JPH11339782A - Manufacture of positive electrode for nonaqueous secondary battery - Google Patents

Manufacture of positive electrode for nonaqueous secondary battery

Info

Publication number
JPH11339782A
JPH11339782A JP10149918A JP14991898A JPH11339782A JP H11339782 A JPH11339782 A JP H11339782A JP 10149918 A JP10149918 A JP 10149918A JP 14991898 A JP14991898 A JP 14991898A JP H11339782 A JPH11339782 A JP H11339782A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium manganate
active material
electrode mixture
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10149918A
Other languages
Japanese (ja)
Inventor
Hidehito Matsuo
秀仁 松尾
Tatsuya Hatanaka
達也 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10149918A priority Critical patent/JPH11339782A/en
Publication of JPH11339782A publication Critical patent/JPH11339782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode having high conductivity of an active material with a current-collector with no particular treatment on metal foil. SOLUTION: In this manufacturing method of the electrode for a nonaqueous secondary battery using lithium manganate as a positive electrode active material, the portion of more than 80 wt.% of the lithium manganate has the average particle size of 20-50 μm. And this manufacturing method has a positive electrode mixture preparation process in which a binder is compounded in the lithium manganate to form them into paste, an embrocation and dry process in which the paste positive electrode mix is embrocated on a current-collector composed of metal foil and it is dried, and a pressure-forming process in which the positive electrode layer formed on the current-collector is pressure-formed such that thickness of the positive electrode layer is set beyond 1/2 and less than 4/5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池正
極の製造方法に関する。
[0001] The present invention relates to a method for producing a positive electrode of a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】非水系二次電池、特にリチウム二次電池
は使用温度範囲が広く、放電電圧が安定で、自己放電率
が極めて小さいなど数々の長所を有する高エネルギー密
度電池として知られている。このリチウム二次電池は、
一般に正極にLiMnO4、LiCoO2などの活物質が
使用されている。この電池では集電体として電極の導電
性を高めるため金属メッシュや金属箔などが使用されて
いる。しかし、金属メッシュを用いると電極の密着性は
良好となるが、コストが高くなるという問題があり、一
方金属箔を用いた場合は、コストは低減はできるが、活
物質と金属箔との密着が不良となりやすいという問題が
ある。
2. Description of the Related Art A non-aqueous secondary battery, particularly a lithium secondary battery, is known as a high energy density battery having many advantages such as a wide operating temperature range, a stable discharge voltage, and an extremely low self-discharge rate. . This lithium secondary battery is
Generally, active materials such as LiMnO 4 and LiCoO 2 are used for the positive electrode. In this battery, a metal mesh or a metal foil is used as a current collector to increase the conductivity of the electrode. However, when a metal mesh is used, the adhesion between the electrodes is good, but the cost is high.On the other hand, when a metal foil is used, the cost can be reduced, but the adhesion between the active material and the metal foil is reduced. However, there is a problem that is likely to be defective.

【0003】この活物質と金属箔との密着性を向上させ
る方法として、集電体を構成する金属箔にワイヤーブラ
ッシング、サンドプラスト、ケミカルエッチング、プラ
ズマ処理等を施し、金属箔の表面に凹凸を形成して金属
箔の展開表面積を増大したものを集電体として使用する
ことが開示されている(特開平6−26543号公
報)。また、負極の集電体として両面に0.1〜20μ
m以下の凹凸を有する電解金属箔をもちいることが開示
されている(特開平6−260168号公報)。
As a method for improving the adhesion between the active material and the metal foil, the metal foil constituting the current collector is subjected to wire brushing, sand plast, chemical etching, plasma treatment, or the like, so that the surface of the metal foil has irregularities. It has been disclosed that a metal foil formed and having an increased surface area for development is used as a current collector (Japanese Patent Application Laid-Open No. 6-26543). Further, as a current collector for the negative electrode, 0.1 to 20 μm on both sides.
It is disclosed that an electrolytic metal foil having irregularities of not more than m is used (JP-A-6-260168).

【0004】[0004]

【発明が解決しようとする課題】本発明は、金属箔に特
別の処理を施すことなく活物質と集電体との導通性が高
い正極の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a positive electrode having high conductivity between an active material and a current collector without performing special treatment on a metal foil.

【0005】[0005]

【課題を解決するための手段】本発明の非水系二次電池
正極の製造方法は、正極活物質としてマンガン酸リチウ
ムを用いた非水系二次電池の正極の製造方法であって、
前記マンガン酸リチウムはその80重量%以上が平均粒
径20〜50μmであり、該マンガン酸リチウムに結着
剤を配合してペースト状にする正極合剤の調製工程と、
前記ペースト状の正極合剤を金属箔からなる集電体に塗
布・乾燥して正極合剤層を形成する塗布乾燥工程と、前
記集電体上に形成された前記正極合剤層を、該正極合剤
層の厚さが1/2を越えて4/5未満となるように加圧
成形する加圧成形工程と、を有することを特徴とする。
The method of manufacturing a positive electrode of a non-aqueous secondary battery of the present invention is a method of manufacturing a positive electrode of a non-aqueous secondary battery using lithium manganate as a positive electrode active material,
A step of preparing a positive electrode mixture in which 80% by weight or more of the lithium manganate has an average particle diameter of 20 to 50 μm, and a binder is mixed with the lithium manganate to form a paste;
Coating and drying the paste-like positive electrode mixture on a current collector made of a metal foil to form a positive electrode mixture layer, and the positive electrode mixture layer formed on the current collector, And a pressure molding step of performing pressure molding so that the thickness of the positive electrode mixture layer is more than 1/2 and less than 4/5.

【0006】マンガン酸リチウムはその80重量%以上
が平均粒径20〜50μmである。活物質であるマンガ
ン酸リチウムの平均粒径が20μm未満では、マンガン
酸リチウムの粒子が集電体を構成する金属箔に食い込む
効果が少なく、電流印加時の通電抵抗が大きくなるので
好ましくない。また、マンガン酸リチウムの平均粒径が
50μmを超えると、電池製造後に活物質による内部短
絡を発生しやすくなり好ましくない。
At least 80% by weight of lithium manganate has an average particle size of 20 to 50 μm. If the average particle size of lithium manganate, which is the active material, is less than 20 μm, the effect of lithium manganate particles digging into the metal foil constituting the current collector is small, and the current-carrying resistance when current is applied is not preferable. On the other hand, if the average particle size of lithium manganate exceeds 50 μm, an internal short circuit due to the active material is likely to occur after the battery is manufactured, which is not preferable.

【0007】また、マンガン酸リチウムの平均粒径が2
0〜50μmのものが80重量%未満であると、マンガ
ン酸リチウムの粒子が金属箔に食い込む効果が小さく、
電流印加時の通電抵抗が大きくなるので好ましくない。
加圧成形工程は得られた正極合剤層を加圧ローラなどで
正極合剤層の厚さを1/2〜4/5となるように加圧成
形して、正極合剤層を圧密化すると共に正極合剤層を形
成するマンガン酸リチウムを集電体を構成する金属箔に
押し付け、マンガン酸リチウム粒子を金属箔の表面にめ
り込ませ、金属箔表面を凹凸化すると共に金属箔とマン
ガン酸リチウムとの当接をより近接したものとし、金属
箔とマンガン酸リチウムとの間の導電性を高めるもので
ある。
Further, the average particle size of lithium manganate is 2
When the content of 0 to 50 μm is less than 80% by weight, the effect of lithium manganate particles digging into the metal foil is small,
It is not preferable because the conduction resistance at the time of applying a current is increased.
In the pressure molding step, the obtained positive electrode mixture layer is subjected to pressure molding using a pressure roller or the like so that the thickness of the positive electrode mixture layer becomes 1/2 to 4/5, and the positive electrode mixture layer is consolidated. At the same time, the lithium manganate forming the positive electrode mixture layer is pressed against the metal foil constituting the current collector, the lithium manganate particles are immersed in the surface of the metal foil, and the metal foil surface is made uneven and the metal foil is formed. The contact between the metal foil and the lithium manganate is made closer and the conductivity between the metal foil and the lithium manganate is increased.

【0008】正極合剤層の厚さが1/2以下になるよう
に圧縮すると、集電体の歪みが大きくなり場合によって
は集電体の一部に破断が発生するので好ましくない。ま
た正極合剤層の厚さが4/5以上になるような条件で加
圧するとマンガン酸リチウム粒子の金属箔表面へのめり
込みが少なく、電流印加時の通電抵抗が大きくなり好ま
しくない。
If the thickness of the positive electrode mixture layer is reduced to 以下 or less, the current collector is undesirably strained, and in some cases, a part of the current collector is broken. Further, when pressure is applied under such a condition that the thickness of the positive electrode mixture layer becomes 4/5 or more, the penetration of lithium manganate particles into the surface of the metal foil is small, and the current-carrying resistance when current is applied is not preferable.

【0009】上記したように、正極活物質の粒径とその
分布および加圧成形による正極合剤層の厚さを特定する
ことにより、正極活物質が集電体と密着して、内部抵抗
および短絡の無い正極を容易に製造することができる。
As described above, by specifying the particle size and distribution of the positive electrode active material and the thickness of the positive electrode mixture layer formed by pressure molding, the positive electrode active material comes into close contact with the current collector, and the internal resistance and A positive electrode without a short circuit can be easily manufactured.

【0010】[0010]

【発明の実施の形態】本発明の非水系二次電池正極の製
造方法は、正極合剤の調製工程と塗布乾燥工程と加圧成
形工程とからなる。正極合剤は活物質としてのマンガン
酸リチウムと結着剤それに溶媒よりなる。結着剤として
はポリフッ化ビニリデン(PVDF)等の通常用いられ
るものが使用できる。結着剤の配合量はマンガン酸リチ
ウム100重量部に対して3〜15が好ましい。ペース
トを形成する溶媒としてはN−メチル−2ピロリドン
(NMP)を用いることができる。ペースト状の正極合
剤はマンガン酸リチウム、結着剤及び溶媒をホモジナイ
サー、ボールミル等で混合することにより調製すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a positive electrode of a non-aqueous secondary battery according to the present invention comprises a step of preparing a positive electrode mixture, a step of coating and drying, and a step of pressure molding. The positive electrode mixture comprises lithium manganate as an active material, a binder, and a solvent. As the binder, a commonly used binder such as polyvinylidene fluoride (PVDF) can be used. The compounding amount of the binder is preferably 3 to 15 based on 100 parts by weight of lithium manganate. N-methyl-2-pyrrolidone (NMP) can be used as a solvent for forming the paste. The paste-like positive electrode mixture can be prepared by mixing lithium manganate, a binder, and a solvent with a homogenizer, a ball mill, or the like.

【0011】塗布乾燥工程は前記したペースト状の正極
合剤を集電体を構成する金属箔に塗布し乾燥して正極合
剤層とする工程である。この塗布乾燥工程において従来
と同じロールコーター等で塗布し、加熱空気を吹き付け
る等で正極合剤層を得ることができる。
The coating and drying step is a step in which the above-mentioned paste-like positive electrode mixture is applied to a metal foil constituting a current collector and dried to form a positive electrode mixture layer. In this coating and drying step, the positive electrode mixture layer can be obtained by applying the same roll coater or the like as in the related art and blowing heated air.

【0012】[0012]

【実施例】以下、実施例により具体的に説明する。 (実施例)正極合剤の調製工程は、正極活物質に平均粒
径25μmのリチウムマンガンスピネル(LiMn
24、91重量部)を、導電剤にケッチェンブラック
(2重量部)および、結着剤のポリフッ化ビニリデン粉
末(7重量部)とをN−メチルピロリドン中で混合しペ
ースト化した。
The present invention will be specifically described below with reference to examples. (Example) In the step of preparing a positive electrode mixture, a lithium manganese spinel (LiMn
2 O 4 , 91 parts by weight) were mixed with Ketjen black (2 parts by weight) as a conductive agent and polyvinylidene fluoride powder (7 parts by weight) as a binder in N-methylpyrrolidone to form a paste.

【0013】塗布乾燥工程では、上記の工程で作製した
ペーストを20μmの圧延アルミニウム箔(正極集電
体)に片面が70μmになるように両面に塗布・乾燥し
た。加圧成形工程では、上記の工程で形成した正極合剤
層をロール成形機で加圧し正極合剤層の厚みが125μ
mになるように成形して正極板を作製した。この時の成
形比は、(成形後の厚さ/成形前の厚さ)×100=
(125−20)/(70×2)×100で75%=3
/4の厚みであった。
In the coating and drying step, the paste prepared in the above step was coated and dried on a rolled aluminum foil (positive electrode current collector) of 20 μm so that one side became 70 μm. In the pressure molding step, the positive electrode mixture layer formed in the above step is pressurized by a roll forming machine to reduce the thickness of the positive electrode mixture layer to 125 μm.
m to form a positive electrode plate. The molding ratio at this time is (thickness after molding / thickness before molding) × 100 =
(125-20) / (70 × 2) × 100 = 75% = 3
/ 4.

【0014】負極板は、活物質に平均粒径25μmの人
造黒鉛(90重量部)と、結着剤のポリフッ化ビニリデ
ン粉末(10重量部)とをN−メチルピロリドン中で混
合しペースト化し、20μmの銅箔(負極集電体)に片
面が60μmになるように両面塗布の後、ロール成形機
にて所望の厚さに成形した。上記で作製した正極板およ
び負極板を金属缶に入れ、リチウムイオンを含む有機電
解液(例えば、エチレンカーボネート、ジエチルカーボ
ネートを体積比で、1:1で混合した溶液に6フッ化燐
酸リチウムを1モル/リットル溶解させた液)を含浸さ
せた後、封缶した電池を実施例の電池とした。
In the negative electrode plate, artificial graphite (90 parts by weight) having an average particle size of 25 μm and polyvinylidene fluoride powder (10 parts by weight) as a binder are mixed in N-methylpyrrolidone as an active material to form a paste. After coating on both sides of a 20 μm copper foil (negative electrode current collector) so that one side would be 60 μm, it was formed into a desired thickness by a roll forming machine. The positive electrode plate and the negative electrode plate prepared as above are placed in a metal can, and an organic electrolytic solution containing lithium ions (for example, a solution obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 is mixed with 1 part of lithium hexafluorophosphate. (Mol / liter dissolved liquid), and the sealed battery was used as the battery of the example.

【0015】(比較例1)実施例において、正極活物質
の平均粒径が7μmと本発明の範囲より小さいリチウム
マンガンスピネルを用いた以外は、実施例と同じ配合、
成形厚で成形した正極板と、実施例と同じ負極板、電解
液を含むセパレータを用いて電池を作製し比較例1の電
池とした。
(Comparative Example 1) The same composition as in Example 1 except that lithium manganese spinel having an average particle diameter of the cathode active material of 7 μm smaller than the range of the present invention was used.
A battery was manufactured using a positive electrode plate molded to a molding thickness, the same negative electrode plate as in the example, and a separator containing an electrolytic solution, to obtain a battery of Comparative Example 1.

【0016】(比較例2)実施例において、正極活物質
の平均粒径が60μmと本発明の範囲より大きいリチウ
ムマンガンスピネルを用いた以外は、実施例と同じ配
合、成形厚で成形した正極板と、実施例と同じ負極板、
電解液を含むセパレータを用いて電池を作製し比較例2
の電池とした。
Comparative Example 2 A positive electrode plate molded with the same composition and thickness as in the example except that the lithium manganese spinel having an average particle diameter of the positive electrode active material of 60 μm larger than the range of the present invention was used in the example. And the same negative electrode plate as in the example,
Comparative Example 2 A battery was manufactured using a separator containing an electrolytic solution.
Battery.

【0017】(比較例3)実施例において、正極合剤層
の成形厚みを139μm(成形比85%=4/5未満で
圧縮度合が本発明の範囲より少ない場合)にした以外
は、実施例と同じ配合、塗布厚で成形した正極板と、実
施例と同じ負極板、電解液を含むセパレータを用いて電
池を作製し比較例3の電池とした。
(Comparative Example 3) The procedure of Example 1 was repeated except that the molded thickness of the positive electrode mixture layer was 139 μm (when the molding ratio was less than 85% and the degree of compression was less than the range of the present invention). A battery was produced using the positive electrode plate molded with the same composition and coating thickness as in Example 1, a negative electrode plate as in Example, and a separator containing an electrolytic solution, to obtain a battery of Comparative Example 3.

【0018】(比較例4)実施例において、正極合層の
成形厚みを83μm(成形比45%=1/2を超え圧縮
度合が本発明の範囲より大きい場合)にした以外は、実
施例と同じ配合、塗布厚で正極板を成形した。この正極
板を観察すると、数カ所で、集電体の破断が見られて、
電極としては使用できない状態であった。
(Comparative Example 4) The procedure of Example 1 was repeated except that the molded thickness of the positive electrode composite layer was 83 μm (when the molding ratio exceeded 45% = 1/2 and the degree of compression was larger than the range of the present invention). A positive electrode plate was molded with the same composition and coating thickness. When observing this positive electrode plate, the current collector was broken at several places,
It could not be used as an electrode.

【0019】(比較例5)実施例において、正極活物質
の75%を平均粒径が25μm(本発明の範囲より少な
い場合)、残りを平均粒径15μmのリチウムマンガン
スピネルを用いた以外は、実施例と同じ配合、成形厚で
成形した正極板と、実施例と同じ負極板、電解液を含む
セパレータを用いて電池を作製し比較例5の電池とし
た。
(Comparative Example 5) In Example, except that 75% of the positive electrode active material was made of lithium manganese spinel having an average particle diameter of 25 μm (when less than the range of the present invention) and the remaining 15 μm of average particle diameter, A battery was manufactured using the positive electrode plate molded in the same composition and thickness as in the example, the same negative electrode plate as in the example, and a separator containing an electrolytic solution to obtain a battery of Comparative Example 5.

【0020】(評価)実施例、比較例1、比較例2、比
較例3、比較例5で製造した各電池を10本づつ、0.
1Cで4.2Vまで充電し、その後、0.1Cで3.0
Vまで放電するサイクルを3回繰り返した後、14日間
20℃で放置後回路電圧を測定した。このうち、比較例
2の電池から、回路電圧が2.0V以下のものが2本検
出された。これは、正極活物質の粒径が大きすぎたた
め、活物質がセパレータを突き破り、微小な内部短絡を
起こしたものであった。
(Evaluation) Each of the batteries manufactured in Example, Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 5 was used in an amount of 0.1.
Charge to 4.2V at 1C, then 3.0 at 0.1C
After repeating the cycle of discharging to V three times, the circuit voltage was measured after standing at 20 ° C. for 14 days. Among them, two batteries having a circuit voltage of 2.0 V or less were detected from the batteries of Comparative Example 2. This is because the particle size of the positive electrode active material was too large, so that the active material broke through the separator and caused a minute internal short circuit.

【0021】実施例、比較例1、比較例3、比較例5を
0.1Cで4.2Vまで充電した後、10Cで放電した
際の2秒後の通電抵抗((開回路電圧−2秒後の閉回路
電圧)/通電電流で表す)を表1に示す。 表1に示すように、本発明の実施例が最も通電抵抗が低
い。正極活物質の平均粒径が、7μmと小さい比較例1
では、通電抵抗が497mΩと実施例の318mΩに比
べて大きい。正極活物質の平均粒径が60μmと大きい
場合には、上記したように内部短絡が発生して電池とし
ての充分な性能を示さない。比較例3の成形比が大きい
加圧度合が85%と少ない場合は、集電体と正極活物質
との密着性が不十分で通電抵抗が比較例1よりも大きく
なっている。成形比が45%と加圧度合が高いと比較例
4のように電極が破断してしまっている。比較例5のよ
うに正極活物質の平均粒径分布で小粒径のものが多くな
った場合でも実施例に比べて、通電抵抗が大きい。した
がって、本発明の製造条件の範囲とすることで電気抵抗
が小さく高出力の非水系二次電池の正極が得られてい
る。
After the Example, Comparative Examples 1, 3 and 5 were charged at 0.1 C to 4.2 V and then discharged at 10 C, the current flow resistance after 2 seconds ((open circuit voltage-2 seconds) Table 1 shows the following closed circuit voltage) / current. As shown in Table 1, the embodiment of the present invention has the lowest energization resistance. Comparative Example 1 in which the average particle size of the positive electrode active material was as small as 7 μm.
In this case, the conduction resistance is 497 mΩ, which is larger than 318 mΩ in the embodiment. When the average particle diameter of the positive electrode active material is as large as 60 μm, internal short-circuit occurs as described above, and the battery does not exhibit sufficient performance. When the molding ratio of Comparative Example 3 is large and the degree of pressurization is as small as 85%, the adhesion between the current collector and the positive electrode active material is insufficient, and the current-carrying resistance is higher than that of Comparative Example 1. When the molding ratio was high at 45%, the electrode was broken as in Comparative Example 4. Even when the average particle size distribution of the positive electrode active material is small in the average particle size distribution as in Comparative Example 5, the current-carrying resistance is higher than in the example. Therefore, a positive electrode of a non-aqueous secondary battery having a small electric resistance and a high output can be obtained by setting the production conditions in the range of the present invention.

【0022】[0022]

【発明の効果】上述したように本発明の非水系二次電池
正極の製造方法では、正極活物質のマンガン酸リチウム
の平均粒径とその分布および活物質の集電体への成形比
を特定したことにより、未加工の無垢の集電体を用いて
も、正極活物質のマンガン酸リチウムの集電体に食い込
み効果が大きくなり、活物質と集電体との密着性が向上
して、正極活物質と集電体間の電気抵抗を低減させた正
極を製造することができる。
As described above, in the method for producing a positive electrode of a non-aqueous secondary battery of the present invention, the average particle diameter and distribution of lithium manganate of the positive electrode active material and the molding ratio of the active material to the current collector are specified. By doing so, even if an unprocessed solid current collector is used, the effect of digging into the positive electrode active material lithium manganate current collector is increased, and the adhesion between the active material and the current collector is improved, A positive electrode with reduced electric resistance between the positive electrode active material and the current collector can be manufactured.

【0023】したがって、未加工の無垢の集電体が利用
できコストダウンが可能となり、本発明の正極電極を用
いた二次電池は、電流印加時の電気抵抗が小さく、高出
力の電池として有用である。
Therefore, a raw solid current collector can be used and the cost can be reduced, and the secondary battery using the positive electrode of the present invention has a small electric resistance when a current is applied and is useful as a high-output battery. It is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極活物質としてマンガン酸リチウムを用
いた非水系二次電池の正極の製造方法であって、 前記マンガン酸リチウムはその80重量%以上が平均粒
径20〜50μmであり、該マンガン酸リチウムに結着
剤を配合してペースト状にする正極合剤の調製工程と、 前記ペースト状の正極合剤を金属箔からなる集電体に塗
布・乾燥して正極合剤層を形成する塗布乾燥工程と、 前記集電体上に形成された前記正極合剤層を、該正極合
剤層の厚さが1/2を越えて4/5未満となるように加
圧成形する加圧成形工程と、を有することを特徴とする
非水系二次電池正極の製造方法。
1. A method for producing a positive electrode of a non-aqueous secondary battery using lithium manganate as a positive electrode active material, wherein at least 80% by weight of the lithium manganate has an average particle size of 20 to 50 μm. A step of preparing a positive electrode mixture into a paste by mixing a binder with lithium manganate; applying the paste-like positive electrode mixture to a current collector made of a metal foil and drying to form a positive electrode mixture layer Applying and drying the positive electrode mixture layer formed on the current collector so that the thickness of the positive electrode mixture layer is more than 1/2 and less than 4/5. And a pressure forming step.
JP10149918A 1998-05-29 1998-05-29 Manufacture of positive electrode for nonaqueous secondary battery Pending JPH11339782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10149918A JPH11339782A (en) 1998-05-29 1998-05-29 Manufacture of positive electrode for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10149918A JPH11339782A (en) 1998-05-29 1998-05-29 Manufacture of positive electrode for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11339782A true JPH11339782A (en) 1999-12-10

Family

ID=15485441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10149918A Pending JPH11339782A (en) 1998-05-29 1998-05-29 Manufacture of positive electrode for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11339782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195844B2 (en) 2002-03-28 2007-03-27 Tdk Corporation Lithium secondary battery
JP2008146894A (en) * 2006-12-07 2008-06-26 Matsushita Electric Ind Co Ltd Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using it
WO2016067402A1 (en) * 2014-10-29 2016-05-06 株式会社日立製作所 Lithium ion battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195844B2 (en) 2002-03-28 2007-03-27 Tdk Corporation Lithium secondary battery
US7413829B2 (en) 2002-03-28 2008-08-19 Tdk Corporation Lithium secondary battery
JP2008146894A (en) * 2006-12-07 2008-06-26 Matsushita Electric Ind Co Ltd Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using it
WO2016067402A1 (en) * 2014-10-29 2016-05-06 株式会社日立製作所 Lithium ion battery

Similar Documents

Publication Publication Date Title
EP3588628B1 (en) Lithium ion battery
JP5334156B2 (en) Method for producing non-aqueous electrolyte secondary battery
EP2424014A2 (en) Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing electrode for nonaqueous electrolyte secondary battery
CN109904523B (en) Method for manufacturing sulfide solid-state battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN105977469A (en) High-performance lithium titanate battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP5515724B2 (en) Anode for non-aqueous electrolyte secondary battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JPH06260168A (en) Lithium secondary battery
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
WO2015132845A1 (en) All-solid-state battery
JP2019075237A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP3693827B2 (en) Electrode plate fabrication method
JP4151459B2 (en) Method for manufacturing electrode plate and non-aqueous electrolyte secondary battery using electrode plate obtained by this manufacturing method
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JPH11339782A (en) Manufacture of positive electrode for nonaqueous secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery