前記除湿ロータを通過した処理用エアを冷却し、前記除湿ロータに送気される再生用エアを加熱する熱交換器と、該熱交換器と前記除湿ロータとの間で前記再生用エアを加熱する加熱手段とを備え、前記流量調節手段は、前記熱交換器と前記加熱手段との間に接続される分岐ダクトと、該分岐ダクトに配設されるダンパとから成り、前記制御手段は、前記ダンパの開度を調節することを特徴とする除湿装置。
The casing includes a processing unit and a regenerating unit, and includes a dehumidification rotor that moves between the processing unit and the regenerating unit. The processing air is supplied to the processing unit and dehumidified by the dehumidifying rotor, and the regeneration is performed. In a dehumidifying device that regenerates the dehumidifying rotor by supplying regeneration air to the part,
A processing-side detection means for detecting the relative humidity of the processing air introduced into the dehumidification rotor provided in the processing unit, and a relative humidity of the regeneration air provided in the regeneration unit and passed through the dehumidification rotor The regeneration side detection means, the flow rate adjustment means for adjusting the flow rate of the regeneration air introduced into the dehumidification rotor of the regeneration section, and the optimum value of the regeneration side detection means based on the detection value of the processing side detection means. Control means for calculating and controlling the flow rate adjusting means so as to be the optimum value,
A heat exchanger that cools the processing air that has passed through the dehumidification rotor and heats the regeneration air sent to the dehumidification rotor, and heats the regeneration air between the heat exchanger and the dehumidification rotor Heating means, and the flow rate adjusting means comprises a branch duct connected between the heat exchanger and the heating means, and a damper disposed in the branch duct, and the control means comprises: dehumidifier you and adjusting the degree of opening of the damper.
JP2002012491A 2002-01-22 2002-01-22 Dehumidifier Expired - Fee Related JP3821371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012491A JP3821371B2 (en) 2002-01-22 2002-01-22 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012491A JP3821371B2 (en) 2002-01-22 2002-01-22 Dehumidifier

Publications (2)

Publication Number Publication Date
JP2003210929A JP2003210929A (en) 2003-07-29
JP3821371B2 true JP3821371B2 (en) 2006-09-13

Family

ID=27649686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012491A Expired - Fee Related JP3821371B2 (en) 2002-01-22 2002-01-22 Dehumidifier

Country Status (1)

Country Link
JP (1) JP3821371B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170517A (en) * 2004-12-15 2006-06-29 Samsung Electronics Co Ltd Dehumidifier/humidifier
JP4541965B2 (en) * 2005-04-28 2010-09-08 三菱電機株式会社 Air conditioner
JP2006349304A (en) * 2005-06-20 2006-12-28 Daikin Ind Ltd Humidity conditioner
JP2007255802A (en) * 2006-03-24 2007-10-04 Jfe Engineering Kk Cryogenic gas separation system
JP4892271B2 (en) * 2006-04-13 2012-03-07 新日本空調株式会社 Air conditioning system
JP4664894B2 (en) * 2006-12-15 2011-04-06 大阪瓦斯株式会社 Desiccant air conditioner
JP4803816B2 (en) * 2006-12-19 2011-10-26 株式会社長府製作所 Desiccant air conditioner
JP4745212B2 (en) * 2006-12-19 2011-08-10 株式会社長府製作所 Desiccant air conditioner and its dew protection device
JP4867808B2 (en) * 2007-06-18 2012-02-01 株式会社日立プラントテクノロジー Dehumidifier
JP5250362B2 (en) * 2008-09-25 2013-07-31 新日本空調株式会社 Dehumidifier and operation control method thereof
JP5068293B2 (en) * 2009-09-17 2012-11-07 三菱電機株式会社 Air conditioner
JP5679264B2 (en) * 2010-06-07 2015-03-04 株式会社大気社 Heat recovery type low humidity air supply system
JP2015038392A (en) * 2012-01-24 2015-02-26 株式会社カワタ Drying device

Also Published As

Publication number Publication date
JP2003210929A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
JP3835413B2 (en) Dehumidifying air conditioner
JP6325190B2 (en) Desiccant unit control system and method
KR101594422B1 (en) Solar energy dehumidifying and cooling air system
JP3543784B2 (en) Humidity control ventilator
JP3821371B2 (en) Dehumidifier
CN100373101C (en) Dehumidity and moistening unit
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
JP3266326B2 (en) Dry dehumidifier
JP3555590B2 (en) Humidity control device
JPWO2002025183A1 (en) Humidifier and air conditioner using the same
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP2003021378A (en) Dehumidifying air conditioning system
JP6320777B2 (en) Dehumidification system
JP6898138B2 (en) Desiccant type humidity control device and its control method
KR20020022801A (en) Humidifier and air conditioner using the same
JP6616973B2 (en) Waste heat utilization type dehumidification system
JP4411797B2 (en) Dehumidification method and apparatus
US11181294B2 (en) Air conditioning apparatus
JP2008116115A (en) Air conditioner and air conditioning method of air conditioner
JP3814351B2 (en) Dehumidification heat exchange air fan
JP2006162131A (en) Dry type dehumidifier
CN114322122B (en) Rotary dehumidifier, heat exchange system and control method
JP2003024737A (en) Dehumidication system
WO2023042627A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees