WO2016067402A1 - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
WO2016067402A1
WO2016067402A1 PCT/JP2014/078834 JP2014078834W WO2016067402A1 WO 2016067402 A1 WO2016067402 A1 WO 2016067402A1 JP 2014078834 W JP2014078834 W JP 2014078834W WO 2016067402 A1 WO2016067402 A1 WO 2016067402A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
current collector
mixture layer
lithium ion
Prior art date
Application number
PCT/JP2014/078834
Other languages
French (fr)
Japanese (ja)
Inventor
利光 野口
和明 直江
祐介 加賀
新平 尼崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/078834 priority Critical patent/WO2016067402A1/en
Publication of WO2016067402A1 publication Critical patent/WO2016067402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery.
  • T / 4 is the thickness of the electrode mixture layer on one side of the electrode plate obtained by coating, drying and pressing the electrode mixture layer containing the electrode active material on the current collector.
  • a lithium ion secondary battery in which particles having a particle diameter are contained in an electrode plate is described.
  • lithium ion batteries As a characteristic of lithium ion batteries, higher output is required. In order to achieve high output, for example, it is effective to reduce the thickness of the electrode. However, when the amount of the active material is reduced by reducing the thickness of the electrode, the battery capacity per unit electrode is reduced. In addition, when the electrode mixture layer becomes thinner due to the thinning of the electrode, primary particles having an average particle diameter larger than the thickness of the electrode mixture layer become apparent, the irregularities on the surface of the electrode increase, and the surface roughness of the electrode increases. Increases.
  • Patent Document 1 describes a battery electrode plate that contains particles that act on a current collector so as to be locally thin when pressed. However, it aims to provide a battery with excellent safety as an overcurrent interruption function at the time of a short circuit, and does not mention thinning of an electrode for realizing high output of a lithium ion battery.
  • the present invention provides a lithium ion battery capable of realizing high output without reducing battery capacity and without deteriorating reliability.
  • a lithium ion battery according to the present invention has an electrode on which an electrode mixture layer containing an active material, a conductive additive, and a binder is attached to the first surface of a current collector,
  • the active material includes first active material particles having a first average particle diameter (D1) and second active material particles having a second average particle diameter (D2) larger than the first average particle diameter (D1). It is out.
  • the thickness (T1) of the electrode mixture layer is in the range of D1 ⁇ T1 ⁇ (3 ⁇ D1), and the second active material particles include a portion pressed into the current collector, and the electrode mixture layer. And a portion exposed on the surface of the substrate.
  • the present invention it is possible to provide a lithium ion battery that can achieve high output without reducing battery capacity and without deteriorating reliability.
  • FIG. 2 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 1.
  • FIG. 3 is a process diagram illustrating a manufacturing process of an electrode of a lithium ion battery according to Example 1. 3 is a cross-sectional view schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 1.
  • FIG. (A) is sectional drawing which shows typically the electrode in a drying process
  • (b) is sectional drawing which shows typically the electrode in a heating compression process. It is sectional drawing which shows typically the electrode of the lithium ion battery by a comparative example.
  • FIG. 6 is a process diagram showing a manufacturing process of an electrode of a lithium ion battery according to Example 2.
  • FIG. 6 is a cross-sectional view schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 2.
  • FIG. (A) is sectional drawing which shows typically the electrode in an application
  • (b) is sectional drawing which shows typically the electrode in a drying process
  • (c) is sectional drawing which shows typically the electrode in a heating compression process.
  • It is. 6 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 3.
  • FIG. 6 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 4.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • Lithium ion battery First, the basics of the lithium ion battery, the schematic configuration of the lithium ion battery, and the charging / discharging mechanism of the lithium ion battery will be described.
  • Lithium has an oxidation-reduction potential of -3.03 V (vs. Normal Hydrogen Electrode, NHE), and is the most basic metal on the earth.
  • the battery voltage is the potential difference between the positive electrode and the negative electrode. Therefore, when lithium is used as the negative electrode active material, the highest electromotive force can be obtained, and since the atomic weight of lithium is 6.94 and the density is 0.534 g / cm 3 , the unit is small. Therefore, when lithium is used for the negative electrode active material, a small and light battery can be manufactured.
  • lithium is an attractive material as a negative electrode active material of a battery, but problems arise when applied to a chargeable / dischargeable secondary battery. That is, when charging and discharging are repeated in a secondary battery using lithium as a negative electrode active material, a discharge reaction due to dissolution of lithium and a charge reaction due to lithium deposition occur. In this case, a lithium deposition reaction occurs due to repeated charging, which causes a problem in performance deterioration or safety of the secondary battery.
  • lithium produced in the charging process reacts with the electrolyte solvent on the active surface, and part of it is consumed for the formation of a film called SEI (Solid Electrolyte Interface). For this reason, the internal resistance of the battery increases and the discharge efficiency also decreases. In other words, the battery capacity decreases each time the charge / discharge cycle is repeated. Furthermore, when rapidly charged, lithium precipitates in a needle-like / dendritic crystal form (lithium dendrite), which causes various troubles in the secondary battery. For example, lithium dendrite has a large specific surface area, accelerates the decrease in current efficiency due to side reactions, and also has a needle-like / dendritic shape, and may break through the separator to cause an internal short circuit between the positive electrode and the negative electrode.
  • SEI Solid Electrolyte Interface
  • the self-discharge is so large that it cannot be used as a battery, or gas may be ejected or ignited due to heat generated by an internal short circuit. From the above, it can be seen that a secondary battery using lithium as the negative electrode active material has a problem in performance deterioration or safety.
  • a new type secondary battery having a principle different from the conventional principle of dissolution and precipitation has been studied.
  • a secondary battery using an active material that inserts and desorbs lithium ions into both the positive electrode and the negative electrode has been studied.
  • This type of secondary battery is called “rocking chair” type or “shuttle cock” type, and is stable because only lithium ions are inserted and desorbed with repeated charging and discharging.
  • this type of battery is referred to as a lithium ion battery.
  • the structure of the lithium ion battery is not changed during charging / discharging of both the positive electrode and the negative electrode, and only lithium ions are inserted and desorbed (however, the active material crystal lattice is lithium ion).
  • the active material crystal lattice is lithium ion.
  • it has a characteristic that it has a long life cycle characteristic and does not use metallic lithium for the positive electrode and the negative electrode, so that safety is drastically improved.
  • a material capable of inserting / extracting lithium ions is used for the active material of the positive electrode and the negative electrode.
  • the conditions required for this active material are as follows. That is, since ions of a finite size called lithium ions are inserted and desorbed, a site (position) where lithium ions should be stored and a channel (path) through which lithium ions can be diffused are required for the active material. Furthermore, electrons need to be introduced into the active material as lithium ions are inserted (occluded).
  • a lithium-containing transition metal oxide can be given.
  • typical positive electrode active materials include, but are not limited to, lithium cobaltate, lithium nickelate, and lithium manganate.
  • the positive electrode active material is a material into which lithium can be inserted / extracted, and may be any lithium-containing transition metal oxide in which a sufficient amount of lithium has been inserted in advance.
  • the transition metal include manganese, nickel, It may be a simple substance such as cobalt or iron, or a material mainly composed of two or more kinds of transition metals.
  • the crystal structure such as the spinel crystal structure or the layered crystal structure is not particularly limited as long as the above-described site and channel are ensured.
  • transition metal in the crystal or a part of lithium is replaced with an element such as iron, cobalt, nickel, chromium, aluminum, or manganese, or iron, cobalt, nickel, chromium, aluminum, or manganese is included in the crystal.
  • an element such as iron, cobalt, nickel, chromium, aluminum, or manganese, or iron, cobalt, nickel, chromium, aluminum, or manganese is included in the crystal.
  • a material doped with these elements may be used as the positive electrode active material.
  • examples of the negative electrode active material that satisfies the above-described conditions include a crystalline carbon material or an amorphous carbon material.
  • the negative electrode active material is not limited to these materials.
  • natural graphite, various artificial graphite agents, or carbon materials such as coke may be used.
  • various particle shapes such as a scale shape, a spherical shape, a fiber shape, or a lump shape are applicable.
  • the lithium ion battery has a battery outer container, and the battery outer container is filled with an electrolytic solution.
  • a positive electrode plate and a negative electrode plate are provided opposite to each other inside the battery outer container filled with the electrolytic solution, and a separator is disposed between the positive electrode plate and the negative electrode plate provided to face each other. Yes.
  • an aluminum or nickel-plated iron metal container or an aluminum laminate sheet is used as a general battery exterior container.
  • the positive electrode active material is coated on the positive electrode current collector, and in the negative electrode plate, the negative electrode active material is coated on the negative electrode current collector.
  • the positive electrode active material is formed of, for example, a lithium-containing transition metal oxide capable of inserting / extracting lithium ions.
  • the positive electrode current collector and the positive electrode active material constitute a positive electrode.
  • the negative electrode active material is formed of, for example, a carbon material capable of inserting / extracting lithium ions.
  • the negative electrode is composed of the negative electrode current collector and the negative electrode active material.
  • the positive electrode is formed by applying a coating liquid containing a positive electrode active material and a binder to the current collector of the positive electrode and drying it, followed by pressurization.
  • a positive electrode current collecting tab functioning as a lead wire is formed at the end or back surface of the positive electrode, and current is input and output through the positive electrode current collecting tab.
  • the positive electrode active material constituting the positive electrode for example, the above-described materials typified by lithium cobaltate, lithium nickelate, or lithium manganate can be used.
  • the binder for example, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, or the like can be used.
  • particles such as natural graphite, artificial graphite, or acetylene black may be added as a conductive aid.
  • the positive electrode current collector is made of, for example, a metal foil or a net-like metal made of a conductive metal such as aluminum, and the positive electrode current collecting tab is made of, for example, aluminum.
  • the negative electrode is formed by applying a coating liquid containing a negative electrode active material and a binder to the current collector of the negative electrode and drying it, followed by pressurization.
  • a negative electrode current collecting tab functioning as a lead wire is formed on the end or back surface of the negative electrode, and current is taken in and out through the negative electrode current collecting tab.
  • the negative electrode active material constituting the negative electrode for example, the above-described materials typified by a carbon material or a silicon alloy can be used.
  • the binder for example, polyvinylidene fluoride or polytetrafluoroethylene can be used.
  • particles such as natural graphite, artificial graphite, or acetylene black may be added as a conductive aid.
  • the current collector of the negative electrode for example, a metal foil or a net-like metal made of a conductive metal such as copper is used, and the negative current collector tab is made of, for example, copper or nickel.
  • the separator has a function as a spacer that allows lithium ions to pass while preventing electrical contact between the positive electrode and the negative electrode.
  • a high-strength and thin microporous membrane has been used as the separator.
  • This microporous membrane also has the functions of preventing abnormal current due to battery short circuit, rapid internal pressure, temperature rise, and ignition.
  • the separator has a function of preventing electrical contact between the positive electrode and the negative electrode and allowing lithium ions to pass therethrough, and further has a function as a thermal fuse for preventing short circuit and overcharge. It will be.
  • the shutdown function of this microporous membrane can keep the lithium ion battery safe. For example, when a lithium ion battery causes an external short circuit for some reason, there is a risk that a large current flows instantaneously but the temperature rises abnormally due to Joule heat. At this time, if a microporous membrane is used as a separator, the microporous membrane blocks pores (microporous) in the vicinity of the melting point of the membrane material, thus preventing lithium ion permeation between the positive electrode and the negative electrode. can do. In other words, by using a microporous membrane as a separator, current can be interrupted when an external short circuit occurs, and the temperature rise inside the lithium ion battery can be stopped.
  • the separator composed of the microporous membrane for example, polyethylene (Polythylene, PE), polypropylene (Polypropylene, PP), or a combination of these materials can be used.
  • Electrolytic solution is a non-aqueous electrolytic solution.
  • a lithium ion battery is a battery that charges and discharges using insertion / extraction of lithium ions in an active material, and lithium ions move in an electrolyte solution.
  • Lithium is a strong reducing agent and reacts violently with water to generate hydrogen gas. Therefore, in a lithium ion battery in which lithium ions move in the electrolytic solution, an aqueous solution cannot be used as the electrolytic solution. For this reason, in the lithium ion battery, a nonaqueous electrolytic solution is used as the electrolytic solution.
  • the electrolyte of the non-aqueous electrolyte for example LiPF 6, LiClO 4, LiAsF 6 , LiBF 4, LiB (C 6 H 5) 4, CH 3 SO 3 Li, or the like CF 3 SO 3 Li, or Mixtures of these can be used.
  • the organic solvent for example, ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate, or the like can be used.
  • examples of the organic solvent include 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl Sulfolane, acetonitrile, propionitrile or the like can be used. Further, a mixed solution of the organic solvent described above can be used.
  • lithium ions inserted in the positive electrode active material are desorbed and released into the electrolytic solution.
  • the lithium ions are desorbed from the positive electrode active material, whereby electrons flow from the positive electrode to the charger.
  • the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode.
  • the lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode.
  • lithium ions are inserted into the negative electrode active material, electrons flow into the negative electrode. In this way, charging is completed as electrons move from the positive electrode to the negative electrode via the charger.
  • lithium ions can be charged and discharged by being inserted and desorbed between the positive electrode active material and the negative electrode active material.
  • Lithium ion batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones.
  • lithium ion batteries capable of realizing high capacity, high output, and high energy density as batteries for electric vehicles or power storage batteries.
  • development of an electric vehicle using a motor as a power source and a hybrid vehicle using both an engine (internal combustion engine) and a motor as a power source are in progress.
  • Lithium ion batteries have attracted attention as power sources for such electric vehicles and hybrid vehicles.
  • a lithium ion battery includes, for example, an electrode laminate in which a positive electrode plate coated with a positive electrode active material, a negative electrode plate coated with a negative electrode active material, and a separator that prevents contact between the positive electrode plate and the negative electrode plate are laminated. Yes.
  • an electrode winding body in which a positive electrode plate coated with a positive electrode active material, a negative electrode plate coated with a negative electrode active material, and a separator that prevents contact between the positive electrode plate and the negative electrode plate is provided.
  • electrolyte solution is inject
  • the battery outer container a metal cylindrical container or a rectangular container is used, but a laminate sheet made of a laminate of a metal sheet and a polymer resin sheet is also used for weight reduction and thickness reduction. Yes.
  • FIG. 1 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to the first embodiment.
  • the electrode ER1 includes a current collector (also referred to as an electrode plate, a current collector foil, an electrode foil, a metal foil, etc.) CU, and both surfaces of the current collector CU (second surface opposite to the first surface S1 and the first surface S1). It consists of the electrode mixture layer EX formed in S2), and the electrode mixture layer EX contains an active material, a conductive additive (also referred to as a conductive agent), and a binder (also referred to as a binder). Furthermore, the active material is, for example, a first active material particle CP1 having a first average particle diameter of about 3 ⁇ m and a second active material particle having a second average particle diameter larger than the first average particle diameter, for example, about 10 ⁇ m. CP2 is included. The second active material particles are primary particles in which single crystals or crystallites close to them are collected, and are not aggregates or aggregates.
  • the thickness T1 of the electrode mixture layer EX is, for example, about 5 to 20 ⁇ m, and the thickness T2 of the current collector CU is, for example, about 5 to 20 ⁇ m.
  • the thickness T1 of the electrode mixture layer EX is the average value of the thickness of the particle layer composed only of the first active material particles CP1 from the first surface S1 (or the second surface S2) of the current collector CU.
  • the first average particle diameter of the first active material particles CP1 is D1
  • the range is set to D1 ⁇ T1 ⁇ (3 ⁇ D1). That is, the electrode mixture layer EX corresponds to a state in which the first active material particles CP1 are in one layer to a state in which the first active material particles CP1 are in three layers.
  • the second active material particles CP2 are present in the particle layer composed only of the first active material particles CP1. Further, a part of the second active material particle CP2 is a part that is pushed into the current collector CU (A region shown in FIG. 1) and a part that is exposed on the surface of the electrode mixture layer EX (in FIG. 1). B region).
  • FIG. 2 is a process diagram showing the manufacturing process of the electrode of the lithium ion battery according to the first embodiment.
  • 3A and 3B are cross-sectional views schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 1, wherein FIG. 3A is a cross-sectional view of the electrode in the drying process, and FIG. 3B is a cross-sectional view of the electrode in the heating and compression process.
  • FIG. 3A is a cross-sectional view of the electrode in the drying process
  • FIG. 3B is a cross-sectional view of the electrode in the heating and compression process.
  • the active material is formed by mixing the first active material particles CP1 having a first average particle diameter of, for example, about 3 ⁇ m with the second active material particles CP2 having a second average particle diameter of, for example, about 10 ⁇ m.
  • the second active material particles CP2 are mixed so that the second active material particles CP2 are about 20% by weight with respect to the weight of the active material contained in the electrode mixture layer EX.
  • the first average particle diameter of the first active material particle CP1 and the second average particle diameter of the second active material particle CP2 can be determined by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
  • graphite and carbon black are mixed as the conductive material into the active material
  • polyvinylidene fluoride is mixed as the binder
  • a solvent capable of dissolving the binder such as N-methyl-2-pyrrolidone
  • the solution is added and mixed with a planetary mixer to form a slurry electrode mixture.
  • a slurry-like electrode mixture is applied to the first surface S1 of the current collector CU using a die coater.
  • the current collector CU in the case of the positive electrode, for example, an aluminum foil having a thickness of about 20 ⁇ m is used, and in the case of the negative electrode, for example, a copper foil having a thickness of about 10 ⁇ m is used.
  • the application means for example, an extrusion coater, a reverse roller, a doctor blade, an applicator, or a spray can be used.
  • the electrode mixture layer EX is formed on the first surface S1 and the second surface S2).
  • the electrode mixture layer EX formed on both surfaces (the first surface S1 and the second surface S2) of the current collector CU is heated and compressed using a hot roll press RO.
  • the temperature of the hot roll press RO is, for example, about 120 ° C., and the press pressure is about 5 to 10 times that when the second active material particles CP2 are not pushed into the current collector CU.
  • a uniaxial press method, a biaxial press method, a roll press method, an isostatic press method, or the like is used as a method of compressing the electrode mixture layer EX on both surfaces (first surface S1 and second surface S2) of the current collector CU.
  • a hot pressing method in which compression is performed at a temperature near the softening point of the binder from the viewpoint of adhesion to the current collector CU.
  • the hot roll press RO was used for the continuous processing of roll to roll here, you may use a flat plate press by a batch type.
  • the second active material particle CP2 When the second active material particle CP2 is pushed into the current collector CU, there is a portion in which the electrolytic solution penetrates also between the second active material particle CP2 and the current collector CU. Can be used. That is, in the current collector CU, the portion where the second active material particles CP2 are pushed in is used for charging / discharging, which corresponds to replacing a part of the current collector CU with the active material. Therefore, when the second active material particle CP2 is pushed into the current collector CU, the battery capacity and the volume energy density per unit electrode volume are smaller than when the second active material particle CP2 is not pushed into the current collector CU. Can be increased.
  • the contribution of the portion where the second active material particles CP2 are pushed into the increase in battery capacity is small, but when the electrode mixture layer EX is thin, the second active material particles CP2 are The contribution of the pushed-in portion to the increase in battery capacity increases.
  • the second active material particles CP2 pushed into the current collector CU by the hot roll press RO may or may not collapse.
  • the surface area of the active material in contact with the electrolytic solution is increased, and the battery capacity is further increased. As a result, in the lithium ion battery, both high output and high capacity can be achieved.
  • the second active material particles CP2 do not necessarily have a substantially spherical shape. In order to be easily pushed into the current collector CU, it is desirable that there is an acute angle portion where pressure is concentrated on the second active material particle CP2.
  • the second active material particles CP2 are likely to appear in the electrode ER1 having the electrode mixture layer EX having a thickness of, for example, about 5 to 20 ⁇ m.
  • the heads of the second active material particles CP2 are likely to jump out on the surface of the electrode ER1, and the irregularities on the surface of the electrode ER1 increase, thereby increasing the surface roughness of the electrode ER1.
  • the surface of the electrode ER1 is flattened by pressing the second active material particles CP2 into the current collector CU.
  • the surface roughness of the electrode ER1 including the second active material particle CP2 can be equal to or less than the surface roughness of the electrode not including the second active material particle CP2.
  • the adhesion between the electrode mixture layer EX and the current collector CU is improved by the anchor effect.
  • the electrode mixture layer EX may float from the current collector CU when the electrode ER1 is wound or laminated, or in the case of assembling as a battery, during repeated charging and discharging. No peeling off.
  • the adhesion between the electrode mixture layer EX and the current collector CU improves as the second active material particles CP2 are pushed deeper into the current collector CU.
  • the current collector CU is crushed and thinned, or the number of second active material particles CP2 penetrating the current collector CU increases, the tensile strength of the current collector CU required for winding or the like The mechanical strength such as Therefore, by adjusting the particle size and pressing pressure of the second active material particles CP2, the number of second active material particles CP2 penetrating the current collector CU is reduced, or the second is reduced to about half the thickness of the current collector CU. It is desirable to push in the active material particles CP2.
  • the second active material particles CP2 are contained in a proportion of not more than 1% by weight (not including 1% by weight) and not more than 50% by weight with respect to the weight of the active material contained in the electrode mixture layer EX. Is desirable.
  • the ratio of the second active material particles CP2 is small, an increase in battery capacity per unit electrode volume is small.
  • the ratio of the second active material particles CP2 is large, the portion of the second active material particles CP2 that is pushed into the current collector CU increases, and the battery capacity per unit electrode volume increases.
  • the mechanical strength such as the tensile strength of the current collector CU required for winding is weak. There is a fear. Therefore, it is desirable that the second active material particle CP2 is contained in the electrode mixture layer EX within the above range.
  • Example 1 can be applied to both the positive electrode and the negative electrode.
  • a high output can be realized by reducing the thickness T1 of the electrode mixture layer EX to about 5 to 20 ⁇ m.
  • the electrode mixture layer EX is composed of, for example, a first active material particle CP1 having a first average particle diameter of about 3 ⁇ m and a second active material particle CP2 having a second average particle diameter of about 10 ⁇ m, for example.
  • the battery capacity and volume energy density per unit electrode volume can be increased. As a result, both high output and high capacity can be achieved.
  • the adhesion between the electrode mixture layer EX and the current collector CU is improved by the anchor effect.
  • the electrode mixture layer EX does not float or peel off from the current collector CU, and the reliability is improved.
  • FIG. 4 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to a comparative example.
  • the electrode ER0 includes a current collector CU and an electrode mixture layer EX0 formed on both surfaces (first surface S1 and second surface S2) of the current collector CU.
  • the electrode mixture layer EX0 includes an active material, Contains a conductive aid and a binder.
  • the active material is, for example, a first active material particle CP1 having a first average particle diameter of about 3 ⁇ m and a second active material particle having a second average particle diameter larger than the first average particle diameter, for example, about 10 ⁇ m.
  • CP2 is included.
  • the thickness T0 of the electrode mixture layer EX0 is, for example, about 30 to 100 ⁇ m
  • the thickness T2 of the current collector CU is, for example, about 5 to 20 ⁇ m.
  • the thickness T0 of the electrode mixture layer EX0 is (4 ⁇ D1).
  • ⁇ T0 is set. That is, the electrode mixture layer EX0 corresponds to a state in which the first active material particles CP1 are four or more layers.
  • the second active material particle CP2 having the second average particle size larger than the thickness T0 of the electrode mixture layer EX0 is actively applied by filtering or air classification before applying the slurry-like electrode mixture. Since it is removed, it does not enter the electrode mixture layer EX0. Therefore, none of the second active material particles CP2 has both the portion pushed into the current collector CU and the portion exposed on the surface of the electrode mixture layer EX0 at the same time.
  • the material particles CP2 are either exposed on the surface of the electrode mixture layer EX0 or are not exposed on the surface of the electrode mixture layer EX0 and are buried in the electrode mixture layer EX0.
  • the second active material particles CP2 having the second average particle size smaller than the thickness T0 of the electrode mixture layer EX0 are not sandwiched between the hot roll press and the current collector CU, the second active material particles It is difficult to transmit the press pressure directly to CP2. Therefore, few are pushed into the current collector CU, and the depth to be pushed is shallow.
  • the electrode mixture layer EX0 is thick and the current collector CU is thin, the battery capacity of the active material originally on the surface of the current collector CU is large, so the battery in the portion where the second active material particles CP2 are pushed in The contribution to capacity increase is small. Furthermore, since the anchor effect due to the second active material particles CP2 being pushed into the current collector CU is small, improvement in the adhesion between the electrode mixture layer EX0 and the current collector CU cannot be expected.
  • the electrode mixture layer EX0 is thick, if the second active material particles CP2 having the second average particle diameter equal to or greater than the thickness T0 of the electrode mixture layer EX0 are mixed into the electrode mixture layer EX0, a fine active material is obtained.
  • the surface area of the active material is smaller than when only the material is applied to the first surface S1 and the second surface S2 of the current collector CU. For this reason, the battery capacity per unit electrode volume is reduced or the output performance is lowered. Therefore, mixing the second active material particles CP2 having such a size is disadvantageous in terms of performance.
  • the difference between the lithium ion battery according to Example 2 and the lithium ion battery according to Example 1 described above is a method in which part of the second active material particles is pushed into the current collector.
  • FIG. 5 is a process diagram showing a manufacturing process of an electrode of a lithium ion battery according to the second embodiment.
  • 6A and 6B are cross-sectional views schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 2, wherein FIG. 6A is a cross-sectional view of the electrode in the drying process, and FIG. 6B is a cross-sectional view of the electrode in the spraying process.
  • (C) is sectional drawing of the electrode in a heat compression process.
  • a solvent capable of dissolving the binder for example, an N-methyl-2-pyrrolidone solution is added and mixed with a planetary mixer to form a slurry electrode mixture.
  • a slurry-like electrode mixture is applied to the first surface S1 of the current collector CU using a die coater.
  • the current collector CU in the case of the positive electrode, for example, an aluminum foil having a thickness of about 20 ⁇ m is used, and in the case of the negative electrode, for example, a copper foil having a thickness of about 10 ⁇ m is used.
  • the application means for example, an extrusion coater, a reverse roller, a doctor blade, an applicator, or a spray can be used.
  • the electrode mixture layer EX is formed on the first surface S1 and the second surface S2).
  • the second active material particles CP2 having a second average particle diameter of, for example, about 12 ⁇ m are placed on the surface of the electrode mixture layer EX.
  • the second active material particles CP2 are dispersed on the surface of the electrode mixture layer EX using, for example, a nozzle.
  • the second active material particles CP2 are dispersed so that the second active material particles CP2 are about 30% by weight with respect to the weight of the active material contained in the electrode mixture layer EX.
  • electrode ER2 is formed by heat-compressing electrode mixture layer EX using hot roll press RO.
  • the second active material particles CP2 are pushed into the current collector CU.
  • the temperature of the hot roll press RO is about 120 ° C., for example, and the press pressure is about 10 to 20 times that when the second active material particles CP2 are not pushed into the current collector CU.
  • the press pressure was set higher than that in the heat compression step of Example 1 described above.
  • a uniaxial press method, a biaxial press method, a roll press method, an isostatic press method, or the like is used as a method of compressing the electrode mixture layer EX on both surfaces (first surface S1 and second surface S2) of the current collector CU.
  • a hot pressing method in which compression is performed at a temperature near the softening point of the binder from the viewpoint of adhesion to the current collector CU.
  • the hot roll press RO was used for the continuous processing of roll to roll here, you may use a flat plate press by a batch type.
  • the drying step most of the solvent, for example, N-methyl-2-pyrrolidone solution is volatilized.
  • the second active material particles PC2 are placed on the surface of the electrode mixture layer EX in a semi-dry state.
  • the electrode mixture layer EX may be heat compressed using a hot roll press RO.
  • the spraying process may be performed before the drying process, followed by the drying process and then the heat compression process.
  • the electrode ER2 is reversed and the second active material particle CP2 is pushed into the other surface (for example, the second surface S2) of the current collector CU. Good.
  • the second active material particles CP2 are placed on or attached to the surface of the hot roll press RO, and the electrode mixture layer EX is compressed in this state, whereby the second active material particles CP2 are applied to the current collector CU. You may push in.
  • a solvent or adhesive containing a binder is thinly attached in advance to the surface of the second active material particle CP2 or the surface of the electrode mixture layer EX, and the second active material is deposited on the surface of the electrode mixture layer EX.
  • Example 2 can be applied to both the positive electrode and the negative electrode.
  • Example 3 a lithium ion battery having an electrode in which an electrode mixture layer is formed only on one side of a current collector will be described with reference to FIG.
  • FIG. 7 is a cross-sectional view schematically showing an electrode of the lithium ion battery according to the third embodiment.
  • the manufacturing method of the electrode ER3 of the lithium ion battery according to Example 3 is substantially the same as Example 1 and Example 2 described above, except that the electrode mixture layer EX is formed only on one side of the current collector CU. .
  • Example 1 Similarly to Example 1 described above, first, in the (kneading step), the active material obtained by mixing the first active material particles CP1 and the second active material particles CP2, the conductive auxiliary agent, and the binder are mixed. To form a slurry-like electrode mixture. Subsequently, in the (coating step), this electrode mixture is applied to the first surface S1 of the current collector CU. Then, an electrode sheet is manufactured through (drying process), (heat compression process), and (cutting process).
  • an active material composed only of the first active material particles CP1, a conductive auxiliary agent, and a binder are mixed to form a slurry electrode mixture.
  • this electrode mixture is applied to the first surface S1 of the current collector CU.
  • the electrode mixture layer EX is heated and compressed.
  • the second active material particles CP2 are pushed into the current collector CU. Then, an electrode sheet is manufactured through (cutting process).
  • Example 3 when the second average particle diameter of the second active material particles CP2 is D2, the thickness of the electrode mixture layer EX is T1, and the thickness of the current collector CU is T2, T1 ⁇ D2 ⁇ These values are set so as to be (T1 + T2).
  • the high output and the high capacity are substantially the same as in the first embodiment. Can be achieved.
  • Example 4 a lithium ion battery having an electrode on which an electrode mixture layer including second active material particles having an average particle diameter larger than the thickness of the electrode mixture layer is formed will be described with reference to FIG.
  • FIG. 8 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 4.
