JPH09329371A - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JPH09329371A
JPH09329371A JP16820896A JP16820896A JPH09329371A JP H09329371 A JPH09329371 A JP H09329371A JP 16820896 A JP16820896 A JP 16820896A JP 16820896 A JP16820896 A JP 16820896A JP H09329371 A JPH09329371 A JP H09329371A
Authority
JP
Japan
Prior art keywords
air
air conditioner
conditioning system
air conditioning
humidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16820896A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP16820896A priority Critical patent/JPH09329371A/en
Priority to US08/863,062 priority patent/US5950442A/en
Priority to CN97112139.7A priority patent/CN1202383C/en
Publication of JPH09329371A publication Critical patent/JPH09329371A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost by saving energy of an air conditioning system which uses both an air conditioner and an outdoor air conditioner and simplifying the operation system. SOLUTION: This air conditionins system is provided with an air conditioner 3 which circulatingly processes an indoor air and an outdoor air conditioner 1 which processes an outdoor air OA and introduces the processed air indoors where the outdoor air conditioner 1 is provided with a desiccant which adsorbs an indoor air or one content of the other open air while it is regenerated by the other way and a heat pump 200 which serves as a heat source by regenerating the desiccant. In this case, a humidifier 6 is provided in an air supply line from the outdoor air conditioner 1 up to the air conditioned space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調システムに係
り、特に室内空気を循環させて処理する空調機と、外気
を処理して室内に導く外調機とを併用する空調システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system that uses both an air conditioner that circulates indoor air and processes it, and an outdoor air conditioner that processes outside air and guides it to the room.

【0002】[0002]

【従来の技術】図13は、従来の空調システムの例を示
すもので、これは、室内空気を循環させて処理する空調
機3と、外気を処理して室内に導く外調機11とを併用
する空調システムである。この外調機11は、全熱交換
器(エンタルピー熱交換器)であり、外気と室内空気の
湿度分と顕熱を同時に熱交換する。一方、空調空間の内
部で発生する空調負荷は室内の空調機(ヒートポンプを
用いるエアコン)3が取り出して室外に捨てている。
2. Description of the Related Art FIG. 13 shows an example of a conventional air conditioning system, which includes an air conditioner 3 which circulates and processes indoor air, and an air conditioner 11 which processes outside air and guides it to the room. This is an air conditioning system that is used together. The external conditioner 11 is a total heat exchanger (enthalpy heat exchanger), and simultaneously exchanges heat and sensible heat between the outside air and the indoor air. On the other hand, the air-conditioning load generated inside the air-conditioned space is taken out by the air conditioner (air conditioner using a heat pump) 3 in the room and is thrown out of the room.

【0003】[0003]

【発明が解決しようとする課題】前記のような全熱交換
器11は、効率が50〜55%と低いので、外気中の水
分の50〜45%の湿気が室内に入ってくる。その水分
はエアコンで除湿しなければならないので、エアコン3
では室内空気を露点温度(15〜16℃)以下の、例え
ば、10℃程度に下げる必要がある。結局、エアコン3
の蒸発温度と凝縮温度の温度差(温度ヘッド)を全熱交
換器11を用いない時と同じに設定する必要があり、エ
ネルギー消費量が大きくなってしまうとう欠点が有っ
た。
Since the total heat exchanger 11 as described above has a low efficiency of 50 to 55%, 50 to 45% of the moisture in the outside air enters the room. Since the water must be dehumidified by the air conditioner,
Then, it is necessary to lower the room air to a dew point temperature (15 to 16 ° C.) or lower, for example, about 10 ° C. After all, air conditioner 3
It is necessary to set the temperature difference (temperature head) between the evaporation temperature and the condensation temperature of (1) to be the same as when the total heat exchanger 11 is not used, and there is a drawback that the energy consumption becomes large.

【0004】この発明は、前記のような課題に鑑み、空
調機と外調機とを併用する空調システムの省エネルギー
化と設備の簡略化によりコストを低減させることを目的
とする。
In view of the above problems, it is an object of the present invention to reduce the cost by saving energy in an air conditioning system that uses both an air conditioner and an external air conditioner and simplifying the equipment.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するためになされたもので、請求項1に記載の発明
は、室内空気を循環させて処理する空調機と、外気を処
理して室内に導く外調機とを備え、前記外調機が、前記
室内空気又は外気の一方の水分を吸着し、他方によって
再生されるデシカントと、該デシカントを再生する熱源
となるヒートポンプとを備えた空調システムにおいて、
前記外調機から前記空調空間に至る給気経路中に加湿器
を設けたことを特徴とする空調システムである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 circulates indoor air and processes it, and outside air. And an external air conditioner that guides the air into the room, wherein the external air conditioner includes a desiccant that adsorbs water in one of the indoor air and the outside air and is regenerated by the other, and a heat pump that is a heat source that regenerates the desiccant. In the air conditioning system,
The air conditioning system is characterized in that a humidifier is provided in an air supply path from the external air conditioner to the air-conditioned space.

【0006】前記外調機は、冷房時は、デシカントが外
気中の水分を吸着して室内空気によって再生されるよう
に運転され、暖房時は室内空気中の水分を吸着して外気
によって再生されるように運転される。
The external air conditioner is operated so that the desiccant adsorbs moisture in the outside air and is regenerated by the indoor air during cooling, and adsorbs the moisture in the indoor air and is regenerated by the outside air during heating. To be driven like.

【0007】このような構成により、冷房運転において
デシカント外調機による空調が高効率のものになり、潜
熱負荷を極めて効率良く処理できる。さらに、外調機の
潜熱負荷冷却能力に余裕がある場合には、加湿器を作動
させることによって空調負荷の顕熱負荷をも高効率なデ
シカント外調機で負担することができるので、状況に応
じた運転制御により、大幅な省エネルギー効果が得られ
る。また、空調で除湿する必要がないので、空調機の動
作温度ヘッドを低下させることができ、デシカント外調
機自体の高効率と併せて大幅な省エネルギーが達成され
る。
With such a configuration, the air conditioning by the desiccant external air conditioner becomes highly efficient in the cooling operation, and the latent heat load can be processed extremely efficiently. Furthermore, if there is a margin in the latent heat load cooling capacity of the external air conditioner, by operating the humidifier, the sensible heat load of the air conditioning load can be borne by the highly efficient desiccant external air conditioner. A significant energy saving effect can be obtained by the operation control according to the above. Further, since it is not necessary to dehumidify by air conditioning, the operating temperature head of the air conditioner can be lowered, and a large energy saving is achieved together with high efficiency of the desiccant external air conditioner itself.

【0008】請求項2に記載の発明は、空調空間内に湿
度センサと温度センサを設け、これらの測定値を基に前
記外調機、空調機及び/又は加湿器の運転を制御する制
御装置を設けたことを特徴とする請求項1に記載の空調
システムである。これにより、センサで空調空間内の空
調状態を検知し、これに対応して、制御装置が、外調
機、空調機及び/又は加湿器を制御するので、快適空間
を得るための制御が簡単である。また、外調機及び/又
は空調機と加湿器とを一体化した製品とするのも容易で
ある。
According to a second aspect of the present invention, there is provided a controller for providing a humidity sensor and a temperature sensor in the air-conditioned space, and controlling the operation of the air conditioner, the air conditioner and / or the humidifier based on the measured values. The air conditioning system according to claim 1, further comprising: As a result, the sensor detects the air-conditioning state in the air-conditioned space, and the control device controls the external air conditioner, the air conditioner and / or the humidifier accordingly, so that the control for obtaining a comfortable space is easy. Is. In addition, it is easy to form a product in which the external air conditioner and / or the air conditioner and the humidifier are integrated.

【0009】請求項3に記載の発明は、前記制御装置に
予め温度及び湿度又はこれらのパラメータを設定し、測
定温度が設定温度の上限を上回り、測定湿度が設定湿度
の下限を下回るときに前記加湿器を動作させるようにな
っていることを特徴とする請求項3に記載の空調システ
ムである。請求項4に記載の発明は、前記温度センサと
して乾球温度センサを用いることを特徴とする請求項2
に記載の空調システムである。
According to a third aspect of the present invention, the temperature and humidity or these parameters are set in advance in the control device, and when the measured temperature exceeds the upper limit of the set temperature and the measured humidity falls below the lower limit of the set humidity, The air conditioning system according to claim 3, wherein the humidifier is operated. The invention according to claim 4 uses a dry-bulb temperature sensor as the temperature sensor.
The air conditioning system according to item 1.

【0010】請求項5に記載の発明は、前記湿度センサ
として絶対湿度センサを用いることを特徴とする請求項
2に記載の空調システムである。請求項6に記載の発明
は、前記湿度のパラメータとして湿球温度を用いること
を特徴とする請求項3に記載の空調システムである。請
求項7に記載の発明は、前記加湿器は、冷房の際に等エ
ンタルピ過程又は準等エンタルピ過程で加湿を行なうも
のであることを特徴とする請求項1に記載の空調システ
ムである。
The invention according to claim 5 is the air conditioning system according to claim 2, characterized in that an absolute humidity sensor is used as the humidity sensor. The invention according to claim 6 is the air-conditioning system according to claim 3, characterized in that a wet-bulb temperature is used as the parameter of the humidity. The invention according to claim 7 is the air conditioning system according to claim 1, wherein the humidifier performs humidification in an isenthalpic process or a quasi-isenthalpic process during cooling.

【0011】請求項8に記載の発明は、前記加湿器は、
水噴射式又は気化式であることを特徴とする請求項1に
記載の空調システムである。請求項9に記載の発明は、
前記ヒートポンプが蒸気圧縮式ヒートポンプであること
を特徴とする請求項1に記載の空調システムである。請
求項10に記載の発明は、前記ヒートポンプが吸収式ヒ
ートポンプであることを特徴とする請求項1に記載の空
調システムである。
According to an eighth aspect of the present invention, the humidifier comprises:
The air conditioning system according to claim 1, wherein the air conditioning system is a water injection type or a vaporization type. The invention according to claim 9 is
The air conditioning system according to claim 1, wherein the heat pump is a vapor compression heat pump. The invention according to claim 10 is the air-conditioning system according to claim 1, wherein the heat pump is an absorption heat pump.

【0012】請求項11に記載の発明は、前記外調機の
ヒートポンプの能力に余裕がある場合に外調機の能力を
増加させ、空調機の能力を減少させるように制御するこ
とを特徴とする請求項1に記載の空調システムであるの
で、効率の良い外調機を優先的に用いることにより、全
体の効率をさらに高めることができる。
According to an eleventh aspect of the present invention, when the heat pump capacity of the external air conditioner has a margin, the capacity of the external air conditioner is increased and the air conditioner capacity is decreased. According to the first aspect of the present invention, the overall efficiency can be further increased by preferentially using the efficient external conditioner.

【0013】[0013]

【実施例】以下、本発明に係る空調システムの一実施例
を図1乃至図3を参照して説明する。図1は本発明に係
る空調システムの基本構成を示すもので、空調すべき室
内2の空気を循環させて処理する空調機3と、外気を処
理して室内に導く外調機1とを併用し、かつ外調機と空
調空間の間の処理空気(外気)の経路に加湿器6を設
け、加湿器6に付属して給水配管8と開閉弁7を設けた
空調システムである。空調機3としては、冷凍機とヒー
トポンプを切り換えて用いる通常のものでよいが、これ
以外の任意のものを採用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an air conditioning system according to the present invention will be described below with reference to FIGS. FIG. 1 shows a basic configuration of an air conditioning system according to the present invention, in which an air conditioner 3 that circulates and processes air in a room 2 to be conditioned and an external air conditioner 1 that processes outside air and guides it into the room are used together. In addition, the humidifier 6 is provided in the path of treated air (outside air) between the external air conditioner and the air-conditioned space, and the humidifier 6 is provided with a water supply pipe 8 and an opening / closing valve 7. The air conditioner 3 may be an ordinary air conditioner that switches between a refrigerator and a heat pump, but any other air conditioner may be used.

【0014】外調機1は、図2に示すように、水分の吸
着と放出(再生)を繰り返すデシカントロータ103と
ヒートポンプ200を用いるデシカント外調機である。
すなわち、このデシカント外調機1には、冷房運転時に
外気を室内に導入する導入経路Aと、室内空気を室外へ
放出する放出経路Bとが設けられている。経路Aと経路
Bは、暖房時には入れ替えて使用し、経路Bに外気を導
入し、経路Aに室内空気を導入するが、このような使用
形態は当業者にとって公知であるので、以下には冷房運
転形態についてのみ説明する。
As shown in FIG. 2, the external air conditioner 1 is a desiccant external air conditioner that uses a desiccant rotor 103 and a heat pump 200 that repeat adsorption and release (regeneration) of water.
That is, the desiccant outdoor air conditioner 1 is provided with the introduction path A for introducing the outside air into the room during the cooling operation and the discharge path B for discharging the indoor air to the outside of the room. The route A and the route B are used interchangeably at the time of heating, and the outside air is introduced into the route B and the indoor air is introduced into the route A. Such a usage pattern is known to those skilled in the art. Only the operation mode will be described.

【0015】これらの外気導入経路A及び室内空気放出
経路Bの間には、前記のデシカントロータ103、熱交
換器104と、このデシカント外調機1の熱源となるヒ
ートポンプ200が設けられている。ヒートポンプとし
ては、任意のものを採用して良いが、ここでは、出願人
が先に特願平8−22133において提案した蒸気圧縮
式ヒートポンプを用いるものとする。
Between the outside air introduction path A and the indoor air discharge path B, the desiccant rotor 103, the heat exchanger 104, and the heat pump 200 serving as a heat source of the desiccant external air conditioner 1 are provided. As the heat pump, an arbitrary one may be adopted. Here, a vapor compression heat pump proposed by the present applicant in Japanese Patent Application No. Hei 8-22133 is used.

【0016】外気導入経路Aは、室外空間と外気導入用
の送風機102の吸込口とを経路107を介して接続
し、送風機102の吐出口をデシカントロータ103と
経路108を介して接続し、デシカントロータ103の
処理空気の出口を再生空気と熱交換関係にある顕熱熱交
換器104と経路109を介して接続し、顕熱熱交換器
104の処理空気の出口は冷水熱交換器(冷却器)21
0と経路110を介して接続し、冷却器210の処理空
気の出口は室内空間と経路111を介して接続して形成
されている。これにより、外気を取り入れて処理して室
内に導入するサイクルを形成する。
In the outside air introduction route A, the outdoor space and the suction port of the blower 102 for introducing outside air are connected via a route 107, the discharge port of the blower 102 is connected to the desiccant rotor 103 via a route 108, and a desiccant. The outlet of the treated air of the rotor 103 is connected via a path 109 to a sensible heat exchanger 104 having a heat exchange relationship with the regeneration air, and the outlet of the treated air of the sensible heat exchanger 104 is a cold water heat exchanger (cooler). ) 21
0 through the path 110, and the outlet of the process air of the cooler 210 is formed by connecting with the indoor space through the path 111. This forms a cycle in which outside air is taken in, processed, and introduced into the room.

【0017】一方、再生用の空気経路(放出経路)B
は、室内空間を再生空気用の送風機140の吸込口と経
路124を介して接続し、送風機140の吐出口を処理
空気(外気)と熱交換関係にある顕熱熱交換器104と
接続し、顕熱熱交換器104の再生空気の出口は温水熱
交換器(加熱器)220と経路126を介して接続し、
加熱器220の再生空気の出口はデシカントロータ10
3の再生空気入口と経路127を介して接続し、デシカ
ントロータ103の再生空気の出口は室外空間と経路1
28を介して接続して形成されている。これにより、室
内空気を取り入れて、外部に排気するサイクルを形成す
る。
On the other hand, an air path (release path) B for regeneration
Connects the indoor space to the suction port of the blower 140 for the regenerated air via the path 124, and connects the discharge port of the blower 140 to the sensible heat exchanger 104 having a heat exchange relationship with the process air (outside air), The outlet of the regenerated air of the sensible heat exchanger 104 is connected to the hot water heat exchanger (heater) 220 via the path 126,
The outlet of the regeneration air of the heater 220 is the desiccant rotor 10
3 is connected to the regeneration air inlet via the path 127, and the desiccant rotor 103 has an outlet for the regeneration air connected to the outdoor space and the path 1.
It is formed by connecting via 28. Thus, a cycle is formed in which room air is taken in and exhausted to the outside.

【0018】前記加熱器220の熱媒体(温水)入口は
経路221を介してヒートポンプ200の温水経路出口
に接続し、加熱器220の温水出口は経路222を介し
てヒートポンプの温水経路入口に接続する。また、前記
冷却器210の冷水入口は経路211を介してヒートポ
ンプの冷水経路出口に接続し、冷却器210の冷水出口
は経路212を介してヒートポンプの冷水経路入口に接
続する。なお図中、丸で囲ったアルファベットK〜T
は、図3と対応する空気の状態を示す記号であり、SA
は給気(処理された外気)を、RAは還気(放出される
室内空気)を、OAは外気を、EXは排気を表す。
The heat medium (hot water) inlet of the heater 220 is connected to the hot water passage outlet of the heat pump 200 via the path 221, and the hot water outlet of the heater 220 is connected to the hot water passage inlet of the heat pump via the path 222. . Further, the cold water inlet of the cooler 210 is connected to the cold water path outlet of the heat pump via the path 211, and the cold water outlet of the cooler 210 is connected to the cold water path inlet of the heat pump via the path 212. In the figure, the letters K to T surrounded by circles
Is a symbol indicating the state of air corresponding to FIG.
Represents supply air (processed outside air), RA represents return air (released indoor air), OA represents outside air, and EX represents exhaust air.

【0019】次に、前記の空調システムの制御を行なう
ための制御システムの構成を説明する。この実施例は、
3つの機器、すなわち、外調機1、空調機3及び加湿器
6がそれぞれコントローラを備えた構成となっている。
室内空間2には湿度センサ11と乾球温度センサ21が
設けられ、湿度センサ11の検出信号は、信号経路15
を介して外調機1のコントローラ10に伝達され、乾球
温度センサ21の出力信号は、信号経路22を介して空
調機3のコントローラ20に伝達される。符号30は加
湿器6のコントローラであり、コントローラ20,10
の出力は信号経路31,32を介してコントローラ30
に入力されている。
Next, the structure of the control system for controlling the air conditioning system will be described. This example is
Each of the three devices, that is, the external air conditioner 1, the air conditioner 3, and the humidifier 6 has a controller.
A humidity sensor 11 and a dry-bulb temperature sensor 21 are provided in the indoor space 2, and the detection signal of the humidity sensor 11 is transmitted through the signal path 15
Is transmitted to the controller 10 of the air conditioner 1, and the output signal of the dry-bulb temperature sensor 21 is transmitted to the controller 20 of the air conditioner 3 via the signal path 22. Reference numeral 30 is a controller of the humidifier 6, and the controllers 20, 10
Output of the controller 30 via the signal paths 31 and 32.
Has been entered.

【0020】次に、前述のように構成されたヒートポン
プを熱源とするデシカント外調機の動作を、図1の実施
例の空気調和の部分の作動状態を示すモリエル線図であ
る図3を参照して説明する。導入される外気(処理空
気:状態K)は経路107を経て送風機102に吸引さ
れ、昇圧されて経路108を経てデシカントロータ10
3に送られ、デシカントロータの吸湿剤で空気中の水分
を吸着されて絶対湿度が低下するとともに吸着熱によっ
て空気は温度上昇する(状態L)。湿度が下がり温度が
上昇した空気は経路109を経て顕熱熱交換器104に
送られ、還気(再生空気)と熱交換して冷却される(状
態M)。冷却された空気は経路110を経て冷却器21
0に送られ、さらに冷却される(状態N)。冷却された
空気は経路111を経て室内空間に供給される。このよ
うにして外気(状態K)と給気(状態N)との間にはエ
ンタルピ差ΔQが生じるとともに、室内空気(状態Q)
との間にもエンタルピ差及び絶対湿度差が生じ、これに
よって室内空間の冷房が行われる。
Next, referring to FIG. 3, which is a Mollier diagram showing the operation of the air conditioning portion of the embodiment of FIG. 1, the operation of the desiccant external air conditioner using the heat pump having the above-mentioned structure as a heat source is described. And explain. The outside air (process air: state K) introduced is sucked by the blower 102 via the path 107, is pressurized, and passes through the path 108 to the desiccant rotor 10.
3, the moisture in the air is adsorbed by the desiccant rotor hygroscopic agent to lower the absolute humidity and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the return air (regenerated air) (state M). The cooled air passes through the path 110 and cooler 21.
Sent to 0 and further cooled (state N). The cooled air is supplied to the indoor space via the path 111. In this way, the enthalpy difference ΔQ is generated between the outside air (state K) and the supply air (state N), and the indoor air (state Q) is generated.
Also, an enthalpy difference and an absolute humidity difference occur between and, thereby cooling the indoor space.

【0021】デシカントの再生は次のように行われる。
再生用の室内空気(RA:状態Q)は経路124を経て
送風機140に吸引され、昇圧されて顕熱熱交換器10
4に送られ、処理空気を冷却して自らは温度上昇し(状
態:R)、経路126を経て加熱器220に流入し、温
水によって加熱され60〜80℃まで温度上昇し、相対
湿度が低下する(状態S)。
The desiccant reproduction is performed as follows.
The room air for regeneration (RA: state Q) is sucked into the blower 140 through the path 124, and is boosted to increase the pressure of the sensible heat exchanger 10.
4, the treated air is cooled to raise its temperature (state: R), flows into the heater 220 through the route 126, is heated by hot water and is heated to 60 to 80 ° C., and the relative humidity is lowered. Yes (state S).

【0022】この過程は再生空気の顕熱変化であり、空
気の比熱は温水に比べて著しく低く温度変化が大きいた
め、温水の流量を減少させて温度変化を大きくしても熱
交換は効率良く行われる。温水の利用温度差を大きくと
ることによって流量が少なくなるため、搬送動力が低減
される。
This process is a sensible heat change of the regenerated air, and the specific heat of the air is significantly lower than that of the hot water and the temperature change is large. Therefore, even if the flow rate of the hot water is decreased to increase the temperature change, the heat exchange is efficiently performed. Done. Since the flow rate is reduced by increasing the difference in the temperature of hot water used, the transport power is reduced.

【0023】加熱器220を出て相対湿度が低下した再
生空気はデシカントロータ103を通過してデシカント
ロータの水分を除去する(状態T)。デシカントロータ
103を通過した再生空気は経路128を経て排気とし
て外部に捨てられる。このようにしてデシカントの再生
と処理空気の除湿、冷却をくりかえし行うことによっ
て、デシカントによる外気の空調を行う。
The regenerated air, which has left the heater 220 and has a reduced relative humidity, passes through the desiccant rotor 103 to remove water from the desiccant rotor (state T). The regenerated air that has passed through the desiccant rotor 103 is discharged to the outside via the path 128 as exhaust gas. In this way, the desiccant is air-conditioned by repeating the desiccant regeneration and the dehumidification and cooling of the treated air.

【0024】このように構成されたデシカント外調機の
ヒートポンプ部分の熱の流れを図4に示す。図4におい
て入熱は冷水からの入熱と圧縮機動力で出熱は全て温水
に加えられる。いま、圧縮機動力を1の熱量とすると、
この種のヒートポンプの温度リフトは最低でも冷水15
℃から熱を汲み上げて70℃まで昇温させるために55
℃の温度リフトとなり、通常のヒートポンプの温度リフ
ト45℃に比べて22%増加し、圧力比が若干高くなる
ため動作係数は大略3程度に設計できる。従って、冷水
からの入熱量は3となり、一方、出熱は合計1+3で4
となり、この熱量が全て温水を加熱してデシカント外調
機に使用される。
FIG. 4 shows the flow of heat in the heat pump portion of the desiccant external air conditioner thus configured. In FIG. 4, heat input is heat input from cold water and compressor output power, and all heat output is added to hot water. Now, assuming that the compressor power is 1 heat quantity,
The temperature lift of this type of heat pump is at least 15
55 to draw heat from ℃ and raise it to 70 ℃
The temperature lift is 0 ° C, which is 22% higher than the temperature lift of a normal heat pump, which is 45 ° C, and the pressure ratio is slightly higher, so that the coefficient of operation can be designed to be about 3. Therefore, the heat input from cold water is 3, while the total heat output is 1 + 3, which is 4
And all of this heat heats hot water and is used in the desiccant external air conditioner.

【0025】デシカント空調機の単体におけるエネルギ
ー効率を示す動作係数(COP)は図3における冷房効
果ΔQを再生加熱量で除した値で示されるが、大略最大
で0.8〜1.2であることが一般に報告されている。
従って、デシカント空調機の動作係数(COP)を大略
1とすると、デシカント空調機によって1の冷房効果が
得られることになるので、ヒートポンプの圧縮機入力を
1とするとデシカント空調機の駆動熱量は4となり、従
って温水によって4の冷房効果が得られる。本空調シス
テムでは、この他に冷水による冷房効果が3あるので合
計7の冷房効果が得られ、このデシカント外調機全体の
動作係数は、 動作係数=冷房効果/圧縮機入力=7 となる。この値は従来システムの値「4以下」を大幅に
上回り、約45%の省エネルギー効果がある。
The coefficient of operation (COP), which indicates the energy efficiency of a single desiccant air conditioner, is represented by the value obtained by dividing the cooling effect ΔQ in FIG. 3 by the amount of regeneration heat, and is approximately 0.8 to 1.2 at the maximum. It is generally reported.
Therefore, if the operation coefficient (COP) of the desiccant air conditioner is approximately 1, a cooling effect of 1 can be obtained by the desiccant air conditioner. Therefore, if the compressor input of the heat pump is 1, the amount of heat driven by the desiccant air conditioner is 4 Therefore, the cooling effect of 4 is obtained by the warm water. In the present air conditioning system, since there are three other cooling effects due to the cold water, a total of seven cooling effects are obtained. The operation coefficient of the whole desiccant external controller is: operation coefficient = cooling effect / compressor input = 7. This value greatly exceeds the value "4 or less" of the conventional system, and has an energy saving effect of about 45%.

【0026】一方、エアコン3においても省エネルギー
が達成される。つまり、デシカント外調機1により、室
内に供給する空気SAは還気RAより低い絶対湿度にす
ることができるから、水分を室内に持ち込まないで済
む。従って、エアコン3で除湿をする必要がなくなり、
空気の顕熱処理をするだけで良くなる。従って、エアコ
ン3は、空気を20℃程度に冷却すればよく、蒸発温度
がおよそ10℃高くとれる。これにより、温度ヘッドが
小さくなる(例えば、40℃から30℃)。これによる
省エネルギー率は、 ΔT1/ΔT2=30/40=0.75 であるから約25%となる。
On the other hand, energy saving is achieved also in the air conditioner 3. In other words, the desiccant external air conditioner 1 allows the air SA to be supplied into the room to have an absolute humidity lower than the return air RA, so that moisture does not have to be brought into the room. Therefore, there is no need to dehumidify the air conditioner 3,
Only sensible heat treatment of air is sufficient. Therefore, the air conditioner 3 only needs to cool the air to about 20 ° C., and the evaporation temperature can be increased by about 10 ° C. This reduces the size of the temperature head (eg, 40 ° C. to 30 ° C.). As a result, the energy saving rate is about 25% because ΔT1 / ΔT2 = 30/40 = 0.75.

【0027】このように、外調機1および空調機3の双
方で省エネルギー効果が得られるが、外調機1の方が省
エネルギー効果が大きい。そのためできるだけ、外調機
で空調負荷を処理するほうが省エネルギーとなる。一般
に外調機および空調機などの空調装置の能力は最大負荷
に対応して決定されるが、通常の運転では最大負荷で運
転されることは少なく、部分負荷で運転される。従っ
て、このような部分負荷時には外調機に生じる能力の余
裕を利用して空調機の顕熱負荷を負担することによっ
て、外調機による空調負荷の処理割合を増加させること
ができ、省エネルギー効果が増す。
As described above, the energy saving effect is obtained in both the external air conditioner 1 and the air conditioner 3, but the external air conditioner 1 has a larger energy saving effect. Therefore, it is more energy efficient to process the air conditioning load with the external air conditioner. Generally, the capacity of an air conditioner such as an external air conditioner and an air conditioner is determined in accordance with the maximum load, but in normal operation, it is rarely operated at the maximum load and is operated at a partial load. Therefore, the load of the sensible heat of the air conditioner can be increased by using the margin of capacity that occurs in the external air conditioner during such partial load, and the processing ratio of the air conditioning load by the external air conditioner can be increased, resulting in an energy saving effect. Will increase.

【0028】次に、加湿器6を動作させる場合の作用を
説明する。図5は、空調空間における加湿器の作用を示
すモリエル線図である。図5において、空調空間は図中
で快適ゾーンとして示された範囲に調整される。このよ
うな空間は空調機(エアコン)3によって乾球温度が所
定範囲に入るようにエアコンの能力調整をするととも
に、外調機1によって、相対湿度が所定範囲に入るよう
に外調機1に内蔵したヒートポンプの能力調整をするこ
とによって実現できるが、空調機3の能力を落として乾
球温度を上昇させるとともに外調機1の能力を増加させ
て湿度を増加させた(図中、右下の斜線の領域)のち、
水噴射や気化式加湿器による加湿を行うことでも快適ゾ
ーンに状態を移行させることができる。
Next, the operation of operating the humidifier 6 will be described. FIG. 5 is a Mollier diagram showing the operation of the humidifier in the air-conditioned space. In FIG. 5, the air-conditioned space is adjusted to the range shown as the comfort zone in the figure. In such a space, the capacity of the air conditioner is adjusted by the air conditioner (air conditioner) 3 so that the dry-bulb temperature falls within a predetermined range, and the external air conditioner 1 controls the outside air conditioner 1 so that the relative humidity falls within a predetermined range. This can be achieved by adjusting the capacity of the built-in heat pump, but the capacity of the air conditioner 3 is decreased to raise the dry-bulb temperature and the capacity of the external air conditioner 1 is increased to increase the humidity (lower right in the figure). Area of the
The state can be shifted to the comfortable zone by performing water injection or humidification by the vaporization type humidifier.

【0029】この状態変化の過程を図3において説明す
ると、加湿器6を作動させない状態では、外調機の能力
を増加させた状態で外調機を出る処理空気は状態Nであ
る。この状態で加湿器6に付属の弁7を開くと、給水配
管8を介して加湿器6に給水され、加湿器6の出口の空
気は状態Pに移行する。このように加湿を行わない場合
の室内空気の状態Qと給気との間の顕熱比(Q−Nの勾
配)と加湿を行った場合の室内空気の状態Qと給気との
間の顕熱比(Q−Pの勾配)との間に差異を生じ、後者
の方が顕熱比が大きくなる。従って、外調機1で顕熱も
負担することが可能となり、外調機1の負荷負担割合を
増やすことができる。従って、前述したように、省エネ
ルギー効果が高い外調機で多くの空調負荷を処理できる
ため一層省エネルギー効果が増す。
The process of this state change will be described with reference to FIG. 3. In the state where the humidifier 6 is not operated, the treated air leaving the external air conditioner is in state N while the capacity of the external air conditioner is increased. When the valve 7 attached to the humidifier 6 is opened in this state, water is supplied to the humidifier 6 via the water supply pipe 8 and the air at the outlet of the humidifier 6 shifts to the state P. Thus, the sensible heat ratio (gradient of Q-N) between the state Q of the indoor air and the air supply when the humidification is not performed and the state Q of the indoor air when the humidification is performed and the air supply are performed. There is a difference from the sensible heat ratio (gradient of QP), and the latter has a larger sensible heat ratio. Therefore, the sensible heat can also be borne by the external conditioner 1, and the load burden ratio of the external conditioner 1 can be increased. Therefore, as described above, the large amount of air conditioning load can be processed by the external air conditioner having a high energy saving effect, so that the energy saving effect is further enhanced.

【0030】しかし、このような省エネルギー効果と快
適な環境が得られるのは、前記のごとく図5において、
図中右下の斜線の領域から加湿を行った場合であり、こ
のような条件は乾球温度が設定温度よりも高く、かつ湿
度が設定湿度よりも低い場合に満たされる。この条件が
満たされない場合、例えば乾球温度が設定よりも低い場
合に加湿器6を作動させると、室内温度が低下し、寒く
なり不快となり、快適環境を維持できない弊害を生じ
る。この実施例においては、次のようにして加湿器6を
作動させ、快適環境を維持しつつ省エネルギー効果を得
ることができる。
However, as described above, in FIG. 5, the energy saving effect and the comfortable environment can be obtained.
This is the case where humidification is performed from the shaded area in the lower right of the figure, and such a condition is satisfied when the dry-bulb temperature is higher than the set temperature and the humidity is lower than the set humidity. When this condition is not satisfied, for example, when the humidifier 6 is operated when the dry-bulb temperature is lower than the set value, the indoor temperature is lowered, and it becomes cold and uncomfortable, which causes an adverse effect that a comfortable environment cannot be maintained. In this embodiment, the humidifier 6 is operated in the following manner, and the energy saving effect can be obtained while maintaining a comfortable environment.

【0031】すなわち、室内2の乾球温度センサ21の
検出信号は、信号経路22を介して空調機3のコントロ
ーラ20に伝達され、該センサ21の検出した温度が前
記空調機3の設定乾球温度を上回っている場合には、接
点信号等の電気信号を信号経路32を介して加湿器6の
コントローラ30に伝達する。さらに室内2の湿度セン
サ11の検出信号は、信号経路15を介して外調機のコ
ントローラ10に伝達され、該センサ11の検出した湿
度が前記外調機1の設定湿度を下回っている場合には、
接点信号等の電気信号を信号経路31を介して加湿器6
のコントローラ30に伝達する。
That is, the detection signal of the dry-bulb temperature sensor 21 in the room 2 is transmitted to the controller 20 of the air conditioner 3 via the signal path 22, and the temperature detected by the sensor 21 is the set dry-bulb of the air conditioner 3. When the temperature is higher than the temperature, an electric signal such as a contact signal is transmitted to the controller 30 of the humidifier 6 via the signal path 32. Further, the detection signal of the humidity sensor 11 in the room 2 is transmitted to the controller 10 of the external air conditioner via the signal path 15, and when the humidity detected by the sensor 11 is lower than the set humidity of the external air conditioner 1. Is
An electric signal such as a contact signal is sent through the signal path 31 to the humidifier 6
To the controller 30 of.

【0032】温度センサ21の検出した温度が前記空調
機3の設定乾球温度を上回っていることを検出する信号
と、湿度センサ11の検出した湿度が前記外調機1の設
定湿度を下回っていることを検出する信号が同時に満た
された場合は、室内の環境が、図5において右下の斜線
の領域にあることを示すから、加湿器6を作動させる条
件が満たされているので、コントローラ30は信号経路
33を介して弁7を開とし、給水配管8から水を給水し
て加湿器6を作動させる。加湿器6の作動によって乾球
温度は低下するとともに、湿度が増加して室内環境は快
適ゾーンに接近する。
A signal for detecting that the temperature detected by the temperature sensor 21 is higher than the set dry-bulb temperature of the air conditioner 3, and the humidity detected by the humidity sensor 11 is lower than the set humidity of the external air conditioner 1. If the signals for detecting the presence of the humidifier are simultaneously satisfied, it means that the environment inside the room is in the shaded area in the lower right of FIG. 5, and therefore the condition for operating the humidifier 6 is satisfied. The valve 30 opens the valve 7 via the signal path 33 and supplies water from the water supply pipe 8 to operate the humidifier 6. The operation of the humidifier 6 lowers the dry-bulb temperature and increases the humidity, so that the indoor environment approaches the comfort zone.

【0033】ここにおける乾球温度および湿度の設定値
は必ずしも室内2の制御目標値である必要はなく、加湿
器6のための特別な設定値でも差し支えない。また、空
調開始時などで、極端に室温が高い状況では加湿をする
ことが空調の潜熱負荷となり、外調機の潜熱負荷を増加
させることになるので、加湿器6の運転をタイマーや乾
球温度に上限を設定する等の方法によって、一次保留す
るように構成しても差し支えない。また、暖房運転にお
いても室内に導入する処理空気に加湿が必要な場合に
は、本発明によって加湿器6を作動させることによって
快適な環境が得られる。
The set values of the dry-bulb temperature and the humidity here do not necessarily have to be the control target values for the room 2, and may be special set values for the humidifier 6. Also, when the room temperature is extremely high, such as at the start of air conditioning, humidifying will increase the latent heat load of the air conditioner and increase the latent heat load of the external air conditioner. The temperature may be temporarily suspended by a method such as setting an upper limit to the temperature. Further, even in the heating operation, when the treated air introduced into the room needs to be humidified, a comfortable environment can be obtained by operating the humidifier 6 according to the present invention.

【0034】図6はこの発明の他の実施例を示すもの
で、先の実施例においては、機器(外調機1、空調機
3、加湿器6)が基本的に独立で、それぞれに3つのコ
ントローラを有していたのに対して、この実施例では3
つの機器を1つのコントローラ10で統括して制御する
ようにしており、湿度センサ11、温度センサ21の出
力はこれに入力されるようになっている。外調機1、空
調機3、加湿器6の個々の要素の構成と作用は、先の実
施例と変わらないので説明を省略する。
FIG. 6 shows another embodiment of the present invention. In the previous embodiment, the devices (outer air conditioner 1, air conditioner 3, humidifier 6) are basically independent, and each has three parts. It had three controllers, whereas in this embodiment it has three
One device is controlled by one controller 10 as a whole, and the outputs of the humidity sensor 11 and the temperature sensor 21 are input to this. The configurations and operations of the individual elements of the external air conditioner 1, the air conditioner 3, and the humidifier 6 are the same as those in the previous embodiment, and therefore their explanations are omitted.

【0035】以下、図7乃至図10を用いて、この空調
システムの制御の工程を説明する。なお、コントローラ
10には、予め空調空間2の快適ゾーンとして、図10
に示すように乾球温度の上下限及び相対湿度の上下限及
びそれぞれの不感帯の幅が設定されている(st1,s
t11)。
The steps of controlling the air conditioning system will be described below with reference to FIGS. 7 to 10. It should be noted that the controller 10 is set in advance as a comfortable zone of the air-conditioned space 2 as shown in FIG.
As shown in, the upper and lower limits of the dry-bulb temperature, the upper and lower limits of the relative humidity, and the width of each dead zone are set (st1, s
t11).

【0036】図7に示すように、コントローラ10は、
室内の湿度センサ11からの信号を経路15によって受
信し(st2)、湿度の制御目標を設定した設定値と検
出値を比較する(st3)。検出湿度が設定湿度に不感
帯を加えた値よりも大きい場合に、外調機1のヒートポ
ンプの能力を増加させる信号を経路13を介して発信
し、外調機のデシカントの再生加熱能力を増加させて除
湿能力を高め(st4)、空調空間2の湿度を低下させ
る。一方、検出湿度が設定湿度から不感帯を引いた値よ
りも小さい場合には外調機1のヒートポンプの能力を減
少させる信号を経路13を介して発信し、外調機1のデ
シカントの再生加熱能力を減少させて除湿能力を低下さ
せる(st5)。
As shown in FIG. 7, the controller 10 is
A signal from the indoor humidity sensor 11 is received by the path 15 (st2), and the set value for setting the humidity control target is compared with the detected value (st3). When the detected humidity is larger than the value obtained by adding the dead zone to the set humidity, a signal for increasing the heat pump capacity of the external controller 1 is transmitted via the path 13 to increase the desiccant regenerative heating capacity of the external controller. To increase the dehumidifying capacity (st4) and reduce the humidity of the air-conditioned space 2. On the other hand, when the detected humidity is smaller than the value obtained by subtracting the dead zone from the set humidity, a signal for reducing the capacity of the heat pump of the external controller 1 is transmitted via the path 13, and the desiccant regeneration heating capacity of the external controller 1 is transmitted. To decrease the dehumidifying ability (st5).

【0037】図8に示すように、さらに、コントローラ
10は乾球温度センサ21からの信号を経路22によっ
て受信し(st12)、乾球温度の制御目標を設定した
設定値と検出値を比較し(st13)、検出温度が設定
温度に不感帯を加えた値よりも大きい場合に空調機3の
能力を増加させる信号を経路23を介して発信し、空調
機3の顕熱冷却能力を増加させて室内空気を供給する
(st14)。一方、検出温度が設定温度から不感帯を
引いた値よりも小さい場合に、空調機3の能力を減少さ
せる信号を経路23を介して発信し、顕熱冷却能力を低
下させる(st15)。
As shown in FIG. 8, the controller 10 further receives a signal from the dry-bulb temperature sensor 21 through the path 22 (st12), and compares the set value with the set target of the dry-bulb temperature control with the detected value. (St13), when the detected temperature is larger than the value obtained by adding the dead zone to the set temperature, a signal for increasing the capacity of the air conditioner 3 is transmitted via the path 23 to increase the sensible cooling capacity of the air conditioner 3. Indoor air is supplied (st14). On the other hand, when the detected temperature is smaller than the value obtained by subtracting the dead zone from the set temperature, a signal for reducing the capacity of the air conditioner 3 is transmitted via the path 23 to reduce the sensible heat cooling capacity (st15).

【0038】ここまでの制御の工程は加湿器6を使用す
ることなく、空調空間2の状態を快適ゾーン内に保つた
めのものである。本発明においては、さらに外調機1の
ヒートポンプの能力に余裕がある場合、例えば、圧縮機
の設定回転数が上限に達していない場合や、能力減少信
号が出されている場合、圧縮機回転数を低下させるよう
な信号や、停止信号が出されている場合に、これを検知
して逆に外調機の能力を増加させる信号を経路13を介
して発信するとともに、外調機1の能力増加分に見合う
分だけ外調機3の能力を減少させる信号を経路23を介
して発信する。
The control steps up to this point are for keeping the condition of the air-conditioned space 2 within the comfortable zone without using the humidifier 6. In the present invention, when the capacity of the heat pump of the external air conditioner 1 has a margin, for example, when the set rotation speed of the compressor does not reach the upper limit or when the capacity decrease signal is output, the compressor rotation speed is increased. When a signal that decreases the number of signals or a stop signal is output, a signal that detects this signal and increases the capacity of the external modulator is transmitted via the path 13 and at the same time, the signal of the external modulator 1 is transmitted. A signal for reducing the capacity of the external conditioner 3 by an amount commensurate with the capacity increase is transmitted via the path 23.

【0039】すると、図9に示すように、コントローラ
10は設定湿度と設定乾球温度から設定湿球温度を算出
し(st21)、検出湿度と検出乾球温度から検出湿球
温度を算出し(st22)、湿球温度の設定値と検出値
を比較する(st23)。湿球温度の検出値が設定値以
下で、かつ乾球温度の検出値が設定値以上の時は、図1
0において右下の斜線の領域に室内の環境があることを
示すから、加湿器6を作動させる条件が満たされている
ことを示すので、弁7を開とする信号を経路14を介し
て発信して加湿器6を作動させる(st24)。加湿器
6の作動によって乾球温度は低下するとともに、湿度が
増加して室内環境は快適ゾーンに接近する。一方、湿球
温度の検出値が設定値を上回るか、あるいは乾球温度の
検出値が設定値未満の時は、弁7を閉とする信号を経路
14を介して発信して加湿器6の作動を停止させる(s
t25)。
Then, as shown in FIG. 9, the controller 10 calculates the set wet-bulb temperature from the set humidity and the set dry-bulb temperature (st21), and calculates the detected wet-bulb temperature from the detected humidity and the detected dry-bulb temperature ( In st22), the set value of the wet bulb temperature and the detected value are compared (st23). When the wet-bulb temperature detected value is below the set value and the dry-bulb temperature detected value is above the set value,
0 indicates that the indoor environment is present in the shaded area in the lower right, indicating that the conditions for operating the humidifier 6 are satisfied. Therefore, a signal for opening the valve 7 is transmitted via the path 14. Then, the humidifier 6 is operated (st24). The operation of the humidifier 6 lowers the dry-bulb temperature and increases the humidity, so that the indoor environment approaches the comfort zone. On the other hand, when the detected value of the wet-bulb temperature is higher than the set value or the detected value of the dry-bulb temperature is lower than the set value, a signal for closing the valve 7 is transmitted via the path 14 and the humidifier 6 outputs. Stop the operation (s
t25).

【0040】図11及び図12はこの発明のさらに他の
実施例を示すもので、ここでは、外調機1と加湿器6を
1つのコントローラ10で、空調空間2に設けた湿球温
度センサ11及び乾球温度センサ12の検出値を基に制
御するようにしたものである。空調機3には別にコント
ローラ20が設けられ、これには室内2に設けた温度セ
ンサ21の出力が入力されている。
11 and 12 show another embodiment of the present invention. Here, the wet-bulb temperature sensor provided in the air-conditioned space 2 with the external controller 1 and the humidifier 6 by one controller 10 is shown. 11 and the dry bulb temperature sensor 12 are controlled based on the detected values. The air conditioner 3 is separately provided with a controller 20, to which the output of the temperature sensor 21 provided in the room 2 is input.

【0041】以下、この実施例の空調システムの制御工
程を説明する。室内2の乾球温度センサ12の検出信号
は信号経路16を介して、外調機1のコントローラ10
に伝達され、さらに室内2の湿度センサ11の検出信号
は信号経路15を介して外調機のコントローラ10に伝
達される。該乾球温度センサ12の検出した温度が設定
値を上回っており、かつ該湿球温度センサ11の検出し
た湿度が設定値を下回っている場合は、図12において
右下の斜線の領域に室内の環境があることを示すから、
加湿器6を作動させる条件が満たされており、コントロ
ーラ10は操作回路14を介して弁7を開とし、給水配
管8から水を給水して加湿器6を作動させる。
The control process of the air conditioning system of this embodiment will be described below. The detection signal of the dry-bulb temperature sensor 12 in the room 2 is sent via the signal path 16 to the controller 10 of the external air conditioner 1.
Further, the detection signal of the humidity sensor 11 in the room 2 is transmitted to the controller 10 of the external air conditioner via the signal path 15. When the temperature detected by the dry-bulb temperature sensor 12 is higher than the set value and the humidity detected by the wet-bulb temperature sensor 11 is lower than the set value, the indoor area is shown in the lower right shaded area in FIG. Because it indicates that there is an environment of
The condition for operating the humidifier 6 is satisfied, and the controller 10 opens the valve 7 via the operation circuit 14 to supply water from the water supply pipe 8 to operate the humidifier 6.

【0042】加湿器6の作動によって乾球温度が低下す
るとともに、湿度が増加して室内環境は快適ゾーンに接
近する。水噴射や気化式加湿器による加湿の過程は、等
エンタルピ変化となり湿球温度はほとんど変化せず、乾
球温度のみ低下するので、本発明により湿球温度が設定
値以下で乾球温度が設定値以上であることを条件として
加湿を行えば、加湿過剰による蒸し暑さを回避すること
ができる。
The operation of the humidifier 6 lowers the dry-bulb temperature and increases the humidity so that the indoor environment approaches the comfort zone. In the process of water injection and humidification by a vaporization type humidifier, the wet-bulb temperature hardly changes and the dry-bulb temperature only decreases, so the wet-bulb temperature is set below the set value and the dry-bulb temperature is set by the present invention. If the humidification is performed on condition that the value is equal to or more than the value, steaminess due to excessive humidification can be avoided.

【0043】さらに、前記各センサ11,12および加
湿器給水弁7の制御回路14は外調機1のコントローラ
10に接続されているので、外調機1のコントローラ1
0が単独で室内2の状態に対応して、加湿器6を制御す
ることができるので、室内の空調制御が簡単になり、ま
た外調機と加湿器を一体化した製品にすることも可能に
なる。
Further, since the control circuits 14 for the respective sensors 11, 12 and the humidifier feed valve 7 are connected to the controller 10 of the external controller 1, the controller 1 of the external controller 1 is connected.
Since 0 can independently control the humidifier 6 in accordance with the state of the room 2, it becomes easy to control the air conditioning in the room, and it is also possible to make a product that integrates the external conditioner and the humidifier. become.

【0044】ここにおける乾球温度および湿球温度の設
定値は、必ずしも室内2の制御目標値である必要はな
く、加湿器6のための特別な設定値でも差し支えない。
また、ここでは湿球温度センサ11を用いているが、湿
球温度とエンタルピは空気線図上で同じ特性を持ってい
るので、適当なエンタルピセンサを用いてもよい。
The set values of the dry-bulb temperature and the wet-bulb temperature here do not necessarily have to be the control target values for the room 2, and may be special set values for the humidifier 6.
Although the wet-bulb temperature sensor 11 is used here, an appropriate enthalpy sensor may be used because the wet-bulb temperature and the enthalpy have the same characteristics on the psychrometric chart.

【0045】なお、前記の実施例のいずれの実施例にお
いても、暖房運転においても室内に導入する処理空気に
加湿が必要な場合には、本発明によって加湿器を作動さ
せることによって快適環境が得られる。また、前記各実
施例では、ヒートポンプ200として蒸気圧縮式ヒート
ポンプを用いたが、前述した内容によれば、ヒートポン
プ作用のある熱源機であれば何でもよく、例えば、特願
平7−333053に提案したような吸収式ヒートポン
プを用いても差し支えなく、同様の効果を得ることがで
きる。また、本実施例では、熱移送媒体として冷温水を
用いたが、これに替えて直接冷媒の蒸発、凝縮作用を利
用する方式を用いても差し支えない。
In any of the above-mentioned embodiments, when humidification is required for the treated air introduced into the room even during the heating operation, a comfortable environment can be obtained by operating the humidifier according to the present invention. To be Further, in each of the above-mentioned embodiments, the vapor compression heat pump is used as the heat pump 200, but according to the contents described above, any heat source device having a heat pump action may be used, for example, it is proposed in Japanese Patent Application No. 7-333053. Even if such an absorption heat pump is used, the same effect can be obtained. Further, in this embodiment, cold / hot water is used as the heat transfer medium, but instead of this, a method of directly utilizing the evaporation / condensation action of the refrigerant may be used.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
ヒートポンプとデシカントを用いたハイブリッドな空調
方式の外調機と加湿器とを組み合わせ、快適環境を維持
しつつ省エネルギー効果が高い外調機の負荷割合を増加
させることが可能となり、ランニングコストを低下させ
た空調システムを提供することができる。また、センサ
により空調空間内の空調状態を検知し、これに対応して
制御装置が、外調機、空調機及び/又は加湿器を制御す
るので、快適空間を得るための制御が簡単であり、ま
た、外調機及び/又は空調機と加湿器とを一体化した製
品とするのも容易である。
As described above, according to the present invention,
By combining a humidifier with a hybrid air-conditioning system that uses a heat pump and a desiccant, it is possible to increase the load ratio of the external air conditioner, which has a high energy saving effect while maintaining a comfortable environment, and reduces running costs. An air conditioning system can be provided. In addition, since the sensor detects the air-conditioning condition in the air-conditioned space and the control device controls the external conditioner, the air conditioner and / or the humidifier in response to this, the control for obtaining a comfortable space is simple. Also, it is easy to make a product in which the external air conditioner and / or the air conditioner and the humidifier are integrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空調システムの第1の実施例の基
本構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention.

【図2】図1の実施例に係るデシカント外調機の基本構
成を示す説明図である。
FIG. 2 is an explanatory diagram showing a basic configuration of the desiccant external controller according to the embodiment of FIG. 1;

【図3】図1の実施例に係る空気のデシカント空調サイ
クルをモリエル線図で示す説明図である。
3 is an explanatory diagram showing a Mollier diagram of an air desiccant air conditioning cycle according to the embodiment of FIG. 1. FIG.

【図4】本発明の空調システムに係るヒートポンプの熱
の移動を示す説明図である。
FIG. 4 is an explanatory diagram showing heat transfer of a heat pump according to the air conditioning system of the present invention.

【図5】図1の実施例に係る空調システムの制御方法を
説明するモリエル線図である。
5 is a Mollier diagram illustrating a method of controlling the air conditioning system according to the embodiment of FIG.

【図6】本発明に係る空調システムの第2の実施例の基
本構成を示す説明図である。
FIG. 6 is an explanatory diagram showing a basic configuration of a second embodiment of the air conditioning system according to the present invention.

【図7】図6の空調システムの制御フローを示す図であ
る。
7 is a diagram showing a control flow of the air conditioning system in FIG.

【図8】同じく、図6の空調システムの制御フローを示
す図である。
8 is also a diagram showing a control flow of the air conditioning system of FIG.

【図9】同じく、図6の空調システムの制御フローを示
す図である。
9 is also a diagram showing a control flow of the air conditioning system of FIG.

【図10】図1の実施例に係る空調システムの制御方法
を説明するモリエル線図である。
10 is a Mollier diagram for explaining the control method of the air conditioning system according to the embodiment of FIG.

【図11】本発明に係る空調システムの第3の実施例の
基本構成を示す説明図である。
FIG. 11 is an explanatory diagram showing the basic configuration of a third embodiment of the air conditioning system according to the present invention.

【図12】図11の空調システムの制御フローを示す図
である。
12 is a diagram showing a control flow of the air conditioning system of FIG.

【図13】従来の空調システムの構成を示す図である。FIG. 13 is a diagram showing a configuration of a conventional air conditioning system.

【符号の説明】[Explanation of symbols]

1 デシカント外調機 2 室内空間 3 空調機(エアコン) 6 加湿器 7 開閉弁 8 給水配管 10,20,30 コントローラ 11,21 温度センサ 12 湿度センサ 200 ヒートポンプ 102,140 送風機 103 デシカントロータ 104 顕熱熱交換器 210 冷却器(冷水熱交換器) 220 加熱器(温水熱交換器) A 外気導入経路 B 室内空気放出経路 SA 給気 RA 還気 EX 排気 OA 外気 ΔQ 冷房効果 Δq 冷水による冷却量 ΔH 温水による加熱量 1 desiccant outdoor air conditioner 2 indoor space 3 air conditioner (air conditioner) 6 humidifier 7 on-off valve 8 water supply pipe 10, 20, 30 controller 11, 21 temperature sensor 12 humidity sensor 200 heat pump 102, 140 blower 103 desiccant rotor 104 sensible heat Exchanger 210 Cooler (cold water heat exchanger) 220 Heater (hot water heat exchanger) A Outside air introduction path B Indoor air discharge path SA Supply air RA Return air EX Exhaust air OA Outside air ΔQ Cooling effect Δq Cooling amount by cold water ΔH By hot water Heating amount

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 室内空気を循環させて処理する空調機
と、外気を処理して室内に導く外調機とを備え、 前記外調機は、前記室内空気又は外気の一方の水分を吸
着し、他方によって再生されるデシカントと、該デシカ
ントを再生する熱源となるヒートポンプとを備えた空調
システムにおいて、 前記外調機から前記空調空間に至る給気経路中に加湿器
を設けたことを特徴とする空調システム。
1. An air conditioner that circulates and processes indoor air, and an outdoor air conditioner that processes the outdoor air and guides the indoor air to the room, wherein the outdoor air conditioner adsorbs water in one of the indoor air and the outdoor air. In an air conditioning system including a desiccant regenerated by the other and a heat pump serving as a heat source for regenerating the desiccant, a humidifier is provided in an air supply path from the external regulator to the air-conditioned space. Air conditioning system.
【請求項2】 空調空間内に湿度センサと温度センサを
設け、これらの測定値を基に前記外調機及び/又は空調
機の運転を制御する制御装置を設けたことを特徴とする
請求項1に記載の空調システム。
2. A humidity sensor and a temperature sensor are provided in an air-conditioned space, and a control device for controlling the operation of the external air conditioner and / or the air conditioner based on the measured values is provided. The air conditioning system according to 1.
【請求項3】 前記制御装置に予め温度及び湿度又はこ
れらのパラメータを設定し、測定温度が設定温度の上限
を上回り、測定湿度が設定湿度の下限を下回るときに前
記加湿器を動作させるようになっていることを特徴とす
る請求項3に記載の空調システム。
3. The temperature and humidity or these parameters are set in advance in the control device, and the humidifier is operated when the measured temperature exceeds the upper limit of the set temperature and the measured humidity falls below the lower limit of the set humidity. The air conditioning system according to claim 3, wherein:
【請求項4】 前記温度センサとして乾球温度センサを
用いることを特徴とする請求項2に記載の空調システ
ム。
4. The air conditioning system according to claim 2, wherein a dry-bulb temperature sensor is used as the temperature sensor.
【請求項5】 前記湿度センサとして絶対湿度センサを
用いることを特徴とする請求項2に記載の空調システ
ム。
5. The air conditioning system according to claim 2, wherein an absolute humidity sensor is used as the humidity sensor.
【請求項6】 前記湿度のパラメータとして湿球温度を
用いることを特徴とする請求項3に記載の空調システ
ム。
6. The air conditioning system according to claim 3, wherein a wet bulb temperature is used as the humidity parameter.
【請求項7】 前記加湿器は、冷房の際に等エンタルピ
過程又は準等エンタルピ過程で加湿を行なうものである
ことを特徴とする請求項1に記載の空調システム。
7. The air conditioning system according to claim 1, wherein the humidifier performs humidification in an isenthalpic process or a quasi-isenthalpic process during cooling.
【請求項8】 前記加湿器は、水噴射式又は気化式であ
ることを特徴とする請求項1に記載の空調システム。
8. The air conditioning system according to claim 1, wherein the humidifier is a water injection type or a vaporization type.
【請求項9】 前記ヒートポンプが蒸気圧縮式ヒートポ
ンプであることを特徴とする請求項1に記載の空調シス
テム。
9. The air conditioning system according to claim 1, wherein the heat pump is a vapor compression heat pump.
【請求項10】 前記ヒートポンプが吸収式ヒートポン
プであることを特徴とする請求項1に記載の空調システ
ム。
10. The air conditioning system according to claim 1, wherein the heat pump is an absorption heat pump.
【請求項11】 前記外調機のヒートポンプの能力に余
裕がある場合に外調機の能力を増加させ、空調機の能力
を減少させるように制御することを特徴とする請求項1
に記載の空調システム。
11. The control for increasing the capacity of the external air conditioner and decreasing the capacity of the air conditioner when the capacity of the heat pump of the external air conditioner has a margin.
An air conditioning system according to claim 1.
JP16820896A 1996-05-24 1996-06-07 Air conditioning system Pending JPH09329371A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16820896A JPH09329371A (en) 1996-06-07 1996-06-07 Air conditioning system
US08/863,062 US5950442A (en) 1996-05-24 1997-05-23 Air conditioning system
CN97112139.7A CN1202383C (en) 1996-05-24 1997-05-26 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16820896A JPH09329371A (en) 1996-06-07 1996-06-07 Air conditioning system

Publications (1)

Publication Number Publication Date
JPH09329371A true JPH09329371A (en) 1997-12-22

Family

ID=15863800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16820896A Pending JPH09329371A (en) 1996-05-24 1996-06-07 Air conditioning system

Country Status (1)

Country Link
JP (1) JPH09329371A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096684B2 (en) 2002-08-05 2006-08-29 Daikin Industries Ltd. Air conditioner
JP2006329471A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
JP2006329484A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
KR100740770B1 (en) * 2004-03-31 2007-07-19 다이킨 고교 가부시키가이샤 Humidity controller
JP2007285539A (en) * 2006-04-13 2007-11-01 Shin Nippon Air Technol Co Ltd Air conditioning system
US7318320B2 (en) 2002-02-04 2008-01-15 Daikin Industries, Ltd. Humidity control apparatus
JP2010121912A (en) * 2008-11-21 2010-06-03 Daikin Ind Ltd Air conditioning system
JP2011255264A (en) * 2010-06-07 2011-12-22 Taikisha Ltd Heat recovery type low humidity air supply system
JP2012189301A (en) * 2011-03-14 2012-10-04 Osaka Gas Co Ltd Air conditioning system
JP2013096604A (en) * 2011-10-28 2013-05-20 Osaka Gas Co Ltd Cogeneration system
JP2013096605A (en) * 2011-10-28 2013-05-20 Osaka Gas Co Ltd Desiccant air conditioning device
JP2013178024A (en) * 2012-02-28 2013-09-09 Taikisha Ltd Drying furnace apparatus
WO2017029741A1 (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Air-conditioning system
JPWO2019087335A1 (en) * 2017-11-01 2020-11-12 株式会社前川製作所 Livestock barn system
WO2020241358A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Air-conditioning system
WO2020261794A1 (en) * 2019-06-26 2020-12-30 ダイキン工業株式会社 Outside air treatment device and air conditioning system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318320B2 (en) 2002-02-04 2008-01-15 Daikin Industries, Ltd. Humidity control apparatus
US7096684B2 (en) 2002-08-05 2006-08-29 Daikin Industries Ltd. Air conditioner
KR100740770B1 (en) * 2004-03-31 2007-07-19 다이킨 고교 가부시키가이샤 Humidity controller
US8047014B2 (en) 2004-03-31 2011-11-01 Daikin Industries, Ltd. Humidity control system
JP2006329471A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
JP2006329484A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
JP4525465B2 (en) * 2005-05-24 2010-08-18 ダイキン工業株式会社 Air conditioning system
JP4561476B2 (en) * 2005-05-24 2010-10-13 ダイキン工業株式会社 Air conditioning system
JP2007285539A (en) * 2006-04-13 2007-11-01 Shin Nippon Air Technol Co Ltd Air conditioning system
JP2010121912A (en) * 2008-11-21 2010-06-03 Daikin Ind Ltd Air conditioning system
JP2011255264A (en) * 2010-06-07 2011-12-22 Taikisha Ltd Heat recovery type low humidity air supply system
JP2012189301A (en) * 2011-03-14 2012-10-04 Osaka Gas Co Ltd Air conditioning system
JP2013096604A (en) * 2011-10-28 2013-05-20 Osaka Gas Co Ltd Cogeneration system
JP2013096605A (en) * 2011-10-28 2013-05-20 Osaka Gas Co Ltd Desiccant air conditioning device
JP2013178024A (en) * 2012-02-28 2013-09-09 Taikisha Ltd Drying furnace apparatus
WO2017029741A1 (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Air-conditioning system
JPWO2017029741A1 (en) * 2015-08-20 2018-05-24 三菱電機株式会社 Air conditioning system
US10495330B2 (en) 2015-08-20 2019-12-03 Mitsubishi Electric Corporation Air conditioning system
JPWO2019087335A1 (en) * 2017-11-01 2020-11-12 株式会社前川製作所 Livestock barn system
WO2020241358A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Air-conditioning system
JP2020197316A (en) * 2019-05-31 2020-12-10 ダイキン工業株式会社 Air conditioning system
US11402118B2 (en) 2019-05-31 2022-08-02 Daikin Industries, Ltd. Air-conditioning system
WO2020261794A1 (en) * 2019-06-26 2020-12-30 ダイキン工業株式会社 Outside air treatment device and air conditioning system
JP2021004702A (en) * 2019-06-26 2021-01-14 ダイキン工業株式会社 Outside air treatment device and air conditioning system
CN114026368A (en) * 2019-06-26 2022-02-08 大金工业株式会社 Outside air processing device and air conditioning system
CN114026368B (en) * 2019-06-26 2024-01-16 大金工业株式会社 External air treatment device and air conditioning system

Similar Documents

Publication Publication Date Title
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
US5950442A (en) Air conditioning system
JP2968232B2 (en) Air conditioning system and operating method thereof
KR100766054B1 (en) An air conditioning system, a device for air conditioning and a method therefor
US20100242507A1 (en) Dynamic outside air management system and method
JPH09329371A (en) Air conditioning system
JP2010054136A (en) Dry type desiccant device and air heat source heat pump device
JP2008070097A (en) Dehumidifying air conditioner
JPH11101520A (en) Air cycle type air conditioner
CN108800375A (en) Air heat source heat pump type air conditioner
CN107575967A (en) A kind of heat pump type air conditioning system and its operation method suitable for annual operating mode
JP2504315B2 (en) Air conditioner
CN113048584A (en) Runner humidifying device, air conditioning system with same, control method and controller
CN108826541A (en) A kind of dehumidification heat exchange heat pump air conditioning system and its operation method with regenerator
CN105737286B (en) Air conditioning system with humidity adjusting function and control method for humidity adjusting solution regeneration of air conditioning system
JP3729595B2 (en) Air conditioning system and operation method thereof
JP3614775B2 (en) Heat pump air conditioner
JP3933264B2 (en) Dehumidification air conditioning system
JPH09318129A (en) Air-conditioning system
JPH09318128A (en) Air-conditioning system
JP2898866B2 (en) Double coil heat pump package air conditioner
JP3614774B2 (en) Heat pump air conditioner
CN218722159U (en) Temperature and humidity independent control multi-split air conditioner system
JP7312894B1 (en) Air conditioners and air conditioning systems
JPH09318126A (en) Air-conditioning system