JPH11325787A - Shell and tube heat exchanger - Google Patents

Shell and tube heat exchanger

Info

Publication number
JPH11325787A
JPH11325787A JP12560498A JP12560498A JPH11325787A JP H11325787 A JPH11325787 A JP H11325787A JP 12560498 A JP12560498 A JP 12560498A JP 12560498 A JP12560498 A JP 12560498A JP H11325787 A JPH11325787 A JP H11325787A
Authority
JP
Japan
Prior art keywords
refrigerant
shell
tube
heat exchanger
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12560498A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsushima
弘章 松嶋
Makoto Fujita
誠 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12560498A priority Critical patent/JPH11325787A/en
Publication of JPH11325787A publication Critical patent/JPH11325787A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance heat exchanging efficiency of shell and tube heat exchanger employing nonazeotrope refrigerant. SOLUTION: Since the inside of a shell 2 is sectioned by a refrigerant baffle plate, refrigerant from a refrigerant inlet 6 counter flows through a second tube 11 in first refrigerant channel 12 and a first tube 10 in third refrigerant channel 14. Consequently, flow rate of refrigerant in the shell 2 is increased and heat exchanging performance can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷凍空調機器の凝縮
器に使用されるシェルアンドチューブ式熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell and tube type heat exchanger used for a condenser of a refrigeration / air-conditioning apparatus.

【0002】[0002]

【従来の技術】従来から冷凍,空調分野で冷媒として使
用されてきたR22,R502と言った塩素原子を有す
る冷媒は成層圏のオゾン層を破壊することが知られ、使
用が規制されている。これらの冷媒に代わるものとして
オゾン破壊物質である塩素原子を含まない冷媒HFC
(ハイドロフルオロカーボン)32,HFC125,H
FC134a,HFC143a等を混合した冷媒が知ら
れている。これらの混合冷媒の中でR407C,R41
0A,R404Aと言った冷媒が代替候補とされてい
る。
2. Description of the Related Art Refrigerants containing chlorine atoms such as R22 and R502, which have been used as refrigerants in the fields of refrigeration and air conditioning, are known to destroy the ozone layer in the stratosphere, and their use is regulated. As an alternative to these refrigerants, a refrigerant HFC containing no chlorine atom which is an ozone depleting substance
(Hydrofluorocarbon) 32, HFC125, H
Refrigerants mixed with FC134a, HFC143a and the like are known. Among these mixed refrigerants, R407C, R41
Refrigerants such as 0A and R404A are considered as alternative candidates.

【0003】しかし、これらの代替冷媒は従来冷媒に比
べ熱物性的に効率が低く、また、混合冷媒であるため
に、シェルアンドチューブ式熱交換器に使用した場合、
従来の温度勾配に加え濃度勾配が熱交換性能の阻害要因
になり、性能低下になる。このため過冷却を大きくし性
能向上を図ったものとして例えば特開平8−233408 号公
報が知られている。
However, these alternative refrigerants have lower thermophysical efficiency than conventional refrigerants and are mixed refrigerants, so that they are used in shell-and-tube type heat exchangers.
In addition to the conventional temperature gradient, the concentration gradient becomes a hindrance factor of the heat exchange performance, resulting in a decrease in performance. For this reason, for example, Japanese Patent Application Laid-Open No. 8-233408 is known as a technique for increasing supercooling and improving performance.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、非
共沸混合冷媒を使用した場合に、過冷却が大きくなり、
性能を改善できるが、非共沸混合冷媒の特徴である、凝
縮域の温度勾配,濃度勾配には考慮されていない。シェ
ルアンドチューブ式熱交換器を凝縮器に使用した場合、
通常冷却媒体の入口出口の温度差は5℃程度であり、R
22のような単一冷媒を使用した場合、完全に凝縮する
ために出口冷却媒体より1〜2℃高い凝縮温度になる。
In the above prior art, when a non-azeotropic mixed refrigerant is used, supercooling becomes large,
Although the performance can be improved, it is not considered in the temperature gradient and the concentration gradient of the condensation zone, which are the characteristics of the non-azeotropic refrigerant mixture. If a shell and tube heat exchanger is used for the condenser,
Usually, the temperature difference between the inlet and outlet of the cooling medium is about 5 ° C.
When a single refrigerant such as 22 is used, the condensation temperature is 1-2C higher than the outlet cooling medium for complete condensation.

【0005】しかし、代表的な非共沸混合冷媒であるR
407Cでは、凝縮時にも、凝縮開始から凝縮終了まで
にガスの組成が変化するために5℃程度変化する。した
がって、凝縮を終了させるためには冷却媒体の出口温度
より凝縮終了温度を高くとる必要があり、凝縮圧力の上
昇、さらに冷凍サイクルに使用した場合には圧縮機動力
の増加になる。
However, a typical non-azeotropic refrigerant, R
At 407C, the temperature changes by about 5 ° C. even during the condensation because the gas composition changes from the start to the end of the condensation. Therefore, in order to end the condensation, it is necessary to set the condensation end temperature higher than the outlet temperature of the cooling medium, and the condensing pressure increases, and when used in a refrigeration cycle, the compressor power increases.

【0006】また、高沸点冷媒が凝縮しやすく、凝縮し
た液冷媒の組成は高沸点冷媒が多く、ガスは低沸点冷媒
が多くなり、伝熱面近傍に濃度勾配を生じ、熱交換性能
を低下させる。
Further, the high-boiling-point refrigerant is easily condensed, the composition of the condensed liquid refrigerant is often high-boiling-point refrigerant, and the gas has a large amount of low-boiling-point refrigerant. Let it.

【0007】本発明の目的は、非共沸混合冷媒を使用し
ても熱交換性能の高いシェルアンドチューブ式熱交換器
を提供することにある。
An object of the present invention is to provide a shell and tube heat exchanger having high heat exchange performance even when a non-azeotropic mixed refrigerant is used.

【0008】[0008]

【課題を解決するための手段】上記目的は、冷媒入口部
と冷媒出口部を設けたシェルと、シェル内に複数本の冷
却媒体が流れるチューブを設け、冷却媒体の流れが複数
パスになるように構成したシェルアンドチューブ式熱交
換器において、冷媒として非共沸混合冷媒を用い、凝縮
ガスと冷却媒体の流れが対向になるように冷媒仕切板を
設けることにより達成できる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a shell provided with a refrigerant inlet and a refrigerant outlet, and a plurality of tubes through which a plurality of cooling mediums flow, so that the flow of the cooling medium becomes a plurality of paths. In the shell-and-tube type heat exchanger configured as described above, this can be achieved by using a non-azeotropic mixed refrigerant as the refrigerant and providing a refrigerant partition plate so that the flows of the condensed gas and the cooling medium are opposed to each other.

【0009】さらに上記目的は、冷媒入口部と冷媒出口
部を設けたシェルと、シェル内に複数本の冷却媒体が流
れるチューブを設けて構成したシェルアンドチューブ式
熱交換器において、冷媒として非共沸混合冷媒を用い、
冷媒入口部に絞り部を設けるとともに、該絞り部と冷却
媒体近傍のガス冷媒が連通するバイパス路を設けること
によっても達成できる。
A further object of the present invention is to provide a shell-and-tube heat exchanger comprising a shell provided with a refrigerant inlet and a refrigerant outlet, and a plurality of tubes through which a cooling medium flows. Using a boiling mixed refrigerant,
This can also be achieved by providing a throttle portion at the refrigerant inlet portion and providing a bypass passage through which the throttle portion communicates with the gas refrigerant near the cooling medium.

【0010】[0010]

【発明の実施の形態】以下、本発明を実施例により説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments.

【0011】図1は本発明の第1の実施例に係るシェル
アンドチューブ式熱交換器の縦断面図、図2は第1の実
施例に係るシェルアンドチューブ式熱交換器の横断面図
である。図7は冷媒と冷却水の温度分布である。
FIG. 1 is a longitudinal sectional view of a shell and tube heat exchanger according to a first embodiment of the present invention, and FIG. 2 is a cross sectional view of the shell and tube heat exchanger according to the first embodiment. is there. FIG. 7 shows the temperature distribution of the refrigerant and the cooling water.

【0012】図1において、1はシェルアンドチューブ
式熱交換器、2はシェル、3は第1のヘッダ、4は第2
のヘッダ、5は第1のヘッダ3の冷却水入口部8の冷却
水と冷却水出口部9の冷却水の混合を防止する冷却水仕
切壁、6は冷媒入口部、7は冷媒出口部、10は内部に
冷却媒体としての冷却水が流れる複数本の第1のチュー
ブ(図1では1本で代表)、11は複数本の第2のチュ
ーブ(図1では1本で代表)、12は非共沸混合冷媒が
流れる第1の冷媒流路、13は第2の冷媒流路、14は
第3の冷媒流路、15はシェル2内に第2の冷媒流路1
3の部分を除き水平に設置され第1の冷媒流路12と第
3の冷媒流路14を分離する冷媒仕切板、16は冷媒仕
切板15のシェル2内壁との接触部に設けた液冷媒を下
方に流すための切り欠き、17はシェル2内の冷媒と冷
却水を分離する第1の仕切壁、18は第2の仕切壁であ
る 以上のように構成したシェルアンドチューブ式熱交換器
1は、高温のガス冷媒(図7の温度T1)、例えばR4
07Cが冷媒入口部6から供給される。供給されたガス
冷媒はシェル2内の第1の冷媒流路12を流れ、第2の
チューブ11内を流れる冷却水と熱交換し温度が低下す
る。冷媒温度T2で凝縮を開始し、さらに第1の冷媒流
路12を流れるにしたがって、冷媒の一部が凝縮し液冷
媒が落下するとともにガス冷媒も温度を低下させ、第2
の冷媒流路13を通り、第3の冷媒流路14で第1のチ
ューブ10内を流れる冷却水で冷却され、温度T3で凝
縮を完了する。第1の冷媒流路12で凝縮した液冷媒は
冷媒仕切壁15に設けた切り欠き16よりシェル2内壁
を伝わってシェル2下部に落下する。
In FIG. 1, 1 is a shell and tube heat exchanger, 2 is a shell, 3 is a first header, and 4 is a second header.
5, a cooling water partition wall for preventing the cooling water at the cooling water inlet 8 of the first header 3 from mixing with the cooling water at the cooling water outlet 9, a coolant inlet 6, a coolant outlet 7, Reference numeral 10 denotes a plurality of first tubes (represented by one in FIG. 1) through which cooling water as a cooling medium flows, 11 denotes a plurality of second tubes (represented by one in FIG. 1), and 12 denotes A first refrigerant flow path through which a non-azeotropic mixed refrigerant flows, 13 is a second refrigerant flow path, 14 is a third refrigerant flow path, 15 is a second refrigerant flow path 1 in the shell 2.
A refrigerant partition plate that is horizontally installed except for the portion 3 and separates the first refrigerant flow channel 12 and the third refrigerant flow channel 14, and 16 is a liquid refrigerant provided at a contact portion of the refrigerant partition plate 15 with the inner wall of the shell 2. Notch for flowing the water downward, 17 is a first partition wall for separating the refrigerant and cooling water in the shell 2, and 18 is a second partition wall The shell and tube heat exchanger configured as described above 1 is a high-temperature gas refrigerant (temperature T1 in FIG. 7), for example, R4
07C is supplied from the refrigerant inlet 6. The supplied gas refrigerant flows through the first refrigerant flow channel 12 in the shell 2 and exchanges heat with the cooling water flowing in the second tube 11 to lower the temperature. Condensation starts at the refrigerant temperature T2, and as the refrigerant flows through the first refrigerant flow path 12, a part of the refrigerant condenses, the liquid refrigerant drops, and the temperature of the gas refrigerant also decreases.
Is cooled by the cooling water flowing through the first tube 10 in the third refrigerant flow path 14 through the refrigerant flow path 13 and the condensation is completed at the temperature T3. The liquid refrigerant condensed in the first refrigerant flow path 12 travels along the inner wall of the shell 2 through the notch 16 provided in the refrigerant partition wall 15 and falls to the lower part of the shell 2.

【0013】一方、第3の冷媒流路14で凝縮した液冷
媒は直接シェル2下部に落下し、第1の冷媒流路12の
液冷媒と混ざり、冷媒出口部7から外部に流れる。一
方、温度t1の冷却水は冷却水入口部8から第1のヘッ
ダ3に供給された後、第1のチューブ10内に分割され
第3の冷媒通路14を流れる冷媒を冷却することにより
温度を上昇させながら、第2のヘッダ4で再び合流し、
第2のチューブ11でさらに冷媒を冷却し温度t2まで
上昇し、第1のヘッダ3で再び合流し、冷却水出口部9
から外部に流れる。
On the other hand, the liquid refrigerant condensed in the third refrigerant flow path 14 falls directly below the shell 2, mixes with the liquid refrigerant in the first refrigerant flow path 12, and flows outside from the refrigerant outlet 7. On the other hand, the cooling water at the temperature t1 is supplied to the first header 3 from the cooling water inlet 8 and then divided into the first tube 10 to cool the refrigerant flowing through the third refrigerant passage 14, thereby reducing the temperature. While ascending, rejoin at the second header 4,
The coolant is further cooled by the second tube 11 and rises to the temperature t2, merges again at the first header 3, and the cooling water outlet 9
From the outside.

【0014】したがって、上記第1の実施例ではシェル
2内の冷媒ガスとチューブ内の冷却水は対向的に流れ、
図7に示すように、過熱ガス域である温度T1からT2
の部分を除き、冷媒温度と冷却水温度の差の変化を少な
くでき熱交換性能を向上できる。さらに、第1の冷媒流
路12で凝縮した液冷媒を冷媒仕切壁15の切り欠きか
ら下部に落下させることにより、凝縮液が第1のチュー
ブ10上に落下しないために第1のチューブ10外面の
液膜厚さを低減でき、さらに熱交換性能を向上させるこ
とができる。さらに、冷媒出口部7を冷却水入口部近傍
に設けることにより、冷媒出口部7の液冷媒温度も最も
低くなり、温度が高い液冷媒との混合により発泡するこ
とが少なくできる。
Therefore, in the first embodiment, the refrigerant gas in the shell 2 and the cooling water in the tube flow oppositely,
As shown in FIG. 7, from the temperature T1, which is the superheated gas range, to T2
Except for the part, the change in the difference between the refrigerant temperature and the cooling water temperature can be reduced, and the heat exchange performance can be improved. Further, the liquid refrigerant condensed in the first refrigerant flow path 12 is caused to fall downward from the notch of the refrigerant partition wall 15 so that the condensed liquid does not fall on the first tube 10 so that the outer surface of the first tube 10 Can be reduced, and the heat exchange performance can be further improved. Further, by providing the refrigerant outlet 7 in the vicinity of the cooling water inlet, the temperature of the liquid refrigerant at the refrigerant outlet 7 is also the lowest, and foaming due to mixing with the liquid refrigerant having a higher temperature can be reduced.

【0015】本発明の第2の実施例を図3,図4により
説明する。
A second embodiment of the present invention will be described with reference to FIGS.

【0016】図3は本発明の第2の実施例に係るシェル
アンドチューブ式熱交換器の水平断面図、図4は第2の
実施例に係るシェルアンドチューブ式熱交換器の横断面
図である。
FIG. 3 is a horizontal sectional view of a shell-and-tube heat exchanger according to a second embodiment of the present invention, and FIG. 4 is a cross-sectional view of the shell-and-tube heat exchanger according to the second embodiment. is there.

【0017】図3,図4において、20は第2の冷媒流
路13を除きシェル2内に第1のチューブ10と第2の
チューブ11を垂直方向に分割した冷媒仕切板Bであ
る。また、他の部分は冷媒流路が冷媒仕切板20により
水平方向にターンするように構成されているが同様の動
作を行う。
3 and 4, reference numeral 20 denotes a refrigerant partition plate B in which the first tube 10 and the second tube 11 are vertically divided in the shell 2 except for the second refrigerant passage 13. The other parts are configured so that the refrigerant flow path is turned in the horizontal direction by the refrigerant partition plate 20, but perform the same operation.

【0018】以上のように構成したシェルアンドチュー
ブ式熱交換器は、第1の冷媒流路12,第2の冷媒流路
13,第3の冷媒流路14を流れる冷媒は、第1のチュ
ーブ10,第2のチューブ11内を流れる冷却水と対向
流的に流れ、冷媒と冷却水の熱交換を行う。また、第1
の冷媒流路12で凝縮した液冷媒は、第1の冷媒流路,
第2の冷媒流路及び第3の冷媒流路下部を流れ冷媒出口
7から外部に流れる。
In the shell-and-tube heat exchanger constructed as described above, the refrigerant flowing through the first refrigerant flow path 12, the second refrigerant flow path 13, and the third refrigerant flow path 14 is a first tube. 10, flows countercurrently to the cooling water flowing in the second tube 11, and performs heat exchange between the refrigerant and the cooling water. Also, the first
The liquid refrigerant condensed in the refrigerant flow path 12 of the first refrigerant flow path,
The refrigerant flows through the lower part of the second refrigerant passage and the lower part of the third refrigerant passage, and flows to the outside from the refrigerant outlet 7.

【0019】したがって、第2の実施例では第1の実施
例と同様に冷媒と冷却水を対向流的に流すことにより熱
交換性能を向上させることができる。さらに第1の冷媒
流路12及び第3の冷媒流路14で冷却水と熱交換し凝
縮した液冷媒は直接シェル2下部に落下するために、冷
媒仕切板15に切り欠き等の加工が不要になり、構造を
簡単にすることができる。
Therefore, in the second embodiment, as in the first embodiment, the heat exchange performance can be improved by flowing the refrigerant and the cooling water countercurrently. Further, since the liquid refrigerant that has exchanged heat with the cooling water in the first refrigerant flow path 12 and the third refrigerant flow path 14 and condensed falls directly to the lower part of the shell 2, it is not necessary to form a notch in the refrigerant partition plate 15. And the structure can be simplified.

【0020】第1の実施例及び第2の実施例では冷却水
の流れが2パスのものについて説明したが、2パス以上
のものでも冷媒仕切板を水平と垂直に設置することによ
り同様の効果が得られる。
In the first embodiment and the second embodiment, the case where the flow of the cooling water is two passes is described. However, the same effect can be obtained by installing the refrigerant partition plate horizontally and vertically even in the case of two or more passes. Is obtained.

【0021】本発明の第3の実施例を図5,図6を用い
て説明する。
A third embodiment of the present invention will be described with reference to FIGS.

【0022】図5は本発明の第3の実施例に係るシェル
アンドチューブ式熱交換器の縦断面図、図6は第3の実
施例に係るシェルアンドチューブ式熱交換器の横断面図
である。
FIG. 5 is a longitudinal sectional view of a shell and tube heat exchanger according to a third embodiment of the present invention, and FIG. 6 is a transverse sectional view of a shell and tube heat exchanger according to the third embodiment. is there.

【0023】図5及び図6において30は冷却水入口近
傍のガス冷媒を冷媒入口部6に戻すバイパス路、31は
冷媒入口部6に設けた絞り部である。
5 and 6, reference numeral 30 denotes a bypass for returning the gas refrigerant near the cooling water inlet to the refrigerant inlet 6, and reference numeral 31 denotes a throttle provided in the refrigerant inlet 6.

【0024】以上のように構成することにより、第1の
冷媒流路12,第2の冷媒流路13,第3の冷媒流路1
4を流れる冷媒は、第1のチューブ10,第2のチュー
ブ11内を流れる冷却水と対向流的に流れ、冷媒と冷却
水の熱交換を行う第1の実施例と同様の動作を行う。さ
らに、冷媒入口部6の絞り部31で冷媒速度が速くな
り、静圧が低下するために、冷却水入口近傍の未凝縮の
ガス冷媒は、バイパス路30を通り、再び冷媒入口部6
に供給される。
With the above configuration, the first refrigerant flow path 12, the second refrigerant flow path 13, and the third refrigerant flow path 1
The coolant flowing through the tube 4 flows countercurrently to the cooling water flowing through the first tube 10 and the second tube 11, and performs the same operation as in the first embodiment in which the heat exchange between the coolant and the cooling water is performed. Furthermore, since the refrigerant speed increases at the throttle portion 31 of the refrigerant inlet portion 6 and the static pressure decreases, the uncondensed gas refrigerant near the cooling water inlet passes through the bypass 30 and returns to the refrigerant inlet portion 6 again.
Supplied to

【0025】したがって、第3の実施例では第1の実施
例に加え、シェル2内を流れる冷媒流量を多くすること
ができ、非共沸混合冷媒を使用した時に熱交換を阻害す
る冷媒の濃度勾配を薄くすることができ熱交換性能をさ
らに向上できる。
Therefore, in the third embodiment, in addition to the first embodiment, the flow rate of the refrigerant flowing in the shell 2 can be increased, and the concentration of the refrigerant that hinders heat exchange when a non-azeotropic mixed refrigerant is used. The gradient can be reduced, and the heat exchange performance can be further improved.

【0026】[0026]

【発明の効果】本発明によれば、冷媒入口部と冷媒出口
部を設けたシェルと、シェル内に複数本の冷却媒体が流
れるチューブを設け、冷却媒体の流れが複数パスになる
ように構成したシェルアンドチューブ式熱交換器におい
て、凝縮ガスと冷却媒体の流れが対向になるように冷媒
仕切板を設けることにより、非共沸混合冷媒を用いても
凝縮時の温度勾配を有効に使用することができ、熱交換
性能を向上させたシェルアンドチューブ式熱交換器を提
供できる。
According to the present invention, a shell provided with a refrigerant inlet and a refrigerant outlet, and a plurality of tubes through which a plurality of cooling mediums flow are provided in the shell, so that the flow of the cooling medium becomes a plurality of passes. In the shell-and-tube type heat exchanger, the refrigerant gradient plate is provided so that the flow of the condensed gas and the cooling medium are opposed to each other, so that the temperature gradient at the time of condensation can be effectively used even when a non-azeotropic mixed refrigerant is used. And a shell-and-tube heat exchanger with improved heat exchange performance can be provided.

【0027】また、冷媒入口部と冷媒出口部を設けたシ
ェルと、シェル内に複数本の冷却媒体が流れるチューブ
を設けて構成したシェルアンドチューブ式熱交換器にお
いて、冷媒入口部に絞り部を設けるとともに、該絞り部
と冷却媒体近傍のガス冷媒が連通するバイパス路を設け
ることにより、シェル内の冷媒速度を向上でき、非共沸
混合冷媒を使用した場合にも熱交換性能を向上させたシ
ェルアンドチューブ式熱交換器を提供できる。
In a shell and tube type heat exchanger comprising a shell provided with a refrigerant inlet and a refrigerant outlet and a plurality of tubes through which the cooling medium flows, a throttle is provided at the refrigerant inlet. Along with the provision, by providing a bypass path through which the gas refrigerant near the cooling medium communicates with the throttle portion, the refrigerant speed in the shell can be improved, and even when a non-azeotropic mixed refrigerant is used, the heat exchange performance is improved. A shell and tube heat exchanger can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係るシェルアンドチュ
ーブ式熱交換器の縦断面図。
FIG. 1 is a longitudinal sectional view of a shell and tube heat exchanger according to a first embodiment of the present invention.

【図2】第1の実施例に係るシェルアンドチューブ式熱
交換器の横断面図。
FIG. 2 is a cross-sectional view of the shell-and-tube heat exchanger according to the first embodiment.

【図3】本発明の第2の実施例に係るシェルアンドチュ
ーブ式熱交換器の水平断面図。
FIG. 3 is a horizontal sectional view of a shell and tube heat exchanger according to a second embodiment of the present invention.

【図4】第2の実施例に係るシェルアンドチューブ式熱
交換器の横断面図。
FIG. 4 is a cross-sectional view of a shell-and-tube heat exchanger according to a second embodiment.

【図5】本発明の第3の実施例に係るシェルアンドチュ
ーブ式熱交換器の縦断面図。
FIG. 5 is a longitudinal sectional view of a shell and tube heat exchanger according to a third embodiment of the present invention.

【図6】第3の実施例に係るシェルアンドチューブ式熱
交換器の横断面図。
FIG. 6 is a cross-sectional view of a shell and tube heat exchanger according to a third embodiment.

【図7】冷媒温度と冷却水温度との差の変化を示す熱交
換性能特性図。
FIG. 7 is a heat exchange performance characteristic diagram showing a change in a difference between a refrigerant temperature and a cooling water temperature.

【符号の説明】[Explanation of symbols]

1…シェルアンドチューブ式熱交換器、2…シェル、6
…冷媒入口部、7…冷媒出口部、10…第1のチュー
ブ、11…第2のチューブ、12…第1の冷媒流路、1
3…第2の冷媒流路、14…第3の冷媒流路、15…冷
媒仕切板、16…切り欠き、20…冷媒仕切板B、30
…絞り、31…バイパス路。
1. Shell and tube heat exchanger, 2. Shell, 6
... refrigerant inlet, 7 ... refrigerant outlet, 10 ... first tube, 11 ... second tube, 12 ... first refrigerant flow path, 1
3 ... second refrigerant flow path, 14 ... third refrigerant flow path, 15 ... refrigerant partition plate, 16 ... notch, 20 ... refrigerant partition plate B, 30
... throttle, 31 ... bypass path.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒入口部と冷媒出口部を設けたシェル
と、シェル内に複数本の冷却媒体が流れるチューブを設
け、冷却媒体の流れが複数パスになるように構成したシ
ェルアンドチューブ式熱交換器において、冷媒として非
共沸混合冷媒を用い、凝縮ガスと冷却媒体のの流れが対
向になるように冷媒仕切板を設けたことを特徴とするシ
ェルアンドチューブ式熱交換器。
A shell-and-tube type heat pump comprising: a shell provided with a refrigerant inlet and a refrigerant outlet; and a plurality of tubes through which a plurality of cooling mediums flow, wherein the flow of the cooling medium is made into a plurality of paths. A shell-and-tube heat exchanger, wherein a non-azeotropic mixed refrigerant is used as a refrigerant, and a refrigerant partition plate is provided so that flows of a condensed gas and a cooling medium are opposed to each other.
JP12560498A 1998-05-08 1998-05-08 Shell and tube heat exchanger Pending JPH11325787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12560498A JPH11325787A (en) 1998-05-08 1998-05-08 Shell and tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12560498A JPH11325787A (en) 1998-05-08 1998-05-08 Shell and tube heat exchanger

Publications (1)

Publication Number Publication Date
JPH11325787A true JPH11325787A (en) 1999-11-26

Family

ID=14914245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12560498A Pending JPH11325787A (en) 1998-05-08 1998-05-08 Shell and tube heat exchanger

Country Status (1)

Country Link
JP (1) JPH11325787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080901A (en) * 2010-12-13 2011-06-01 上海环球制冷设备有限公司 Integrated condensing dry evaporator device and use method thereof
CN103398512A (en) * 2013-07-05 2013-11-20 广东申菱空调设备有限公司 Condenser with oil separator internally arranged

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080901A (en) * 2010-12-13 2011-06-01 上海环球制冷设备有限公司 Integrated condensing dry evaporator device and use method thereof
CN103398512A (en) * 2013-07-05 2013-11-20 广东申菱空调设备有限公司 Condenser with oil separator internally arranged
CN103398512B (en) * 2013-07-05 2015-11-25 广东申菱环境系统股份有限公司 A kind of condenser of built-in oil eliminator

Similar Documents

Publication Publication Date Title
TW200921030A (en) Economized vapor compression circuit
JP2010513843A (en) Double row heat exchanger and automotive bumper incorporating it
JP2007212091A (en) Shell-and-tube type condenser
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JPH10176874A (en) Heat-exchanger
JP2003028539A (en) Heat exchanger and refrigerating cycle system
JPH11325787A (en) Shell and tube heat exchanger
JP2001050685A (en) Heat exchanger
JPH08338671A (en) Horizontal type condenser for non-azeotrope refrigerant
Chiriac et al. Ammonia condensation heat transfer in air-cooled mesochannel heat exchangers
JP2000320917A (en) Heat pump cold/hot water machine
KR100213780B1 (en) Water supply system of absortion type cooler
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JP6038186B2 (en) Heat exchanger and refrigeration cycle apparatus
JP4112090B2 (en) Heat pump equipment
JP3437302B2 (en) Vertical shell and tube heat exchanger
JPH06307725A (en) Air conditioner
JPH04244565A (en) Condenser
JPS61285389A (en) Heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JPH04254170A (en) Multiunit type refrigerant evaporator
JPH08254373A (en) Horizontal type evaporator for nonazeotropic mixture refrigerant
JPS63161360A (en) Refrigeration cycle
JP3785737B2 (en) Refrigeration equipment