  • the manufacturing method of the electrode ER4 of the lithium ion battery according to Example 4 is almost the same as Example 1 and Example 2 described above.
  • the electrode mixture layer in which the second active material particles CP2 contained in the electrode mixture applied to the first surface S1 of the current collector CU are formed on the second surface S2 of the current collector CU. It is necessary to prevent the surface roughness of the electrode mixture layer EX from jumping out from the surface of the EX and being formed on the second surface S2 of the current collector CU. Similarly, from the surface of the electrode mixture layer EX formed on the first surface S1 of the current collector CU, the second active material particles CP2 contained in the electrode mixture applied to the second surface S2 of the current collector CU. It is necessary to prevent the surface roughness of the electrode mixture layer EX formed on the first surface S1 of the current collector CU from popping out.
  • the second average particle diameter of the second active material particles CP2 is D2
  • the thickness of the electrode mixture layer EX formed on the first surface S1 of the current collector CU is T1
  • the second surface S2 of the current collector CU are set so that T1 ⁇ D2 ⁇ (T1 + T2 + T3), where T3 is the thickness of the electrode mixture layer EX formed on the substrate and T2 is the thickness of the current collector CU.
  • the thickness T1 of the electrode mixture layer EX formed on the first surface S1 of the current collector CU and the thickness T3 of the electrode mixture layer EX formed on the second surface S2 of the current collector CU are the same. However, they may be different from each other.
  • the second active material particles CP2 included in the electrode mixture layer EX formed on the first surface S1 of the current collector CU and the electrode mixture layer EX formed on the second surface S2 of the current collector CU are included.
  • the second active material particles CP2 collide with each other in the current collector CU.
  • the second active material particles CP2 included in the electrode mixture layer EX formed on the first surface S1 of the current collector CU penetrate the current collector CU and are formed on the second surface S2 of the current collector CU.
  • the adhesion between the electrode mixture layer EX and the current collector CU is improved.
  • the current collector CU is crushed and thinned, or the number of second active material particles CP2 penetrating the current collector CU increases, the tensile strength of the current collector CU required for winding or the like The mechanical strength such as Therefore, by adjusting the particle size and press pressure of the second active material particles CP2, the number of second active material particles CP2 penetrating the current collector CU is reduced, and the second active material particles colliding with each other in the current collector CU It is desirable to reduce the number of CP2s or push the second active material particles CP2 down to about half the thickness of the current collector CU.
  • the technical idea of the present invention has been described by taking a lithium ion battery as an example.
  • the technical idea of the present invention is not limited to a lithium ion battery but can be applied to various batteries. can do.
  • Electrode mixture layer CP1 First active material particle CP2 Second active material particle S1 First surface S2 Second surface RO Hot roll press

Abstract

Provided is a lithium ion battery which is capable of achieving high output power without reducing the battery capacity and without deteriorating the reliability. In order to solve the above-described problem, a lithium ion battery according to the present invention comprises, on a first surface of a collector, an electrode to which an electrode mixture layer containing an active material, a conductive assistant and a binder is attached. The active material contains first active material particles having a first average particle diameter (D1) and second active material particles having a second average particle diameter (D2) that is larger than the first average particle diameter (D1). The thickness (T1) of the electrode mixture layer is within the range D1 ≤ T1 ≤ (3 × D1). Each second active material particle has a portion that is pushed into the collector and a portion that is exposed from the surface of the electrode mixture layer.

Description

リチウムイオン電池Lithium ion battery
 本発明は、リチウムイオン電池に関する。 The present invention relates to a lithium ion battery.
 本技術分野の背景技術として、特開2008-146894号公報(特許文献1)がある。この公報には、「集電体に電極活物質を含む電極合剤層を塗布乾燥しプレスした電極板における片面の電極合剤層の厚みをTとすると、T/4以上T/2以下の粒子径を有する粒子を電極板に含有させたリチウムイオン二次電池」が記載されている。 As a background art in this technical field, there is JP-A-2008-146894 (Patent Document 1). In this publication, “T / 4 is the thickness of the electrode mixture layer on one side of the electrode plate obtained by coating, drying and pressing the electrode mixture layer containing the electrode active material on the current collector. A lithium ion secondary battery in which particles having a particle diameter are contained in an electrode plate is described.
特開2008-146894号公報JP 2008-146894 A
 リチウムイオン電池の特性として、更なる高出力化が求められている。高出力を実現するためには、例えば電極の薄膜化が有効である。しかし、電極の薄膜化によって活物質の量が減ると、単位電極あたりの電池容量が減ってしまう。また、電極の薄膜化によって電極合剤層の厚さが薄くなると、電極合剤層の厚さよりも平均粒径が大きい一次粒子が顕在化し、電極の表面の凹凸が増えて、電極の表面粗さが増大する。 As a characteristic of lithium ion batteries, higher output is required. In order to achieve high output, for example, it is effective to reduce the thickness of the electrode. However, when the amount of the active material is reduced by reducing the thickness of the electrode, the battery capacity per unit electrode is reduced. In addition, when the electrode mixture layer becomes thinner due to the thinning of the electrode, primary particles having an average particle diameter larger than the thickness of the electrode mixture layer become apparent, the irregularities on the surface of the electrode increase, and the surface roughness of the electrode increases. Increases.
 前記特許文献1には、プレスするときに、集電体に食い込み、局所的に厚みが薄くなるように作用する粒子を含有させた電池用電極板が記載されている。しかし、短絡時の過電流遮断機能として安全性に優れた電池を提供することを目的としており、リチウムイオン電池の高出力を実現するための電極の薄膜化などについては言及されていない。 Patent Document 1 describes a battery electrode plate that contains particles that act on a current collector so as to be locally thin when pressed. However, it aims to provide a battery with excellent safety as an overcurrent interruption function at the time of a short circuit, and does not mention thinning of an electrode for realizing high output of a lithium ion battery.
 そこで、本発明は、電池容量を低減することなく、また、信頼性を劣化させることなく、高出力を実現できるリチウムイオン電池を提供する。 Therefore, the present invention provides a lithium ion battery capable of realizing high output without reducing battery capacity and without deteriorating reliability.
 上記課題を解決するために、本発明によるリチウムイオン電池は、集電体の第1面に、活物質、導電助剤、および結着剤を含む電極合剤層が付着した電極を有し、活物質は、第1平均粒径(D1)を有する第1活物質粒子と、第1平均粒径(D1)よりも大きい第2平均粒径(D2)を有する第2活物質粒子とを含んでいる。そして、電極合剤層の厚さ(T1)は、D1≦T1≦(3×D1)の範囲であり、第2活物質粒子は、集電体に押し込まれている部分と、電極合剤層の表面に露出している部分とを有する。 In order to solve the above problems, a lithium ion battery according to the present invention has an electrode on which an electrode mixture layer containing an active material, a conductive additive, and a binder is attached to the first surface of a current collector, The active material includes first active material particles having a first average particle diameter (D1) and second active material particles having a second average particle diameter (D2) larger than the first average particle diameter (D1). It is out. The thickness (T1) of the electrode mixture layer is in the range of D1 ≦ T1 ≦ (3 × D1), and the second active material particles include a portion pressed into the current collector, and the electrode mixture layer. And a portion exposed on the surface of the substrate.
 本発明によれば、電池容量を低減することなく、また、信頼性を劣化させることなく、高出力を実現できるリチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide a lithium ion battery that can achieve high output without reducing battery capacity and without deteriorating reliability.
 上記した以外の課題、構成および効果は、以下の実施の形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of embodiments.
実施例1によるリチウムイオン電池の電極を模式的に示す断面図である。2 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 1. FIG. 実施例1によるリチウムイオン電池の電極の製造工程を示す工程図である。FIG. 3 is a process diagram illustrating a manufacturing process of an electrode of a lithium ion battery according to Example 1. 実施例1によるリチウムイオン電池の電極の製造方法を模式的に示す断面図である。(a)は、乾燥工程における電極を模式的に示す断面図、(b)は、加熱圧縮工程における電極を模式的に示す断面図である。3 is a cross-sectional view schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 1. FIG. (A) is sectional drawing which shows typically the electrode in a drying process, (b) is sectional drawing which shows typically the electrode in a heating compression process. 比較例によるリチウムイオン電池の電極を模式的に示す断面図である。It is sectional drawing which shows typically the electrode of the lithium ion battery by a comparative example. 実施例2によるリチウムイオン電池の電極の製造工程を示す工程図である。FIG. 6 is a process diagram showing a manufacturing process of an electrode of a lithium ion battery according to Example 2. 実施例2によるリチウムイオン電池の電極の製造方法を模式的に示す断面図である。(a)は塗布工程における電極を模式的に示す断面図、(b)は、乾燥工程における電極を模式的に示す断面図、(c)は、加熱圧縮工程における電極を模式的に示す断面図である。6 is a cross-sectional view schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 2. FIG. (A) is sectional drawing which shows typically the electrode in an application | coating process, (b) is sectional drawing which shows typically the electrode in a drying process, (c) is sectional drawing which shows typically the electrode in a heating compression process. It is. 実施例3によるリチウムイオン電池の電極を模式的に示す断面図である。6 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 3. FIG. 実施例4によるリチウムイオン電池の電極を模式的に示す断面図である。6 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 4. FIG.
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
 また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In addition, when referring to “consisting of A”, “consisting of A”, “having A”, and “including A”, other elements are excluded unless specifically indicated that only that element is included. It goes without saying that it is not what you do. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本実施の形態を図面に基づいて詳細に説明する。 In all the drawings for explaining the following embodiments, those having the same function are denoted by the same reference numerals in principle, and the repeated explanation thereof is omitted. Hereinafter, the present embodiment will be described in detail with reference to the drawings.
 ≪リチウムイオン電池≫
 まず、リチウムイオン電池の基本、リチウムイオン電池の模式的な構成、およびリチウムイオン電池の充放電のメカニズムについて説明する。
≪Lithium ion battery≫
First, the basics of the lithium ion battery, the schematic configuration of the lithium ion battery, and the charging / discharging mechanism of the lithium ion battery will be described.
 <リチウムイオン電池の基本>
 リチウムは、酸化還元電位が-3.03V(vs.標準水素電極(Normal Hydrogen Electrode、NHE)であり、地球上に存在する最も卑な金属である。電池の電圧は、正極と負極との電位差によって決まるので、リチウムを負極活物質に使用すると、最も高い起電力が得られる。また、リチウムの原子量は6.94であり、密度も0.534g/cmであってともに小さいことから、単位電気量あたりの重量が小さく、エネルギー密度も高くなる。従って、リチウムを負極活物質に使用すると小型で、かつ、軽量の電池を製造することができる。
<Basics of lithium-ion batteries>
Lithium has an oxidation-reduction potential of -3.03 V (vs. Normal Hydrogen Electrode, NHE), and is the most basic metal on the earth.The battery voltage is the potential difference between the positive electrode and the negative electrode. Therefore, when lithium is used as the negative electrode active material, the highest electromotive force can be obtained, and since the atomic weight of lithium is 6.94 and the density is 0.534 g / cm 3 , the unit is small. Therefore, when lithium is used for the negative electrode active material, a small and light battery can be manufactured.
 このように、リチウムは電池の負極活物質として魅力的な物質であるが、充放電可能な二次電池に適用する場合に問題が生じる。すなわち、リチウムを負極活物質に使用した二次電池で充放電を繰り返すと、リチウムの溶解による放電反応と、リチウムの析出による充電反応が起こる。この場合、繰り返し充電によって、リチウムの析出反応が生じるため、二次電池の性能劣化または安全性に問題が生じる。 As described above, lithium is an attractive material as a negative electrode active material of a battery, but problems arise when applied to a chargeable / dischargeable secondary battery. That is, when charging and discharging are repeated in a secondary battery using lithium as a negative electrode active material, a discharge reaction due to dissolution of lithium and a charge reaction due to lithium deposition occur. In this case, a lithium deposition reaction occurs due to repeated charging, which causes a problem in performance deterioration or safety of the secondary battery.
 例えば充電過程で生成されるリチウムは活性表面で電解液溶媒と反応し、その一部はSEI(Solid Electrolyte Interface)と呼ばれる皮膜の形成に消費される。このため、電池の内部抵抗が高くなり、放電効率も低下してくる。つまり、充放電のサイクルを繰り返すごとに電池容量が小さくなる。さらに、急速に充電すると、リチウムは針状・樹枝状の結晶形態(リチウムデンドライト)で析出し、二次電池での様々なトラブルを引き起こす元となる。例えばリチウムデンドライトは、比表面積が大きく、副反応による電流効率の低下を加速するとともに、針状・樹枝状であるためにセパレータを突き破って正極と負極との間の内部短絡を引き起こすこともある。このような状態になると、自己放電が大きく電池として使用できなくなる、または内部短絡による発熱でガス噴出若しくは発火に至る場合もある。以上のことから、リチウムを負極活物質に使用した二次電池では、性能劣化または安全性に問題が生じることがわかる。 For example, lithium produced in the charging process reacts with the electrolyte solvent on the active surface, and part of it is consumed for the formation of a film called SEI (Solid Electrolyte Interface). For this reason, the internal resistance of the battery increases and the discharge efficiency also decreases. In other words, the battery capacity decreases each time the charge / discharge cycle is repeated. Furthermore, when rapidly charged, lithium precipitates in a needle-like / dendritic crystal form (lithium dendrite), which causes various troubles in the secondary battery. For example, lithium dendrite has a large specific surface area, accelerates the decrease in current efficiency due to side reactions, and also has a needle-like / dendritic shape, and may break through the separator to cause an internal short circuit between the positive electrode and the negative electrode. In such a state, the self-discharge is so large that it cannot be used as a battery, or gas may be ejected or ignited due to heat generated by an internal short circuit. From the above, it can be seen that a secondary battery using lithium as the negative electrode active material has a problem in performance deterioration or safety.
 そこで、溶解および析出という従来の原理と相違する原理の新型二次電池が検討されている。具体的には、正極と負極の両方にリチウムイオンを挿入・脱離する活物質を使用する二次電池が検討されている。この二次電池の充放電過程では、リチウムの溶解および析出という現象は起こらず、リチウムイオンが活物質の間で挿入・脱離されるだけである。このタイプの二次電池は、「ロッキング・チェア」型または「シャトルコック」型と呼ばれており、充放電の繰り返しに対して、リチウムイオンが挿入・脱離されるだけであるので、安定であるという特徴がある。以下、この種類の電池をリチウムイオン電池と呼ぶ。 Therefore, a new type secondary battery having a principle different from the conventional principle of dissolution and precipitation has been studied. Specifically, a secondary battery using an active material that inserts and desorbs lithium ions into both the positive electrode and the negative electrode has been studied. In the charging / discharging process of the secondary battery, the phenomenon of dissolution and precipitation of lithium does not occur, and only lithium ions are inserted / extracted between the active materials. This type of secondary battery is called “rocking chair” type or “shuttle cock” type, and is stable because only lithium ions are inserted and desorbed with repeated charging and discharging. There is a feature. Hereinafter, this type of battery is referred to as a lithium ion battery.
 上述したように、リチウムイオン電池は、正極および負極の両方とも充放電においてその構造は変化せず、リチウムイオンが挿入・脱離されるだけであるので(ただし、活物質の結晶格子は、リチウムイオンの挿入・脱離に対して膨張収縮する)、格段に長寿命のサイクル特性を有し、さらに、正極および負極に金属リチウムを使用しないので、安全性も飛躍的に高まるという特徴を有する。 As described above, the structure of the lithium ion battery is not changed during charging / discharging of both the positive electrode and the negative electrode, and only lithium ions are inserted and desorbed (however, the active material crystal lattice is lithium ion). In addition, it has a characteristic that it has a long life cycle characteristic and does not use metallic lithium for the positive electrode and the negative electrode, so that safety is drastically improved.
 ここで、リチウムイオンを挿入・脱離できる材料が正極および負極の活物質に使用されるが、この活物質に要求される条件は以下に示すようなものである。すなわち、リチウムイオンという有限の大きさのイオンが挿入・脱離するので、リチウムイオンの納まるべきサイト(位置)と、リチウムイオンが拡散可能なチャンネル(経路)が活物質に必要とされる。さらに、活物質には、リチウムイオンの挿入(吸蔵)に伴い電子が材料中に導入される必要がある。 Here, a material capable of inserting / extracting lithium ions is used for the active material of the positive electrode and the negative electrode. The conditions required for this active material are as follows. That is, since ions of a finite size called lithium ions are inserted and desorbed, a site (position) where lithium ions should be stored and a channel (path) through which lithium ions can be diffused are required for the active material. Furthermore, electrons need to be introduced into the active material as lithium ions are inserted (occluded).
 上述した条件を満たす正極活物質としては、リチウム含有遷移金属酸化物が挙げられる。例えばコバルト酸リチウム、ニッケル酸リチウム、またはマンガン酸リチウムなどが代表的な正極活物質として挙げられるが、これらに限定されるものではない。具体的に、正極活物質としては、リチウムを挿入・脱離可能な材料であり、予め充分な量のリチウムを挿入したリチウム含有遷移金属酸化物であればよく、遷移金属として、マンガン、ニッケル、コバルト、若しくは鉄などの単体、または2種類以上の遷移金属を主成分とする材料であってもよい。また、スピネル結晶構造または層状結晶構造などの結晶構造についても、上述したサイトとチャンネルが確保されるものであれば特に限定されない。さらに、結晶中の遷移金属またはリチウムの一部を鉄、コバルト、ニッケル、クロム、アルミニウム、若しくはマンガンなどの元素で置換した材料、または結晶中に鉄、コバルト、ニッケル、クロム、アルミニウム、若しくはマンガンなどの元素をドープした材料を正極活物質として使用してもよい。 As the positive electrode active material that satisfies the above-described conditions, a lithium-containing transition metal oxide can be given. Examples of typical positive electrode active materials include, but are not limited to, lithium cobaltate, lithium nickelate, and lithium manganate. Specifically, the positive electrode active material is a material into which lithium can be inserted / extracted, and may be any lithium-containing transition metal oxide in which a sufficient amount of lithium has been inserted in advance. Examples of the transition metal include manganese, nickel, It may be a simple substance such as cobalt or iron, or a material mainly composed of two or more kinds of transition metals. Further, the crystal structure such as the spinel crystal structure or the layered crystal structure is not particularly limited as long as the above-described site and channel are ensured. In addition, transition metal in the crystal or a part of lithium is replaced with an element such as iron, cobalt, nickel, chromium, aluminum, or manganese, or iron, cobalt, nickel, chromium, aluminum, or manganese is included in the crystal. A material doped with these elements may be used as the positive electrode active material.
 さらに、上述した条件を満たす負極活物質としては、結晶質の炭素材料または非晶質の炭素材料が挙げられる。ただし、負極活物質はこれらの物質に限定されるものではなく、例えば天然黒鉛、人造の各種黒鉛剤、またはコークスなどの炭素材料などを使用してもよい。そして、その粒子形状においても、鱗片状、球状、繊維状、または塊状など様々な粒子形状のものが適用可能である。 Furthermore, examples of the negative electrode active material that satisfies the above-described conditions include a crystalline carbon material or an amorphous carbon material. However, the negative electrode active material is not limited to these materials. For example, natural graphite, various artificial graphite agents, or carbon materials such as coke may be used. And also in the particle shape, various particle shapes such as a scale shape, a spherical shape, a fiber shape, or a lump shape are applicable.
 <リチウムイオン電池の模式的な構成>
 次に、リチウムイオン電池の模式的な構成について説明する。
<Schematic configuration of lithium-ion battery>
Next, a schematic configuration of the lithium ion battery will be described.
 リチウムイオン電池は、電池外装容器を有しており、この電池外装容器の内部に電解液が充填されている。この電解液が充填されている電池外装容器の内部には、正極板と負極板が対向して設けられており、対向して設けられた正極板と負極板との間にセパレータが配置されている。 The lithium ion battery has a battery outer container, and the battery outer container is filled with an electrolytic solution. A positive electrode plate and a negative electrode plate are provided opposite to each other inside the battery outer container filled with the electrolytic solution, and a separator is disposed between the positive electrode plate and the negative electrode plate provided to face each other. Yes.
 一般的な電池外装容器としては、アルミニウム製若しくはニッケルめっきした鉄製の金属容器、またはアルミラミネートシートが使われている。 As a general battery exterior container, an aluminum or nickel-plated iron metal container or an aluminum laminate sheet is used.
 そして、正極板においては、正極の集電体上に正極活物質が塗着されており、負極板においては、負極の集電体上に負極活物質が塗着されている。正極活物質は、例えばリチウムイオンを挿入・脱離可能なリチウム含有遷移金属酸化物から形成されている。この正極の集電体と正極活物質により正極が構成されている。負極活物質は、例えばリチウムイオンを挿入・脱離可能な炭素材料から形成されている。この負極の集電体と負極活物質により負極が構成されている。 In the positive electrode plate, the positive electrode active material is coated on the positive electrode current collector, and in the negative electrode plate, the negative electrode active material is coated on the negative electrode current collector. The positive electrode active material is formed of, for example, a lithium-containing transition metal oxide capable of inserting / extracting lithium ions. The positive electrode current collector and the positive electrode active material constitute a positive electrode. The negative electrode active material is formed of, for example, a carbon material capable of inserting / extracting lithium ions. The negative electrode is composed of the negative electrode current collector and the negative electrode active material.
 正極は、正極活物質および結着剤を含有する塗液を正極の集電体に塗布して乾燥させた後、加圧することにより形成される。この正極の端部または裏面にはリード線として機能する正極集電タブが形成されており、この正極集電タブを通して、電流の出し入れを行う。 The positive electrode is formed by applying a coating liquid containing a positive electrode active material and a binder to the current collector of the positive electrode and drying it, followed by pressurization. A positive electrode current collecting tab functioning as a lead wire is formed at the end or back surface of the positive electrode, and current is input and output through the positive electrode current collecting tab.
 正極を構成する正極活物質には、例えばコバルト酸リチウム、ニッケル酸リチウム、またはマンガン酸リチウムなどに代表される上述した材料を使用することができる。また、結着剤には、例えばポリフッ化ビニル、ポリフッ化ビニリデン、またはポリテトラフルオロエチレンなどを使用することができる。さらに、導電性を向上させるために、天然黒鉛、人造黒鉛、またはアセチレンブラックなどの粒子を導電助剤として添加することもある。また、正極の集電体には、例えばアルミニウムなどの導電性金属からなる金属箔または網状金属などが使用され、正極集電タブは、例えばアルミニウムから形成されている。 As the positive electrode active material constituting the positive electrode, for example, the above-described materials typified by lithium cobaltate, lithium nickelate, or lithium manganate can be used. As the binder, for example, polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, or the like can be used. Furthermore, in order to improve conductivity, particles such as natural graphite, artificial graphite, or acetylene black may be added as a conductive aid. The positive electrode current collector is made of, for example, a metal foil or a net-like metal made of a conductive metal such as aluminum, and the positive electrode current collecting tab is made of, for example, aluminum.
 負極は、負極活物質および結着剤を含有する塗液を負極の集電体に塗布して乾燥させた後、加圧することにより形成される。この負極の端部または裏面にはリード線として機能する負極集電タブが形成されており、この負極集電タブを通して、電流の出し入れを行う。 The negative electrode is formed by applying a coating liquid containing a negative electrode active material and a binder to the current collector of the negative electrode and drying it, followed by pressurization. A negative electrode current collecting tab functioning as a lead wire is formed on the end or back surface of the negative electrode, and current is taken in and out through the negative electrode current collecting tab.
 負極を構成する負極活物質には、例えば炭素材料またはシリコン合金などに代表される上述した材料を使用することができる。また、結着剤には、例えばポリフッ化ビニリデンまたはポリテトラフルオロエチレンなどを使用することができる。さらに、導電性を向上させるために、天然黒鉛、人造黒鉛、またはアセチレンブラックなどの粒子を導電助剤として添加することもある。また、負極の集電体には、例えば銅などの導電性金属からなる金属箔または網状金属などが使用され、負極集電タブは、例えば銅またはニッケルから形成されている。 As the negative electrode active material constituting the negative electrode, for example, the above-described materials typified by a carbon material or a silicon alloy can be used. As the binder, for example, polyvinylidene fluoride or polytetrafluoroethylene can be used. Furthermore, in order to improve conductivity, particles such as natural graphite, artificial graphite, or acetylene black may be added as a conductive aid. Further, for the current collector of the negative electrode, for example, a metal foil or a net-like metal made of a conductive metal such as copper is used, and the negative current collector tab is made of, for example, copper or nickel.
 セパレータは、正極と負極との電気的な接触を防止しつつ、リチウムイオンを通過させるスペーサとしての機能を有している。近年では、このセパレータとして、高強度で薄い微多孔質膜が使用されている。この微多孔質膜は、電池短絡による異常電流、急激な内圧、温度の上昇、および発火を防ぐという機能も合わせもっている。つまり、セパレータは、正極と負極との電気的な接触を防止し、かつ、リチウムイオンを通過させる機能を有し、さらに、短絡および過充電防止のための熱ヒューズとしての機能を有していることになる。 The separator has a function as a spacer that allows lithium ions to pass while preventing electrical contact between the positive electrode and the negative electrode. In recent years, a high-strength and thin microporous membrane has been used as the separator. This microporous membrane also has the functions of preventing abnormal current due to battery short circuit, rapid internal pressure, temperature rise, and ignition. In other words, the separator has a function of preventing electrical contact between the positive electrode and the negative electrode and allowing lithium ions to pass therethrough, and further has a function as a thermal fuse for preventing short circuit and overcharge. It will be.
 この微多孔質膜の持つシャットダウン機能によって、リチウムイオン電池の安全性を保つことができる。例えばリチウムイオン電池が何らかの原因で外部短絡を引き起こした場合、瞬時ではあるが大電流が流れ、ジュール熱により異常に温度が上昇する危険性がある。このとき、セパレータとして微多孔質膜を使用すれば、微多孔質膜は、膜材料の融点近傍で空孔(微多孔)が閉塞するため、正極と負極との間のリチウムイオンの透過を阻止することができる。言い換えれば、セパレータとして微多孔質膜を使用することにより、外部短絡時に電流を遮断し、リチウムイオン電池の内部の温度上昇をストップさせることができる。この微多孔質膜から構成されるセパレータには、例えばポリエチレン(Polythylene、PE)、ポリプロピレン(Polypropylene、PP)、またはこれらの材料の組み合わせなどを使用することができる。 The shutdown function of this microporous membrane can keep the lithium ion battery safe. For example, when a lithium ion battery causes an external short circuit for some reason, there is a risk that a large current flows instantaneously but the temperature rises abnormally due to Joule heat. At this time, if a microporous membrane is used as a separator, the microporous membrane blocks pores (microporous) in the vicinity of the melting point of the membrane material, thus preventing lithium ion permeation between the positive electrode and the negative electrode. can do. In other words, by using a microporous membrane as a separator, current can be interrupted when an external short circuit occurs, and the temperature rise inside the lithium ion battery can be stopped. For the separator composed of the microporous membrane, for example, polyethylene (Polythylene, PE), polypropylene (Polypropylene, PP), or a combination of these materials can be used.
 電解液は、非水電解液が使用される。リチウムイオン電池は、活物質におけるリチウムイオンの挿入・脱離を利用して充放電を行う電池であり、リチウムイオンが電解液中を移動する。リチウムは、強い還元剤であり、水と激しく反応して水素ガスを発生する。従って、リチウムイオンが電解液中を移動するリチウムイオン電池では、水溶液を電解液に使用することができない。このことから、リチウムイオン電池では、電解液として非水電解液が使用される。 Electrolytic solution is a non-aqueous electrolytic solution. A lithium ion battery is a battery that charges and discharges using insertion / extraction of lithium ions in an active material, and lithium ions move in an electrolyte solution. Lithium is a strong reducing agent and reacts violently with water to generate hydrogen gas. Therefore, in a lithium ion battery in which lithium ions move in the electrolytic solution, an aqueous solution cannot be used as the electrolytic solution. For this reason, in the lithium ion battery, a nonaqueous electrolytic solution is used as the electrolytic solution.
 具体的に、非水電解液の電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、若しくはCFSOLiなど、またはこれらの混合物を使用することができる。また、有機溶媒としては、例えばエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、またはジエチルカーボネートなどを使用することができる。さらに、有機溶媒としては、例えば1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、またはプロピオニトリルなどを使用することができる。さらに、上記した有機溶媒の混合液を使用することができる。 Specifically, as the electrolyte of the non-aqueous electrolyte, for example LiPF 6, LiClO 4, LiAsF 6 , LiBF 4, LiB (C 6 H 5) 4, CH 3 SO 3 Li, or the like CF 3 SO 3 Li, or Mixtures of these can be used. As the organic solvent, for example, ethylene carbonate, dimethyl carbonate, propylene carbonate, diethyl carbonate, or the like can be used. Further, examples of the organic solvent include 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl Sulfolane, acetonitrile, propionitrile or the like can be used. Further, a mixed solution of the organic solvent described above can be used.
 <リチウムイオン電池の充放電のメカニズム>
 次に、リチウムイオン電池の充放電のメカニズムについて説明する。
<Mechanism of charge / discharge of lithium ion battery>
Next, the charging / discharging mechanism of the lithium ion battery will be described.
 まず、充電のメカニズムについて説明する。 First, the charging mechanism will be described.
 リチウムイオン電池を充電する際、正極と負極との間に充電器を接続する。この場合、リチウムイオン電池では、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。このとき、正極活物質からリチウムイオンが脱離することにより、正極から充電器へ電子が流れる。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。このとき、負極活物質内にリチウムイオンが挿入することにより、負極に電子が流れ込む。このようにして、充電器を介して正極から負極に電子が移動することにより充電が完了する。 When charging the lithium ion battery, connect a charger between the positive electrode and the negative electrode. In this case, in the lithium ion battery, lithium ions inserted in the positive electrode active material are desorbed and released into the electrolytic solution. At this time, the lithium ions are desorbed from the positive electrode active material, whereby electrons flow from the positive electrode to the charger. Then, the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the negative electrode. The lithium ions that have reached the negative electrode are inserted into the negative electrode active material constituting the negative electrode. At this time, when lithium ions are inserted into the negative electrode active material, electrons flow into the negative electrode. In this way, charging is completed as electrons move from the positive electrode to the negative electrode via the charger.
 続いて、放電のメカニズムについて説明する。 Next, the discharge mechanism will be described.
 正極と負極との間に外部負荷を接続する。すると、負極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。このとき、負極から外部端子へ電子が流れる。そして、電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、正極に到達する。この正極に到達したリチウムイオンは、正極を構成する正極活物質内に挿入される。このとき、正極活物質内にリチウムイオンが挿入することにより、正極に電子が流れ込む。このようにして、負極から正極に電子が移動することにより放電が行われる。言い換えれば、正極から負極に電流が流れて負荷を駆動することができる。 Connect an external load between the positive and negative electrodes. Then, lithium ions inserted into the negative electrode active material are desorbed and released into the electrolytic solution. At this time, electrons flow from the negative electrode to the external terminal. Then, the lithium ions released into the electrolytic solution move in the electrolytic solution, pass through a separator made of a microporous film, and reach the positive electrode. The lithium ions reaching the positive electrode are inserted into the positive electrode active material constituting the positive electrode. At this time, lithium ions are inserted into the positive electrode active material, whereby electrons flow into the positive electrode. In this way, discharge is performed by the movement of electrons from the negative electrode to the positive electrode. In other words, a current can flow from the positive electrode to the negative electrode to drive the load.
 以上のようにして、リチウムイオン電池においては、リチウムイオンが正極活物質と負極活物質との間で挿入・脱離することにより、充放電することができる。 As described above, in a lithium ion battery, lithium ions can be charged and discharged by being inserted and desorbed between the positive electrode active material and the negative electrode active material.
 ≪課題の詳細な説明≫
 次に、本実施の形態によるリチウムイオン電池がより明確になると思われるため、本発明者らによって見出されたリチウムイオン電池における解決しようとする課題について詳細に説明する。
≪Detailed description of assignment≫
Next, since it seems that the lithium ion battery by this Embodiment becomes clearer, the problem which it tries to solve in the lithium ion battery discovered by the present inventors is demonstrated in detail.
 携帯電子機器の発達に伴い、この携帯電子機器の電力供給源として、繰り返し充電が可能な小型二次電池が使用されている。中でも、エネルギー密度が高く、サイクルライフが長く、自己放電性が低く、そして、作動電圧が高いリチウムイオン電池が注目されている。リチウムイオン電池は、上述した利点を有するため、デジタルカメラ、ノート型パーソナルコンピュータ、または携帯電話機などの携帯電子機器に多用されている。 With the development of portable electronic devices, small secondary batteries that can be repeatedly charged are used as a power supply source for the portable electronic devices. Among them, lithium ion batteries having high energy density, long cycle life, low self-discharge property, and high operating voltage are attracting attention. Lithium ion batteries have the advantages described above, and are therefore widely used in portable electronic devices such as digital cameras, notebook personal computers, and mobile phones.
 さらに、近年では、電気自動車用電池または電力貯蔵用電池として、高容量、高出力、かつ、高エネルギー密度を実現できる大型のリチウムイオン電池の研究開発が進められている。特に、自動車産業においては、環境問題に対応するため、動力源としてモータを使用する電気自動車、および動力源としてエンジン(内燃機関)とモータとの両方を使用するハイブリッド車の開発が進められている。このような電気自動車およびハイブリッド車の電源としてもリチウムイオン電池が注目されている。 Furthermore, in recent years, research and development of large-sized lithium ion batteries capable of realizing high capacity, high output, and high energy density as batteries for electric vehicles or power storage batteries have been promoted. In particular, in the automobile industry, in order to cope with environmental problems, development of an electric vehicle using a motor as a power source and a hybrid vehicle using both an engine (internal combustion engine) and a motor as a power source are in progress. . Lithium ion batteries have attracted attention as power sources for such electric vehicles and hybrid vehicles.
 リチウムイオン電池は、例えば正極活物質を塗着した正極板と、負極活物質を塗着した負極板と、正極板と負極板との接触を防止するセパレータとを積層した電極積層体を備えている。または、正極活物質を塗着した正極板と、負極活物質を塗着した負極板と、正極板と負極板との接触を防止するセパレータとを捲回した電極捲回体を備えている。そして、リチウムイオン電池では、電極積層体または電極捲回体が電池外装容器の内部に収納されるとともに、電池外装容器の内部に電解液が注入されている。電池外装容器としては、金属製の円筒容器または角型容器が使われているが、軽量化および薄型化のために、金属シートと高分子樹脂シートとの積層体からなるラミネートシートも使われている。 A lithium ion battery includes, for example, an electrode laminate in which a positive electrode plate coated with a positive electrode active material, a negative electrode plate coated with a negative electrode active material, and a separator that prevents contact between the positive electrode plate and the negative electrode plate are laminated. Yes. Alternatively, an electrode winding body in which a positive electrode plate coated with a positive electrode active material, a negative electrode plate coated with a negative electrode active material, and a separator that prevents contact between the positive electrode plate and the negative electrode plate is provided. And in a lithium ion battery, while an electrode laminated body or an electrode winding body is accommodated in the inside of a battery exterior container, electrolyte solution is inject | poured inside the battery exterior container. As the battery outer container, a metal cylindrical container or a rectangular container is used, but a laminate sheet made of a laminate of a metal sheet and a polymer resin sheet is also used for weight reduction and thickness reduction. Yes.
 ところで、電気自動車およびハイブリッド車などの電動車両の電源としては、加速のための高出力が求められる。高出力を実現する方法としては、リチウムイオンの拡散を容易にする電極の薄膜化が有効である。しかし、この方法では、電極の薄膜化によって活物質の量が減るため、単位電極面積当たりの電池容量が減ってしまう。電池容量を増やすためには、電極の積層数または捲回数を増やす必要があるが、その分、集電体の量が増えて、電極の単位体積および単位重量当たりの電池容量が減ってしまう。また、電極の薄膜化によって電極合剤層の厚さが薄くなると、電極合剤層の厚さよりも平均粒径が大きい一次粒子が顕在化し、電極の表面の凹凸が増えて、電極の表面粗さが増大する。 By the way, as a power source for electric vehicles such as electric vehicles and hybrid vehicles, high output for acceleration is required. As a method for realizing high output, it is effective to make the electrode thin to facilitate the diffusion of lithium ions. However, in this method, since the amount of the active material is reduced by reducing the thickness of the electrode, the battery capacity per unit electrode area is reduced. In order to increase the battery capacity, it is necessary to increase the number of stacked electrodes or the number of turns. However, the amount of the current collector increases, and the battery capacity per unit volume and unit weight of the electrode decreases. In addition, when the electrode mixture layer becomes thinner due to the thinning of the electrode, primary particles having an average particle diameter larger than the thickness of the electrode mixture layer become apparent, the irregularities on the surface of the electrode increase, and the surface roughness of the electrode increases. Increases.
 ≪リチウムイオン電池の構造≫
 本実施例1によるリチウムイオン電池の電極について図1を用いて説明する。図1は、本実施例1によるリチウムイオン電池の電極を模式的に示す断面図である。
≪Lithium-ion battery structure≫
The electrode of the lithium ion battery according to Example 1 will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to the first embodiment.
 電極ER1は、集電体(電極板、集電箔、電極箔、金属箔などとも言う)CUと、集電体CUの両面(第1面S1および第1面S1と反対側の第2面S2)に形成された電極合剤層EXとからなり、電極合剤層EXは、活物質、導電助剤(導電剤などとも言う)、および結着剤(バインダなどとも言う)を含有する。さらに、活物質は、例えば3μm程度の第1平均粒径を有する第1活物質粒子CP1と、第1平均粒径よりも大きい、例えば10μm程度の第2平均粒径を有する第2活物質粒子CP2とを含んでいる。第2活物質粒子は、単結晶、またはそれに近い結晶子が集まった一次粒子であり、凝集体または集合体ではない。 The electrode ER1 includes a current collector (also referred to as an electrode plate, a current collector foil, an electrode foil, a metal foil, etc.) CU, and both surfaces of the current collector CU (second surface opposite to the first surface S1 and the first surface S1). It consists of the electrode mixture layer EX formed in S2), and the electrode mixture layer EX contains an active material, a conductive additive (also referred to as a conductive agent), and a binder (also referred to as a binder). Furthermore, the active material is, for example, a first active material particle CP1 having a first average particle diameter of about 3 μm and a second active material particle having a second average particle diameter larger than the first average particle diameter, for example, about 10 μm. CP2 is included. The second active material particles are primary particles in which single crystals or crystallites close to them are collected, and are not aggregates or aggregates.
 電極合剤層EXの厚さT1は、例えば5~20μm程度であり、集電体CUの厚さT2は、例えば5~20μm程度である。 The thickness T1 of the electrode mixture layer EX is, for example, about 5 to 20 μm, and the thickness T2 of the current collector CU is, for example, about 5 to 20 μm.
 ここで、電極合剤層EXの厚さT1は、集電体CUの第1面S1(または第2面S2)から第1活物質粒子CP1のみから構成される粒子層の厚さの平均値であり、第1活物質粒子CP1の第1平均粒径をD1とすると、D1≦T1≦(3×D1)の範囲に設定されている。すなわち、電極合剤層EXは、第1活物質粒子CP1が1層分の状態から第1活物質粒子CP1が3層分の状態に相当する。 Here, the thickness T1 of the electrode mixture layer EX is the average value of the thickness of the particle layer composed only of the first active material particles CP1 from the first surface S1 (or the second surface S2) of the current collector CU. When the first average particle diameter of the first active material particles CP1 is D1, the range is set to D1 ≦ T1 ≦ (3 × D1). That is, the electrode mixture layer EX corresponds to a state in which the first active material particles CP1 are in one layer to a state in which the first active material particles CP1 are in three layers.
 そして、この第1活物質粒子CP1のみから構成される粒子層のなかに、第2活物質粒子CP2が存在している。さらに、第2活物質粒子CP2の一部は、集電体CUに押し込まれている部分(図1に示すA領域)と、電極合剤層EXの表面に露出している部分(図1に示すB領域)とを有する。 The second active material particles CP2 are present in the particle layer composed only of the first active material particles CP1. Further, a part of the second active material particle CP2 is a part that is pushed into the current collector CU (A region shown in FIG. 1) and a part that is exposed on the surface of the electrode mixture layer EX (in FIG. 1). B region).
 ≪リチウムイオン電池の製造方法≫
 本実施例1によるリチウムイオン電池の電極の製造方法について図2および図3を用いて説明する。図2は、本実施例1によるリチウムイオン電池の電極の製造工程を示す工程図である。図3は、本実施例1によるリチウムイオン電池の電極の製造方法を模式的に示す断面図であり、(a)は乾燥工程における電極の断面図、(b)は加熱圧縮工程における電極の断面図である。
≪Lithium-ion battery manufacturing method≫
A method for manufacturing an electrode of a lithium ion battery according to Example 1 will be described with reference to FIGS. FIG. 2 is a process diagram showing the manufacturing process of the electrode of the lithium ion battery according to the first embodiment. 3A and 3B are cross-sectional views schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 1, wherein FIG. 3A is a cross-sectional view of the electrode in the drying process, and FIG. 3B is a cross-sectional view of the electrode in the heating and compression process. FIG.
 (混練工程)
 まず、第1平均粒径が、例えば3μm程度の第1活物質粒子CP1に、第2平均粒径が、例えば10μm程度の第2活物質粒子CP2を混合して活物質を形成する。この際、電極合剤層EXに含まれる活物質の重量に対して第2活物質粒子CP2が20重量%程度となるように、第2活物質粒子CP2を混合する。第1活物質粒子CP1の第1平均粒径および第2活物質粒子CP2の第2平均粒径は、例えばレーザー回折/散乱式粒度分布測定装置により求めることができる。
(Kneading process)
First, the active material is formed by mixing the first active material particles CP1 having a first average particle diameter of, for example, about 3 μm with the second active material particles CP2 having a second average particle diameter of, for example, about 10 μm. At this time, the second active material particles CP2 are mixed so that the second active material particles CP2 are about 20% by weight with respect to the weight of the active material contained in the electrode mixture layer EX. The first average particle diameter of the first active material particle CP1 and the second average particle diameter of the second active material particle CP2 can be determined by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
 さらに、活物質に、導電助剤として黒鉛およびカーボンブラックを混合し、結着剤としてポリフッ化ビニリデンを混合し、さらに、結着剤の溶解が可能である溶剤、例えばN-メチル-2-ピロリドン溶液を加えてプラネタリーミキサーで混合して、スラリー状の電極合剤を形成する。 In addition, graphite and carbon black are mixed as the conductive material into the active material, polyvinylidene fluoride is mixed as the binder, and further, a solvent capable of dissolving the binder, such as N-methyl-2-pyrrolidone, is used. The solution is added and mixed with a planetary mixer to form a slurry electrode mixture.
 (塗布工程)
 次に、集電体CUの第1面S1にスラリー状の電極合剤を、ダイコータを用いて塗布する。集電体CUとしては、正極の場合は、例えば厚さ20μm程度のアルミニウム箔を用い、負極の場合は、例えば厚さ10μm程度の銅箔を用いる。塗布手段としては、他にも、例えば押出しコーター、リバースローラー、ドクターブレード、アプリケーター、またはスプレーなどを用いることができる。
(Coating process)
Next, a slurry-like electrode mixture is applied to the first surface S1 of the current collector CU using a die coater. As the current collector CU, in the case of the positive electrode, for example, an aluminum foil having a thickness of about 20 μm is used, and in the case of the negative electrode, for example, a copper foil having a thickness of about 10 μm is used. As the application means, for example, an extrusion coater, a reverse roller, a doctor blade, an applicator, or a spray can be used.
 (乾燥工程)
 次に、例えば120℃の温風乾燥炉にて、溶剤、例えばN-メチル-2-ピロリドン溶液を乾燥させる。
(Drying process)
Next, a solvent such as an N-methyl-2-pyrrolidone solution is dried in a warm air drying oven at 120 ° C., for example.
 次に、集電体CUの第2面S2にも同様に、前述した(塗布工程)および(乾燥工程)を実施して、図3(a)に示すように、集電体CUの両面(第1面S1および第2面S2)に、電極合剤層EXを形成する。 Next, the above-described (coating step) and (drying step) are similarly performed on the second surface S2 of the current collector CU, and as shown in FIG. The electrode mixture layer EX is formed on the first surface S1 and the second surface S2).
 (加熱圧縮工程)
 次に、図3(b)に示すように、熱ロールプレスROを用いて、集電体CUの両面(第1面S1および第2面S2)に形成された電極合剤層EXを加熱圧縮することにより、電極ER1を形成する。熱ロールプレスROの温度は、例えば120℃程度であり、プレス圧は、第2活物質粒子CP2を集電体CUに押し込まない場合の5~10倍程度とする。
(Heat compression process)
Next, as shown in FIG. 3B, the electrode mixture layer EX formed on both surfaces (the first surface S1 and the second surface S2) of the current collector CU is heated and compressed using a hot roll press RO. Thus, the electrode ER1 is formed. The temperature of the hot roll press RO is, for example, about 120 ° C., and the press pressure is about 5 to 10 times that when the second active material particles CP2 are not pushed into the current collector CU.
 電極合剤層EXを集電体CUの両面(第1面S1および第2面S2)に圧縮する方法としては、一軸プレス法、二軸プレス法、ロールプレス法、または静水圧プレス法などを用いることができる。室温で圧縮してもよいが、集電体CUとの密着性の観点から、結着剤の軟化点付近の温度で圧縮する熱間プレス法を用いることが好ましい。また、ここでは、ロールtoロールの連続処理のために熱ロールプレスROを用いたが、バッチ式で平板プレスを用いてもよい。 As a method of compressing the electrode mixture layer EX on both surfaces (first surface S1 and second surface S2) of the current collector CU, a uniaxial press method, a biaxial press method, a roll press method, an isostatic press method, or the like is used. Can be used. Although compression may be performed at room temperature, it is preferable to use a hot pressing method in which compression is performed at a temperature near the softening point of the binder from the viewpoint of adhesion to the current collector CU. Moreover, although the hot roll press RO was used for the continuous processing of roll to roll here, you may use a flat plate press by a batch type.
 第2活物質粒子CP2が集電体CUに押し込まれた場合、第2活物質粒子CP2と集電体CUとの間にも電解液が染み込む部分があるため、押し込まれた部分も充放電に利用することができる。つまり、集電体CUのうち、第2活物質粒子CP2が押し込まれた部分は充放電に利用されるため、集電体CUの一部が活物質に置き換えられたことに相当する。従って、第2活物質粒子CP2を集電体CUに押し込んだ場合は、第2活物質粒子CP2を集電体CUに押し込まない場合に比べて、単位電極体積あたりの電池容量および体積エネルギー密度を増やすことができる。電極合剤層EXが厚い場合は、第2活物質粒子CP2が押し込まれた部分の電池容量の増加への寄与は小さいが、電極合剤層EXが薄い場合は、第2活物質粒子CP2が押し込まれた部分の電池容量の増加への寄与は大きくなる。 When the second active material particle CP2 is pushed into the current collector CU, there is a portion in which the electrolytic solution penetrates also between the second active material particle CP2 and the current collector CU. Can be used. That is, in the current collector CU, the portion where the second active material particles CP2 are pushed in is used for charging / discharging, which corresponds to replacing a part of the current collector CU with the active material. Therefore, when the second active material particle CP2 is pushed into the current collector CU, the battery capacity and the volume energy density per unit electrode volume are smaller than when the second active material particle CP2 is not pushed into the current collector CU. Can be increased. When the electrode mixture layer EX is thick, the contribution of the portion where the second active material particles CP2 are pushed into the increase in battery capacity is small, but when the electrode mixture layer EX is thin, the second active material particles CP2 are The contribution of the pushed-in portion to the increase in battery capacity increases.
 熱ロールプレスROで集電体CUに押し込まれた第2活物質粒子CP2は、崩壊してもよく、または崩壊しなくてもよい。第2活物質粒子CP2に亀裂が入った場合、または第2活物質粒子CP2が崩壊した場合は、電解液に接触する活物質の表面積が増えて、さらに電池容量が増加する。これらにより、リチウムイオン電池において、高出力と高容量との両立を図ることができる。 The second active material particles CP2 pushed into the current collector CU by the hot roll press RO may or may not collapse. When the second active material particle CP2 is cracked or the second active material particle CP2 is collapsed, the surface area of the active material in contact with the electrolytic solution is increased, and the battery capacity is further increased. As a result, in the lithium ion battery, both high output and high capacity can be achieved.
 第2活物質粒子CP2は必ずしも略球形でなくてもよい。集電体CUに押し込まれやすくするには、第2活物質粒子CP2に圧力が集中する鋭角部分があることが望ましい。 The second active material particles CP2 do not necessarily have a substantially spherical shape. In order to be easily pushed into the current collector CU, it is desirable that there is an acute angle portion where pressure is concentrated on the second active material particle CP2.
 電極合剤層EXの厚みが、例えば5~20μm程度の電極ER1では、第2活物質粒子CP2が顕在化しやすい。電極ER1の表面に第2活物質粒子CP2の頭が飛び出しやすく、電極ER1の表面の凹凸が増えて、電極ER1の表面粗さが増大する。しかし、第2活物質粒子CP2を集電体CUに押し込むことによって、電極ER1の表面が平坦化される。第2活物質粒子CP2を含む電極ER1の表面粗さは、第2活物質粒子CP2を含まない電極の表面粗さと同じかそれ以下とすることができる。 The second active material particles CP2 are likely to appear in the electrode ER1 having the electrode mixture layer EX having a thickness of, for example, about 5 to 20 μm. The heads of the second active material particles CP2 are likely to jump out on the surface of the electrode ER1, and the irregularities on the surface of the electrode ER1 increase, thereby increasing the surface roughness of the electrode ER1. However, the surface of the electrode ER1 is flattened by pressing the second active material particles CP2 into the current collector CU. The surface roughness of the electrode ER1 including the second active material particle CP2 can be equal to or less than the surface roughness of the electrode not including the second active material particle CP2.
 さらに、第2活物質粒子CP2を集電体CUに押し込むと、アンカー効果によって、電極合剤層EXと集電体CUとの密着性が向上する。電池として組み立てる場合においては、電極ER1の捲回または積層のときに、また、電池として組み立てた後の場合においては、繰り返し充放電のときに、電極合剤層EXが集電体CUから浮いたり剥がれたりすることがなくなる。 Furthermore, when the second active material particles CP2 are pushed into the current collector CU, the adhesion between the electrode mixture layer EX and the current collector CU is improved by the anchor effect. In the case of assembling as a battery, the electrode mixture layer EX may float from the current collector CU when the electrode ER1 is wound or laminated, or in the case of assembling as a battery, during repeated charging and discharging. No peeling off.
 なお、第2活物質粒子CP2が集電体CUの内部に深く押し込まれるほど、電極合剤層EXと集電体CUとの密着性は向上する。しかし、集電体CUが潰されて薄くなる部分が多くなる、または集電体CUを突き抜ける第2活物質粒子CP2が多くなると、捲回などのときに必要な集電体CUの引っ張り強さなどの機械的強度が弱くなる恐れがある。そこで、第2活物質粒子CP2の粒径およびプレス圧を調整して、集電体CUを突き抜ける第2活物質粒子CP2の数を減らす、または集電体CUの厚さの半分ほどまで第2活物質粒子CP2を押し込むことが望ましい。 In addition, the adhesion between the electrode mixture layer EX and the current collector CU improves as the second active material particles CP2 are pushed deeper into the current collector CU. However, if the current collector CU is crushed and thinned, or the number of second active material particles CP2 penetrating the current collector CU increases, the tensile strength of the current collector CU required for winding or the like The mechanical strength such as Therefore, by adjusting the particle size and pressing pressure of the second active material particles CP2, the number of second active material particles CP2 penetrating the current collector CU is reduced, or the second is reduced to about half the thickness of the current collector CU. It is desirable to push in the active material particles CP2.
 また、第2活物質粒子CP2は、電極合剤層EXに含まれる活物質の重量に対して1重量%よりも大きく(1重量%は含まない)、50重量%以下の割合で含有させることが望ましい。第2活物質粒子CP2の割合が少ないと、単位電極体積あたりの電池容量の増加が少なくなる。一方、第2活物質粒子CP2の割合が多いと、第2活物質粒子CP2の集電体CUに押し込まれる部分が増えて、単位電極体積あたりの電池容量は増加する。しかし、集電体CUが潰されて薄くなる部分および集電体CUに穴が開く部分が増えるため、捲回などのときに必要な集電体CUの引っ張り強さなどの機械的強度が弱くなる恐れがある。そのため、第2活物質粒子CP2は、上記の割合の範囲で電極合剤層EXに含有させることが望ましい。 Further, the second active material particles CP2 are contained in a proportion of not more than 1% by weight (not including 1% by weight) and not more than 50% by weight with respect to the weight of the active material contained in the electrode mixture layer EX. Is desirable. When the ratio of the second active material particles CP2 is small, an increase in battery capacity per unit electrode volume is small. On the other hand, when the ratio of the second active material particles CP2 is large, the portion of the second active material particles CP2 that is pushed into the current collector CU increases, and the battery capacity per unit electrode volume increases. However, since the current collector CU is crushed and thinned and the current collector CU has more holes, the mechanical strength such as the tensile strength of the current collector CU required for winding is weak. There is a fear. Therefore, it is desirable that the second active material particle CP2 is contained in the electrode mixture layer EX within the above range.
 (切断工程)
 次に、電極合剤層EXが形成された集電体CUを切断して、フィルム状の電極シートを製造する。
(Cutting process)
Next, the current collector CU on which the electrode mixture layer EX is formed is cut to produce a film-like electrode sheet.
 なお、本実施例1は、正極と負極のどちらにも適用することができる。 Note that Example 1 can be applied to both the positive electrode and the negative electrode.
 このように、実施例1によれば、電極合剤層EXの厚さT1を、5~20μm程度と薄膜化することにより、高出力を実現することができる。さらに、電極合剤層EXを、例えば3μm程度の第1平均粒径を有する第1活物質粒子CP1と、例えば10μm程度の第2平均粒径を有する第2活物質粒子CP2とから構成し、第2活物質粒子CP2を集電体CUに押し込むことによって、単位電極体積あたりの電池容量および体積エネルギー密度を増やすことができる。これらにより、高出力と高容量との両立を図ることができる。 Thus, according to Example 1, a high output can be realized by reducing the thickness T1 of the electrode mixture layer EX to about 5 to 20 μm. Furthermore, the electrode mixture layer EX is composed of, for example, a first active material particle CP1 having a first average particle diameter of about 3 μm and a second active material particle CP2 having a second average particle diameter of about 10 μm, for example. By pushing the second active material particles CP2 into the current collector CU, the battery capacity and volume energy density per unit electrode volume can be increased. As a result, both high output and high capacity can be achieved.
 さらに、第2活物質粒子CP2を集電体CUに押し込むと、アンカー効果によって、電極合剤層EXと集電体CUとの密着性が向上する。これにより、電極合剤層EXが集電体CUから浮いたり剥がれたりすることがなくなり、信頼性が向上する。 Furthermore, when the second active material particles CP2 are pushed into the current collector CU, the adhesion between the electrode mixture layer EX and the current collector CU is improved by the anchor effect. Thereby, the electrode mixture layer EX does not float or peel off from the current collector CU, and the reliability is improved.
 ≪比較例≫
 本比較例では、本発明者らが検討した電極合剤層の厚さが、例えば30~100μm程度の電極について説明する。図4は、比較例によるリチウムイオン電池の電極を模式的に示す断面図である。
≪Comparative example≫
In this comparative example, an electrode having a thickness of about 30 to 100 μm, for example, of the electrode mixture layer investigated by the present inventors will be described. FIG. 4 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to a comparative example.
 電極ER0は、集電体CUと、集電体CUの両面(第1面S1および第2面S2)に形成された電極合剤層EX0とからなり、電極合剤層EX0は、活物質、導電助剤、および結着剤を含有する。さらに、活物質は、例えば3μm程度の第1平均粒径を有する第1活物質粒子CP1と、第1平均粒径よりも大きい、例えば10μm程度の第2平均粒径を有する第2活物質粒子CP2とを含んでいる。 The electrode ER0 includes a current collector CU and an electrode mixture layer EX0 formed on both surfaces (first surface S1 and second surface S2) of the current collector CU. The electrode mixture layer EX0 includes an active material, Contains a conductive aid and a binder. Furthermore, the active material is, for example, a first active material particle CP1 having a first average particle diameter of about 3 μm and a second active material particle having a second average particle diameter larger than the first average particle diameter, for example, about 10 μm. CP2 is included.
 しかし、電極合剤層EX0の厚さT0は、例えば30~100μm程度であり、集電体CUの厚さT2は、例えば5~20μm程度である。前述した実施例1と比べて、電極合剤層EX0が厚く、第1活物質粒子CP1の第1平均粒径をD1とすると、電極合剤層EX0の厚さT0は、(4×D1)≦T0の範囲に設定されている。すなわち、電極合剤層EX0は、第1活物質粒子CP1が4層以上分の状態に相当する。 However, the thickness T0 of the electrode mixture layer EX0 is, for example, about 30 to 100 μm, and the thickness T2 of the current collector CU is, for example, about 5 to 20 μm. Compared with Example 1 described above, when the electrode mixture layer EX0 is thick and the first average particle diameter of the first active material particles CP1 is D1, the thickness T0 of the electrode mixture layer EX0 is (4 × D1). ≦ T0 is set. That is, the electrode mixture layer EX0 corresponds to a state in which the first active material particles CP1 are four or more layers.
 通常、電極合剤層EX0の厚さT0よりも大きい第2平均粒径を有する第2活物質粒子CP2は、スラリー状の電極合剤を塗布する前に、フィルタリングまたは風力分級などによって積極的に除去するので、電極合剤層EX0には混入しない。従って、1つの第2活物質粒子CP2において、集電体CUに押し込まれている部分と、電極合剤層EX0の表面に露出している部分との両方を同時に有するものはなく、第2活物質粒子CP2は、電極合剤層EX0の表面に露出しているか、または電極合剤層EX0の表面に露出せずに、電極合剤層EX0の内部に埋没しているかのどちらかである。 In general, the second active material particle CP2 having the second average particle size larger than the thickness T0 of the electrode mixture layer EX0 is actively applied by filtering or air classification before applying the slurry-like electrode mixture. Since it is removed, it does not enter the electrode mixture layer EX0. Therefore, none of the second active material particles CP2 has both the portion pushed into the current collector CU and the portion exposed on the surface of the electrode mixture layer EX0 at the same time. The material particles CP2 are either exposed on the surface of the electrode mixture layer EX0 or are not exposed on the surface of the electrode mixture layer EX0 and are buried in the electrode mixture layer EX0.
 電極合剤層EX0の厚さT0よりも小さい第2平均粒径を有する第2活物質粒子CP2は、熱ロールプレスと集電体CUとの間に挟まる状態にならないため、第2活物質粒子CP2に直接プレス圧が伝わりにくい。そのため、集電体CUに押し込まれるものは少なく、また、押し込まれる深さも浅い。 Since the second active material particles CP2 having the second average particle size smaller than the thickness T0 of the electrode mixture layer EX0 are not sandwiched between the hot roll press and the current collector CU, the second active material particles It is difficult to transmit the press pressure directly to CP2. Therefore, few are pushed into the current collector CU, and the depth to be pushed is shallow.
 以上により、本比較例では、熱ロールプレスを用いて第2活物質粒子CP2を集電体CUに押し込むことによって単位電極体積当たりの電池容量および体積エネルギー密度を増やすことは難しい。 As described above, in this comparative example, it is difficult to increase the battery capacity and volume energy density per unit electrode volume by pushing the second active material particles CP2 into the current collector CU using a hot roll press.
 また、電極合剤層EX0が厚く、集電体CUが薄い場合は、元々集電体CUの表面にある活物質による電池容量が大きいため、第2活物質粒子CP2が押し込まれた部分の電池容量増加への寄与は小さい。さらに、第2活物質粒子CP2が集電体CUに押し込まれることによるアンカー効果が小さいため、電極合剤層EX0と集電体CUとの密着性の向上も期待できない。 Further, when the electrode mixture layer EX0 is thick and the current collector CU is thin, the battery capacity of the active material originally on the surface of the current collector CU is large, so the battery in the portion where the second active material particles CP2 are pushed in The contribution to capacity increase is small. Furthermore, since the anchor effect due to the second active material particles CP2 being pushed into the current collector CU is small, improvement in the adhesion between the electrode mixture layer EX0 and the current collector CU cannot be expected.
 一方、電極合剤層EX0が厚い場合に、電極合剤層EX0の厚さT0以上の第2平均粒径を有する第2活物質粒子CP2を電極合剤層EX0に混入させると、微細な活物質のみを集電体CUの第1面S1および第2面S2に塗布した場合よりも活物質の表面積が小さくなる。このため、却って単位電極体積あたりの電池容量が減り、または出力性能が低下する。従って、このような大きさの第2活物質粒子CP2を混入させると、性能上不利になる。 On the other hand, when the electrode mixture layer EX0 is thick, if the second active material particles CP2 having the second average particle diameter equal to or greater than the thickness T0 of the electrode mixture layer EX0 are mixed into the electrode mixture layer EX0, a fine active material is obtained. The surface area of the active material is smaller than when only the material is applied to the first surface S1 and the second surface S2 of the current collector CU. For this reason, the battery capacity per unit electrode volume is reduced or the output performance is lowered. Therefore, mixing the second active material particles CP2 having such a size is disadvantageous in terms of performance.
 本実施例2によるリチウムイオン電池が、前述した実施例1によるリチウムイオン電池と相違する点は、第2活物質粒子の一部を集電体へ押し込む方法である。 The difference between the lithium ion battery according to Example 2 and the lithium ion battery according to Example 1 described above is a method in which part of the second active material particles is pushed into the current collector.
 ≪リチウムイオン電池の製造方法≫
 本実施例2によるリチウムイオン電池の電極の製造方法について図5および図6を用いて説明する。図5は、本実施例2によるリチウムイオン電池の電極の製造工程を示す工程図である。図6は、本実施例2によるリチウムイオン電池の電極の製造方法を模式的に示す断面図であり、(a)は乾燥工程における電極の断面図、(b)は散布工程における電極の断面図、(c)は加熱圧縮工程における電極の断面図である。
≪Lithium-ion battery manufacturing method≫
A method for manufacturing an electrode of a lithium ion battery according to Example 2 will be described with reference to FIGS. FIG. 5 is a process diagram showing a manufacturing process of an electrode of a lithium ion battery according to the second embodiment. 6A and 6B are cross-sectional views schematically showing a method for manufacturing an electrode of a lithium ion battery according to Example 2, wherein FIG. 6A is a cross-sectional view of the electrode in the drying process, and FIG. 6B is a cross-sectional view of the electrode in the spraying process. (C) is sectional drawing of the electrode in a heat compression process.
 (混練工程)
 まず、第1平均粒径が、例えば5μm程度の第1活物質粒子CP1のみからなる活物質に、導電助剤として黒鉛およびカーボンブラックを混合し、結着剤としてポリフッ化ビニリデンを混合し、さらに、結着剤の溶解が可能である溶剤、例えばN-メチル-2-ピロリドン溶液を加えてプラネタリーミキサーで混合して、スラリー状の電極合剤を形成する。
(Kneading process)
First, for example, graphite and carbon black are mixed as a conductive additive, and polyvinylidene fluoride is mixed as a binder into an active material composed of only the first active material particles CP1 having a first average particle diameter of, for example, about 5 μm. Then, a solvent capable of dissolving the binder, for example, an N-methyl-2-pyrrolidone solution is added and mixed with a planetary mixer to form a slurry electrode mixture.
 (塗布工程)
 次に、集電体CUの第1面S1にスラリー状の電極合剤を、ダイコータを用いて塗布する。集電体CUとしては、正極の場合は、例えば厚さ20μm程度のアルミニウム箔を用い、負極の場合は、例えば厚さ10μm程度の銅箔を用いる。塗布手段としては、他にも、例えば押出しコーター、リバースローラー、ドクターブレード、アプリケーター、またはスプレーなどを用いることができる。
(Coating process)
Next, a slurry-like electrode mixture is applied to the first surface S1 of the current collector CU using a die coater. As the current collector CU, in the case of the positive electrode, for example, an aluminum foil having a thickness of about 20 μm is used, and in the case of the negative electrode, for example, a copper foil having a thickness of about 10 μm is used. As the application means, for example, an extrusion coater, a reverse roller, a doctor blade, an applicator, or a spray can be used.
 (乾燥工程)
 次に、例えば120℃の温風乾燥炉にて、溶剤、例えばN-メチル-2-ピロリドン溶液を乾燥させる。
(Drying process)
Next, a solvent such as an N-methyl-2-pyrrolidone solution is dried in a warm air drying oven at 120 ° C., for example.
 次に、集電体CUの第2面S2にも同様に、前述した(塗布工程)および(乾燥工程)を実施して、図6(a)に示すように、集電体CUの両面(第1面S1および第2面S2)に、電極合剤層EXを形成する。 Next, similarly, the above-described (coating step) and (drying step) are performed on the second surface S2 of the current collector CU as shown in FIG. The electrode mixture layer EX is formed on the first surface S1 and the second surface S2).
 (散布工程)
 次に、図6(b)に示すように、電極合剤層EXの表面に、第2平均粒径が、例えば12μm程度の第2活物質粒子CP2を載せる。第2活物質粒子CP2は、例えばノズルを用いて電極合剤層EXの表面に散布される。この際、電極合剤層EXに含まれる活物質の重量に対して第2活物質粒子CP2が30重量%程度となるように、第2活物質粒子CP2を散布する。
(Spraying process)
Next, as shown in FIG. 6B, the second active material particles CP2 having a second average particle diameter of, for example, about 12 μm are placed on the surface of the electrode mixture layer EX. The second active material particles CP2 are dispersed on the surface of the electrode mixture layer EX using, for example, a nozzle. At this time, the second active material particles CP2 are dispersed so that the second active material particles CP2 are about 30% by weight with respect to the weight of the active material contained in the electrode mixture layer EX.
 (加熱圧縮工程)
 次に、図6(c)に示すように、熱ロールプレスROを用いて、電極合剤層EXを加熱圧縮することにより、電極ER2を形成する。この際、第2活物質粒子CP2を集電体CUに押し込む。熱ロールプレスROの温度は、例えば120℃程度であり、プレス圧は、第2活物質粒子CP2を集電体CUに押し込まない場合の10~20倍程度とする。乾燥工程の後に、固化している電極合剤層EXに第2活物質粒子CP2を押し込むため、プレス圧を前述した実施例1の加熱圧縮工程よりも高くした。
(Heat compression process)
Next, as shown in FIG.6 (c), electrode ER2 is formed by heat-compressing electrode mixture layer EX using hot roll press RO. At this time, the second active material particles CP2 are pushed into the current collector CU. The temperature of the hot roll press RO is about 120 ° C., for example, and the press pressure is about 10 to 20 times that when the second active material particles CP2 are not pushed into the current collector CU. In order to push the second active material particles CP2 into the solidified electrode mixture layer EX after the drying step, the press pressure was set higher than that in the heat compression step of Example 1 described above.
 電極合剤層EXを集電体CUの両面(第1面S1および第2面S2)に圧縮する方法としては、一軸プレス法、二軸プレス法、ロールプレス法、または静水圧プレス法などを用いることができる。室温で圧縮してもよいが、集電体CUとの密着性の観点から、結着剤の軟化点付近の温度で圧縮する熱間プレス法を用いることが好ましい。また、ここでは、ロールtoロールの連続処理のために熱ロールプレスROを用いたが、バッチ式で平板プレスを用いてもよい。 As a method of compressing the electrode mixture layer EX on both surfaces (first surface S1 and second surface S2) of the current collector CU, a uniaxial press method, a biaxial press method, a roll press method, an isostatic press method, or the like is used. Can be used. Although compression may be performed at room temperature, it is preferable to use a hot pressing method in which compression is performed at a temperature near the softening point of the binder from the viewpoint of adhesion to the current collector CU. Moreover, although the hot roll press RO was used for the continuous processing of roll to roll here, you may use a flat plate press by a batch type.
 なお、乾燥工程において、溶剤、例えばN-メチル-2-ピロリドン溶液の大部分を揮発させ、散布工程において、半乾き状態の電極合剤層EXの表面に、第2活物質粒子PC2を載せ、続いて、加熱圧縮工程において、熱ロールプレスROを用いて、電極合剤層EXを加熱圧縮してもよい。また、塗布工程が終わった後、乾燥工程の前に、上記散布工程を実施し、その後に乾燥工程、続いて加熱圧縮工程を実施してもよい。 In the drying step, most of the solvent, for example, N-methyl-2-pyrrolidone solution is volatilized. In the spraying step, the second active material particles PC2 are placed on the surface of the electrode mixture layer EX in a semi-dry state. Subsequently, in the heat compression step, the electrode mixture layer EX may be heat compressed using a hot roll press RO. Moreover, after the coating process is completed, the spraying process may be performed before the drying process, followed by the drying process and then the heat compression process.
 また、集電体CUの両面(第1面S1および第2面S2)に形成された電極合剤層EXに第2活物質粒子CP2を押し込む場合は、まず、集電体CUの片面(例えば第1面S1)に第2活物質粒子CP2を押し込んだ後、電極ER2を反転して、集電体CUのもう一方の片面(例えば第2面S2)に第2活物質粒子CP2を押し込んでもよい。 When the second active material particles CP2 are pushed into the electrode mixture layer EX formed on both surfaces (the first surface S1 and the second surface S2) of the current collector CU, first, one surface of the current collector CU (for example, After the second active material particle CP2 is pushed into the first surface S1), the electrode ER2 is reversed and the second active material particle CP2 is pushed into the other surface (for example, the second surface S2) of the current collector CU. Good.
 また、第2活物質粒子CP2を熱ロールプレスROの表面に載せる、または付着させておき、その状態で電極合剤層EXを圧縮することによって、第2活物質粒子CP2を集電体CUに押し込んでもよい。 Further, the second active material particles CP2 are placed on or attached to the surface of the hot roll press RO, and the electrode mixture layer EX is compressed in this state, whereby the second active material particles CP2 are applied to the current collector CU. You may push in.
 また、予め、第2活物質粒子CP2の表面または電極合剤層EXの表面に、結着剤を含む溶剤または粘着剤を薄く付着させておき、電極合剤層EXの表面に第2活物質粒子CP2を付着させ、電極ER2を反転せずに、集電体CUの両面(第1面S1および第2面S2)に形成された電極合剤層EXを同時に圧縮することによって、第2活物質粒子CP2を集電体CUに押し込んでもよい。 In addition, a solvent or adhesive containing a binder is thinly attached in advance to the surface of the second active material particle CP2 or the surface of the electrode mixture layer EX, and the second active material is deposited on the surface of the electrode mixture layer EX. By simultaneously compressing the electrode mixture layer EX formed on both surfaces (the first surface S1 and the second surface S2) of the current collector CU without attaching the particles CP2 and inverting the electrode ER2, the second active layer The substance particles CP2 may be pushed into the current collector CU.
 (切断工程)
 次に、電極合剤層EXが形成された集電体CUを切断して、フィルム状の電極シートを製造する。
(Cutting process)
Next, the current collector CU on which the electrode mixture layer EX is formed is cut to produce a film-like electrode sheet.
 なお、本実施例2は、正極と負極のどちらにも適用することができる。 Note that Example 2 can be applied to both the positive electrode and the negative electrode.
 このように、実施例2によれば、前述した実施例1とほぼ同様に、高出力と高容量との両立を図ることができる。 Thus, according to the second embodiment, it is possible to achieve both high output and high capacity in substantially the same manner as in the first embodiment.
 本実施例3では、集電体の片面のみに電極合剤層が形成された電極を有するリチウムイオン電池について図7を用いて説明する。図7は、本実施例3によるリチウムイオン電池の電極を模式的に示す断面図である。 In Example 3, a lithium ion battery having an electrode in which an electrode mixture layer is formed only on one side of a current collector will be described with reference to FIG. FIG. 7 is a cross-sectional view schematically showing an electrode of the lithium ion battery according to the third embodiment.
 本実施例3によるリチウムイオン電池の電極ER3の製造方法は、集電体CUの片面のみに電極合剤層EXを形成すること以外は、前述した実施例1および実施例2とほぼ同じである。 The manufacturing method of the electrode ER3 of the lithium ion battery according to Example 3 is substantially the same as Example 1 and Example 2 described above, except that the electrode mixture layer EX is formed only on one side of the current collector CU. .
 前述した実施例1と同様に、まず、(混錬工程)において、第1活物質粒子CP1および第2活物質粒子CP2を混合した活物質と、導電助剤と、結着剤とを混合してスラリー状の電極合剤を形成する。続いて、(塗布工程)において、この電極合剤を集電体CUの第1面S1に塗布する。その後、(乾燥工程)、(加熱圧縮工程)、および(切断工程)を経て電極シートを製造する。 Similarly to Example 1 described above, first, in the (kneading step), the active material obtained by mixing the first active material particles CP1 and the second active material particles CP2, the conductive auxiliary agent, and the binder are mixed. To form a slurry-like electrode mixture. Subsequently, in the (coating step), this electrode mixture is applied to the first surface S1 of the current collector CU. Then, an electrode sheet is manufactured through (drying process), (heat compression process), and (cutting process).
 または、前述した実施例2と同様に、(混錬工程)において、第1活物質粒子CP1のみからなる活物質と、導電助剤と、結着剤とを混合してスラリー状の電極合剤を形成する。続いて、(塗布工程)において、この電極合剤を集電体CUの第1面S1に塗布する。続いて、(乾燥工程)を経て、(散布工程)において、電極合剤層EXの表面に第2活物質粒子CP2を搭載した後、(加熱圧縮工程)において、電極合剤層EXを加熱圧縮すると同時に、第2活物質粒子CP2を集電体CUに押し込む。その後、(切断工程)を経て電極シートを製造する。 Alternatively, as in Example 2 described above, in the (kneading step), an active material composed only of the first active material particles CP1, a conductive auxiliary agent, and a binder are mixed to form a slurry electrode mixture. Form. Subsequently, in the (coating step), this electrode mixture is applied to the first surface S1 of the current collector CU. Subsequently, after the (drying step), in the (spreading step), after the second active material particles CP2 are mounted on the surface of the electrode mixture layer EX, in the (heat compression step), the electrode mixture layer EX is heated and compressed. At the same time, the second active material particles CP2 are pushed into the current collector CU. Then, an electrode sheet is manufactured through (cutting process).
 図7に示すように、電極合剤が塗布されていない集電体CUの第2面S2から、第2活物質粒子CP2が飛び出さないようにする必要がある。そこで、本実施例3では、第2活物質粒子CP2の第2平均粒径をD2、電極合剤層EXの厚さをT1、集電体CUの厚さをT2とすると、T1≦D2≦(T1+T2)となるように、これらの値は設定される。 As shown in FIG. 7, it is necessary to prevent the second active material particles CP2 from jumping out from the second surface S2 of the current collector CU not coated with the electrode mixture. Therefore, in Example 3, when the second average particle diameter of the second active material particles CP2 is D2, the thickness of the electrode mixture layer EX is T1, and the thickness of the current collector CU is T2, T1 ≦ D2 ≦ These values are set so as to be (T1 + T2).
 このように、本実施例3によれば、集電体CUの片面のみに電極合剤層EXを形成する場合であっても、前述した実施例1とほぼ同様に、高出力と高容量との両立を図ることができる。 Thus, according to the third embodiment, even when the electrode mixture layer EX is formed only on one side of the current collector CU, the high output and the high capacity are substantially the same as in the first embodiment. Can be achieved.
 本実施例4では、電極合剤層の厚さよりも平均粒径が大きい第2活物質粒子を含む電極合剤層が形成された電極を有するリチウムイオン電池について図8を用いて説明する。図8は、実施例4によるリチウムイオン電池の電極を模式的に示す断面図である。 In Example 4, a lithium ion battery having an electrode on which an electrode mixture layer including second active material particles having an average particle diameter larger than the thickness of the electrode mixture layer is formed will be described with reference to FIG. FIG. 8 is a cross-sectional view schematically showing an electrode of a lithium ion battery according to Example 4.
 本実施例4によるリチウムイオン電池の電極ER4の製造方法は、前述した実施例1および実施例2とほぼ同じである。 The manufacturing method of the electrode ER4 of the lithium ion battery according to Example 4 is almost the same as Example 1 and Example 2 described above.
 図8に示すように、集電体CUの第1面S1に塗布された電極合剤に含まれる第2活物質粒子CP2が集電体CUの第2面S2に形成された電極合剤層EXの表面から飛び出して、集電体CUの第2面S2に形成された電極合剤層EXの表面粗さを大きくしないようにする必要がある。同様に、集電体CUの第2面S2に塗布された電極合剤に含まれる第2活物質粒子CP2が集電体CUの第1面S1に形成された電極合剤層EXの表面から飛び出して、集電体CUの第1面S1に形成された電極合剤層EXの表面粗さを大きくしないようにする必要がある。そこで、第2活物質粒子CP2の第2平均粒径をD2、集電体CUの第1面S1に形成される電極合剤層EXの厚さをT1、集電体CUの第2面S2に形成される電極合剤層EXの厚さをT3、集電体CUの厚さをT2とすると、T1≦D2≦(T1+T2+T3)となるように、これらの値は設定される。 As shown in FIG. 8, the electrode mixture layer in which the second active material particles CP2 contained in the electrode mixture applied to the first surface S1 of the current collector CU are formed on the second surface S2 of the current collector CU. It is necessary to prevent the surface roughness of the electrode mixture layer EX from jumping out from the surface of the EX and being formed on the second surface S2 of the current collector CU. Similarly, from the surface of the electrode mixture layer EX formed on the first surface S1 of the current collector CU, the second active material particles CP2 contained in the electrode mixture applied to the second surface S2 of the current collector CU. It is necessary to prevent the surface roughness of the electrode mixture layer EX formed on the first surface S1 of the current collector CU from popping out. Therefore, the second average particle diameter of the second active material particles CP2 is D2, the thickness of the electrode mixture layer EX formed on the first surface S1 of the current collector CU is T1, and the second surface S2 of the current collector CU. These values are set so that T1 ≦ D2 ≦ (T1 + T2 + T3), where T3 is the thickness of the electrode mixture layer EX formed on the substrate and T2 is the thickness of the current collector CU.
 通常、集電体CUの第1面S1に形成される電極合剤層EXの厚さT1と集電体CUの第2面S2に形成される電極合剤層EXの厚さT3とは同じとしているが、互いに異なっていてもよい。 Usually, the thickness T1 of the electrode mixture layer EX formed on the first surface S1 of the current collector CU and the thickness T3 of the electrode mixture layer EX formed on the second surface S2 of the current collector CU are the same. However, they may be different from each other.
 ところで、集電体CUの第1面S1に形成される電極合剤層EXに含まれる第2活物質粒子CP2と集電体CUの第2面S2に形成される電極合剤層EXに含まれる第2活物質粒子CP2とが、集電体CUの中でぶつかり合う場合がある。また、集電体CUの第1面S1に形成される電極合剤層EXに含まれる第2活物質粒子CP2が集電体CUを突き抜けて、集電体CUの第2面S2に形成される電極合剤層EXへ入り込む、または集電体CUの第2面S2に形成される電極合剤層EXに含まれる第2活物質粒子CP2が集電体CUを突き抜けて、集電体CUの第1面S1に形成される電極合剤層EXへ入り込む場合がある。 By the way, the second active material particles CP2 included in the electrode mixture layer EX formed on the first surface S1 of the current collector CU and the electrode mixture layer EX formed on the second surface S2 of the current collector CU are included. In some cases, the second active material particles CP2 collide with each other in the current collector CU. Further, the second active material particles CP2 included in the electrode mixture layer EX formed on the first surface S1 of the current collector CU penetrate the current collector CU and are formed on the second surface S2 of the current collector CU. The second active material particles CP2 contained in the electrode mixture layer EX entering the electrode mixture layer EX or formed on the second surface S2 of the current collector CU penetrates the current collector CU, and the current collector CU May enter the electrode mixture layer EX formed on the first surface S1.
 第2活物質粒子CP2が集電体CUの内部に深く押し込まれるほど、電極合剤層EXと集電体CUとの密着性は向上する。しかし、集電体CUが潰されて薄くなる部分が多くなる、または集電体CUを突き抜ける第2活物質粒子CP2が多くなると、捲回などのときに必要な集電体CUの引っ張り強さなどの機械的強度が弱くなる恐れがある。そこで、第2活物質粒子CP2の粒径およびプレス圧を調整して、集電体CUを突き抜ける第2活物質粒子CP2の数を減らす、集電体CUの中でぶつかり合う第2活物質粒子CP2の数を減らす、または集電体CUの厚さの半分ほどまで第2活物質粒子CP2を押し込むことが望ましい。 As the second active material particle CP2 is pushed deeper into the current collector CU, the adhesion between the electrode mixture layer EX and the current collector CU is improved. However, if the current collector CU is crushed and thinned, or the number of second active material particles CP2 penetrating the current collector CU increases, the tensile strength of the current collector CU required for winding or the like The mechanical strength such as Therefore, by adjusting the particle size and press pressure of the second active material particles CP2, the number of second active material particles CP2 penetrating the current collector CU is reduced, and the second active material particles colliding with each other in the current collector CU It is desirable to reduce the number of CP2s or push the second active material particles CP2 down to about half the thickness of the current collector CU.
 このように、本実施例4によれば、第2平均粒径が電極合剤層EXの厚さT1,T3よりも大きい第2活物質粒子CP2を含む電極合剤層EXであっても、第2活物質粒子CP2の第2平均粒径を、所定の範囲に揃えることにより、前述した実施例1とほぼ同様に、高出力と高容量との両立を図ることができる。 Thus, according to the present Example 4, even in the electrode mixture layer EX including the second active material particles CP2 having the second average particle diameter larger than the thicknesses T1 and T3 of the electrode mixture layer EX, By matching the second average particle diameter of the second active material particles CP2 within a predetermined range, both high output and high capacity can be achieved in substantially the same manner as in the first embodiment.
 以上、本発明者らによってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the invention made by the present inventors has been specifically described based on the embodiment, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本実施の形態では、リチウムイオン電池を例に挙げて、本発明の技術的思想について説明したが、本発明の技術的思想は、リチウムイオン電池に限定されるものではなく、様々な電池に応用することができる。 In the present embodiment, the technical idea of the present invention has been described by taking a lithium ion battery as an example. However, the technical idea of the present invention is not limited to a lithium ion battery but can be applied to various batteries. can do.
 CU 集電体(電極板、集電箔、電極箔、金属箔)
 ER0,ER1,ER2,ER3,ER4 電極
 EX,EX0 電極合剤層
 CP1 第1活物質粒子
 CP2 第2活物質粒子
 S1 第1面
 S2 第2面
 RO 熱ロールプレス
CU current collector (electrode plate, current collector foil, electrode foil, metal foil)
ER0, ER1, ER2, ER3, ER4 Electrode EX, EX0 Electrode mixture layer CP1 First active material particle CP2 Second active material particle S1 First surface S2 Second surface RO Hot roll press

Claims (6)

  1.  集電体の第1面に、活物質、導電助剤、および結着剤を含む第1電極合剤層が付着した電極を有するリチウムイオン電池であって、
     前記活物質は、第1平均粒径(D1)を有する第1活物質粒子と、前記第1平均粒径(D1)よりも大きい第2平均粒径(D2)を有する第2活物質粒子とを含み、
     前記第1電極合剤層の厚さ(T1)は、D1≦T1≦(3×D1)の範囲であり、
     前記第2活物質粒子は、前記集電体に押し込まれている部分と、前記第1電極合剤層の表面に露出している部分とを有する、リチウムイオン電池。
    A lithium ion battery having an electrode on which a first electrode mixture layer containing an active material, a conductive additive, and a binder is attached to a first surface of a current collector,
    The active material includes first active material particles having a first average particle diameter (D1), second active material particles having a second average particle diameter (D2) larger than the first average particle diameter (D1), and Including
    The thickness (T1) of the first electrode mixture layer is in the range of D1 ≦ T1 ≦ (3 × D1),
    The second active material particle is a lithium ion battery having a portion pushed into the current collector and a portion exposed on the surface of the first electrode mixture layer.
  2.  請求項1記載のリチウムイオン電池において、
     前記第2活物質粒子の前記第2平均粒径(D2)は、前記集電体の厚さをT2とすると、T1≦D2≦(T1+T2)の範囲である、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The second average particle diameter (D2) of the second active material particles is a lithium ion battery in a range of T1 ≦ D2 ≦ (T1 + T2) where the thickness of the current collector is T2.
  3.  請求項1記載のリチウムイオン電池において、
     前記集電体の前記第1面と反対側の第2面に、前記活物質、前記導電助剤、および前記結着剤を含む第2電極合剤層が付着し、
     前記第2電極合剤層の厚さ(T3)が、前記第1電極合剤層の厚さ(T1)以上であるときに、
     前記第2活物質粒子の前記第2平均粒径(D2)は、前記集電体の厚さをT2とすると、T1≦D2≦(T1+T2+T3)の範囲である、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    A second electrode mixture layer containing the active material, the conductive auxiliary agent, and the binder is attached to the second surface opposite to the first surface of the current collector,
    When the thickness (T3) of the second electrode mixture layer is equal to or greater than the thickness (T1) of the first electrode mixture layer,
    The second average particle diameter (D2) of the second active material particles is a lithium ion battery in a range of T1 ≦ D2 ≦ (T1 + T2 + T3) where the thickness of the current collector is T2.
  4.  請求項1記載のリチウムイオン電池において、
     前記第2活物質粒子は、前記電極合剤層に含まれる前記活物質の重量に対して、1重量%よりも大きく、50%重量以下の割合で、前記活物質に含まれる、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The lithium ion battery, wherein the second active material particles are contained in the active material in a ratio of greater than 1% by weight and less than or equal to 50% by weight with respect to the weight of the active material contained in the electrode mixture layer. .
  5.  請求項1記載のリチウムイオン電池において、
     前記第2活物質粒子は、前記電極合剤層に含まれる前記活物質の重量に対して、20重量%以上、30重量%以下の割合で、前記活物質に含まれる、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The lithium ion battery, wherein the second active material particles are contained in the active material at a ratio of 20 wt% or more and 30 wt% or less with respect to the weight of the active material contained in the electrode mixture layer.
  6.  請求項1記載のリチウムイオン電池において、
     前記第1電極合剤層の厚さ(T1)は、5~20μmである、リチウムイオン電池。
    The lithium ion battery according to claim 1,
    The lithium ion battery, wherein the first electrode mixture layer has a thickness (T1) of 5 to 20 μm.
PCT/JP2014/078834 2014-10-29 2014-10-29 Lithium ion battery WO2016067402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078834 WO2016067402A1 (en) 2014-10-29 2014-10-29 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078834 WO2016067402A1 (en) 2014-10-29 2014-10-29 Lithium ion battery

Publications (1)

Publication Number Publication Date
WO2016067402A1 true WO2016067402A1 (en) 2016-05-06

Family

ID=55856788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078834 WO2016067402A1 (en) 2014-10-29 2014-10-29 Lithium ion battery

Country Status (1)

Country Link
WO (1) WO2016067402A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083099A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Electrode for secondary battery, secondary battery, electronic apparatus, manufacturing method of electrode for secondary battery, manufacturing method of secondary battery
WO2020088965A1 (en) * 2018-10-31 2020-05-07 Robert Bosch Gmbh Electrode, battery cell and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339782A (en) * 1998-05-29 1999-12-10 Toyota Central Res & Dev Lab Inc Manufacture of positive electrode for nonaqueous secondary battery
JP2008021453A (en) * 2006-07-11 2008-01-31 Nissan Motor Co Ltd Electrode for battery
JP2011253640A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, vehicle, apparatus using battery, and method for manufacturing negative electrode plate
WO2012014780A1 (en) * 2010-07-28 2012-02-02 日産自動車株式会社 Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
WO2013088540A1 (en) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339782A (en) * 1998-05-29 1999-12-10 Toyota Central Res & Dev Lab Inc Manufacture of positive electrode for nonaqueous secondary battery
JP2008021453A (en) * 2006-07-11 2008-01-31 Nissan Motor Co Ltd Electrode for battery
JP2011253640A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Negative electrode plate, lithium ion secondary battery, vehicle, apparatus using battery, and method for manufacturing negative electrode plate
WO2012014780A1 (en) * 2010-07-28 2012-02-02 日産自動車株式会社 Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
WO2013088540A1 (en) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083099A (en) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 Electrode for secondary battery, secondary battery, electronic apparatus, manufacturing method of electrode for secondary battery, manufacturing method of secondary battery
JP7067019B2 (en) 2017-10-30 2022-05-16 セイコーエプソン株式会社 Secondary battery electrode, secondary battery, electronic device, secondary battery electrode manufacturing method, secondary battery manufacturing method
WO2020088965A1 (en) * 2018-10-31 2020-05-07 Robert Bosch Gmbh Electrode, battery cell and use thereof

Similar Documents

Publication Publication Date Title
US9837659B2 (en) Process for lithiating negative electrodes for lithium ion electrochemical cells
JP6208957B2 (en) Secondary battery active material, secondary battery electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
JP2005123185A (en) Lithium-ion secondary battery having ptc powder, and manufacturing method of the same
JP2011082133A (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP2010262826A (en) Active material, battery, and method for manufacturing electrode
WO2013088824A1 (en) Lithium ion battery and method for manufacturing same
JP2007273183A (en) Negative electrode and secondary battery
JP2009272085A (en) Nonaqueous electrolyte battery
WO2014141875A1 (en) Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
JP5832915B2 (en) Method for manufacturing lithium ion battery
JP2010160982A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
WO2015001411A1 (en) Non-aqueous electrolyte secondary battery
WO2013038939A1 (en) Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JP2000077061A (en) Lithium ion battery
JP2011171107A (en) Lithium ion battery and method for manufacturing the same
JP2013065453A (en) Lithium secondary battery
JP5802327B2 (en) Lithium secondary battery pack
JP2011086448A (en) Lithium ion secondary battery
JP2011090947A (en) Lithium ion secondary battery and negative electrode for the lithium ion secondary battery
JP2010086813A (en) Nonaqueous electrolyte secondary battery
WO2017056734A1 (en) Lithium secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2011170987A (en) Lithium-ion battery and method of manufacturing the same
JP2011086503A (en) Lithium ion secondary battery, and negative electrode for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP