JPH04254170A - Multiunit type refrigerant evaporator - Google Patents

Multiunit type refrigerant evaporator

Info

Publication number
JPH04254170A
JPH04254170A JP5625891A JP5625891A JPH04254170A JP H04254170 A JPH04254170 A JP H04254170A JP 5625891 A JP5625891 A JP 5625891A JP 5625891 A JP5625891 A JP 5625891A JP H04254170 A JPH04254170 A JP H04254170A
Authority
JP
Japan
Prior art keywords
flow path
fins
outlet
refrigerant
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5625891A
Other languages
Japanese (ja)
Other versions
JP2903745B2 (en
Inventor
Etsuo Hasegawa
恵津夫 長谷川
Yoshiyuki Yamauchi
芳幸 山内
Masahiro Shitaya
昌宏 下谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3056258A priority Critical patent/JP2903745B2/en
Publication of JPH04254170A publication Critical patent/JPH04254170A/en
Application granted granted Critical
Publication of JP2903745B2 publication Critical patent/JP2903745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Abstract

PURPOSE:To provide a multiunit type refrigerant evaporator, little in a pressure loss in the side of a refrigerant flow passage and high in heat radiating capacity in the same side while high in the heat radiating capacity in the side of fins. CONSTITUTION:In an inlet flow passage 2 and an outlet flow passage 3, through which refrigerant is passed, the flow passage thickness E of the outlet flow passage 3 is larger than the flow passage thickness D of the inlet flow passage 3 and the hight H of the 34 in the side of outlet flow passage 3 is smaller than the hight G of fins 24 in the side of inlet flow passage 2. The refrigerant evaporated in the flow passage and the volume of the fluid is increased, however, the flow passage thickness E of the outlet flow passage 3 is larger and, therefore, the pressure drop is small and heat radiating capacity is improved. On the other hand, the heat radiating capacity of the side of fins is also improved due to the difference heights of said fins.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,一対のプレートの間に
冷媒の流路部を形成した積層型冷媒蒸発器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked refrigerant evaporator in which a refrigerant flow path is formed between a pair of plates.

【0002】0002

【従来技術】例えば自動車用空調装置においては,積層
型冷媒蒸発器が用いられている。即ち,図6に示すごと
く,該積層型冷媒蒸発器9は,凹状部を有する一対のプ
レート95,95を互いに対面,接合させて流路管90
を形成し,その間に冷媒が流れる入口流路部91と出口
流路部92とを形成したものである。そして,上記流路
管90は,その間に放熱用のフィン93を介在させて,
多数層に積層されている(詳細は後述の図5参照)。
2. Description of the Related Art For example, a stacked refrigerant evaporator is used in an automobile air conditioner. That is, as shown in FIG. 6, the stacked refrigerant evaporator 9 has a pair of plates 95, 95 having concave portions facing each other and joining to form a flow path pipe 90.
, and an inlet flow path portion 91 and an outlet flow path portion 92 through which the refrigerant flows are formed. The flow pipe 90 has heat radiation fins 93 interposed therebetween.
It is laminated in multiple layers (see FIG. 5 described later for details).

【0003】そして,上記入口流路部91は,冷媒が流
入する入口タンク部に連通しており,出口流路部92は
蒸発した冷媒が流出する出口タンク部に連通している。 また,入口流路部91と出口流路部92はその下方にお
いてU字路状に連通している。それ故,液状の冷媒は,
入口タンク部に入り,入口流路部91,出口流路部92
を経てその間に蒸発し,気化冷媒が出口タンク部より排
出される(後述の図4参照)。そして,この気化時の潜
熱により,フィン93が冷却される。そこで,該フィン
93の間に空気を送風することにより,冷風が得られる
。なお,図6において符号951は,一対のプレート9
5,95の接合部であり,かつ入口流路部91と出口流
路部92との隔壁である。
The inlet passage 91 communicates with an inlet tank into which refrigerant flows, and the outlet passage 92 communicates with an outlet tank through which evaporated refrigerant flows out. Further, the inlet flow path portion 91 and the outlet flow path portion 92 communicate with each other in a U-shaped path below. Therefore, liquid refrigerant is
Enters the inlet tank section, inlet channel section 91, outlet channel section 92
During this period, the refrigerant evaporates, and the vaporized refrigerant is discharged from the outlet tank (see FIG. 4, which will be described later). The fins 93 are cooled by the latent heat during this vaporization. Therefore, by blowing air between the fins 93, cold air can be obtained. In addition, in FIG. 6, the reference numeral 951 indicates a pair of plates 9.
5 and 95, and a partition wall between the inlet flow path section 91 and the outlet flow path section 92.

【0004】0004

【解決しようとする課題】ところで,上記積層型冷媒蒸
発器9においては,入口流路部91内には比容積の小さ
い液状冷媒が多く流入する。そして,該冷媒は,入口流
路部91から出口流路部92に流れる間に蒸発する。そ
のため,下流に至るにつれて比容積の大きな冷媒ガスが
増大する。それ故,入口流路部91から出口流路部92
に向かうにつれて冷媒の流速が増加する。その結果,流
路管90においては,上記流れに沿って圧力損失が上昇
し,冷媒の流れが円滑でなくなる。したがって,従来の
積層型冷媒蒸発器においては,放熱能力が充分発揮され
ていない。本発明はかかる問題点に鑑み,圧力損失が少
なく,かつ放熱能力に優れた積層型冷媒蒸発器を提供し
ようとするものである。
[Problem to be Solved] In the stacked refrigerant evaporator 9 described above, a large amount of liquid refrigerant having a small specific volume flows into the inlet passage section 91. Then, the refrigerant evaporates while flowing from the inlet flow path section 91 to the outlet flow path section 92. Therefore, the amount of refrigerant gas with a large specific volume increases as it reaches downstream. Therefore, from the inlet flow path section 91 to the outlet flow path section 92
The flow rate of the refrigerant increases as the temperature increases. As a result, in the flow pipe 90, the pressure loss increases along the flow, and the refrigerant does not flow smoothly. Therefore, conventional stacked refrigerant evaporators do not exhibit sufficient heat dissipation ability. In view of these problems, the present invention aims to provide a stacked refrigerant evaporator with low pressure loss and excellent heat dissipation ability.

【0005】[0005]

【課題の解決手段】本発明は,一対のプレートの間に入
口タンク部と出口タンク部とを形成すると共に上記入口
タンク部から出口タンク部に向けて冷媒が流れる入口流
路部と出口流路部とを形成した流路管を有し,該流路管
を複数個積層すると共にその間に放熱用のフィンを介設
してなる積層型冷媒蒸発器において,上記出口流路部の
流路厚みは入口流路部の流路厚みよりも大きく形成し,
また上記出口流路部に対面して設けたフィンのフィン高
さは入口流路部に対面して設けたフィンのフィン高さよ
りも小さいことを特徴とする積層型冷媒蒸発器にある。
[Means for Solving the Problem] The present invention forms an inlet tank portion and an outlet tank portion between a pair of plates, and an inlet flow path portion and an outlet flow path through which refrigerant flows from the inlet tank portion to the outlet tank portion. In a stacked refrigerant evaporator, which has a flow path pipe formed with a section, a plurality of the flow path pipes are stacked, and heat dissipation fins are interposed between the stacked refrigerant evaporators, the flow path thickness of the outlet flow path section is is formed larger than the channel thickness of the inlet channel,
Furthermore, the stacked refrigerant evaporator is characterized in that the height of the fins provided facing the outlet flow path is smaller than the height of the fins provided facing the inlet flow path.

【0006】本発明において最も注目すべきことは,出
口流路部の流路厚みを入口流路部のそれよりも大きく設
け,またフィンを出口流路部側と入口流路部側とにそれ
ぞれ別個に配設し,かつフィン高さは出口流路部側が入
口流路部側より小さく構成してあることにある。上記流
路厚みとは,各流路部において一対のプレートによって
形成される対向面間の幅をいう(図1の符号,D,E)
。そして,図1に示すごとく,出口流路部の流路厚みE
は入口流路部の流路厚みDよりも大きく形成する。 この流路厚みの比率(E/D)は,両流路部の幅(流路
厚みと直角方向の長さ)をほぼ同じとしたとき1.0〜
3.0とすることが好ましい。1.0未満では本発明の
効果が逆効果となり,流路厚みが同じものに比べて,圧
力損失が大きくなり,一方3.0を越えると流路管の全
体厚みが過大となり,積層型冷媒蒸発器が大型となって
しまう。
The most noteworthy feature of the present invention is that the thickness of the outlet passage is larger than that of the inlet passage, and that fins are provided on the outlet passage and the inlet passage, respectively. The fins are arranged separately and the height of the fins is smaller on the outlet flow path side than on the inlet flow path side. The above channel thickness refers to the width between the opposing surfaces formed by a pair of plates in each channel section (codes D and E in Figure 1).
. As shown in Figure 1, the channel thickness E of the outlet channel section is
is formed to be larger than the channel thickness D of the inlet channel portion. This channel thickness ratio (E/D) is 1.0 to 1.0 when the widths of both channel sections (the length in the direction perpendicular to the channel thickness) are approximately the same.
It is preferable to set it to 3.0. If it is less than 1.0, the effect of the present invention will have the opposite effect, and the pressure loss will be larger than that of the same channel thickness.On the other hand, if it exceeds 3.0, the overall thickness of the channel pipe will be excessive, and the laminated refrigerant The evaporator becomes large.

【0007】また,フィンは,一対のプレートによって
構成される流路管を積層する際に,各層の間に介設する
。このときフィンは,入口流路部に対面する部分と,出
口流路部に対面する部分とで,そのフィン高さを異にし
,後者が前者よりも小さい。ここにフィン高さとは,流
路管の積層方向に沿ったフィンの幅をいう。即ち,図1
に示すごとく,出口流路部側のフィン高さHは,入口流
路部側のフィン高さGよりも小さく形成する。このフィ
ン高さの比率(H/G)は,0.6〜0.9とすること
が好ましい。この範囲においては,特に放熱能力が高い
[0007]Furthermore, the fins are interposed between each layer when stacking the flow path tubes constituted by a pair of plates. At this time, the fins have different fin heights in the portion facing the inlet flow path and the portion facing the outlet flow path, with the latter being smaller than the former. Here, the fin height refers to the width of the fin along the stacking direction of the flow pipes. That is, Figure 1
As shown in the figure, the fin height H on the outlet flow path side is smaller than the fin height G on the inlet flow path side. This fin height ratio (H/G) is preferably 0.6 to 0.9. In this range, the heat dissipation ability is particularly high.

【0008】[0008]

【作用及び効果】本発明においては,冷媒流路後方の出
口流路部の流路厚みが,入口流路部のそれよりも大きく
形成してある。そのため,前記のごとく流路後方にいく
に従って冷媒ガスの容積が大きくなっても,冷媒の流速
が増大せず,圧力損失は増大しない。それ故,冷媒は円
滑に流れ,大きな放熱能力を得ることができる。更に注
目すべきことは,本発明においては,出口流路部側のフ
ィン高さが入口流路部側のフィン高さよりも小さい。そ
のため,出口流路部側のフィン内に送られた空気は,ま
ず高さの小さいフィンの間を流れる。それ故,出口流路
部側のフィンの間の空気流速が大きく,放熱能力が向上
する。特に,出口流路部内は,冷媒が気化しているため
,冷媒の乾き度が増加して,伝導効率が低い。そのため
,出口流路部側におけるフィン高さが小さいことは,放
熱能力の向上に大きく貢献する。
[Operations and Effects] In the present invention, the thickness of the outlet passage at the rear of the refrigerant passage is larger than that of the inlet passage. Therefore, even if the volume of the refrigerant gas increases toward the rear of the flow path as described above, the flow velocity of the refrigerant does not increase and the pressure loss does not increase. Therefore, the refrigerant flows smoothly and a large heat dissipation capacity can be obtained. What should be further noted is that in the present invention, the height of the fins on the outlet flow path side is smaller than the height of the fins on the inlet flow path side. Therefore, the air sent into the fins on the outlet flow path side first flows between the fins having a small height. Therefore, the air flow velocity between the fins on the outlet flow path side is high, and the heat dissipation ability is improved. In particular, since the refrigerant is vaporized in the outlet flow path, the dryness of the refrigerant increases and the conduction efficiency is low. Therefore, the small height of the fins on the outlet flow path side greatly contributes to improving the heat dissipation ability.

【0009】また,出口流路部側のフィン高さは,入口
流路部側のそれよりも小さいため,出口流路部側のフィ
ン間の空気流通断面積は,入口流路部側のそれよりも小
さい。それ故,出口流路部側のフィン間を流れてきた空
気は,入口流路部側のフィン間に入ったときその流路が
拡大され,フィン高さの大きい入口流路部側フィンに衝
突する。そして大きな乱流を生ずる。そのため,放熱能
力が一層向上する。このように,本発明においては,冷
媒側の圧力損失の低下,放熱能力の向上と共に,フィン
側の放熱能力の向上を図ることができ,両者の相乗効果
によって一層高い放熱能力を得ることができる。したが
って,本発明によれば,圧力損失が少なく,かつ放熱能
力に優れた積層型冷媒蒸発器を提供することができる。
Furthermore, since the height of the fins on the outlet flow path side is smaller than that on the inlet flow path side, the air flow cross-sectional area between the fins on the outlet flow path side is smaller than that on the inlet flow path side. smaller than Therefore, when the air flowing between the fins on the outlet flow path side enters between the fins on the inlet flow path side, the flow path is expanded and collides with the fins on the inlet flow path side, which have a large fin height. do. This results in large turbulence. Therefore, the heat dissipation ability is further improved. In this way, in the present invention, it is possible to reduce the pressure loss on the refrigerant side and improve the heat dissipation capacity, and also to improve the heat dissipation capacity on the fin side, and the synergistic effect of the two makes it possible to obtain even higher heat dissipation capacity. . Therefore, according to the present invention, it is possible to provide a stacked refrigerant evaporator with low pressure loss and excellent heat dissipation ability.

【0010】0010

【実施例】本発明の実施例にかかる積層型冷媒蒸発器に
つき,図1〜図5を用いて説明する。本例の積層型冷媒
蒸発器1は,図1〜図4に示すごとく,一対のプレート
11,11の間に入口タンク部20と出口タンク部30
とを形成する(図4)と共に,上記入口タンク部20か
ら出口タンク部30に向けて冷媒が流れる入口流路部2
と出口流路部3とを形成した流路管10を有する。そし
て,該流路管10を複数個積層すると共にその間に放熱
用のフィン24,34を介設してなる。上記フィン24
は入口流路部2に対面して,フィン34は出口流路部3
に対面して,それぞれ流路管10の間にロウ付けされて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A stacked refrigerant evaporator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. As shown in FIGS. 1 to 4, the stacked refrigerant evaporator 1 of this example has an inlet tank section 20 and an outlet tank section 30 between a pair of plates 11, 11.
(FIG. 4), and an inlet flow path section 2 through which the refrigerant flows from the inlet tank section 20 to the outlet tank section 30.
and an outlet flow path section 3. A plurality of flow path pipes 10 are stacked one on top of the other, and heat radiation fins 24 and 34 are interposed therebetween. The above fin 24
The fins 34 face the inlet flow path section 2, and the fins 34 face the outlet flow path section 3.
They are brazed between the flow path pipes 10, facing each other.

【0011】また,上記出口流路部3の流路厚みEは,
入口流路部2の流路厚みDよりも大きく形成してある。 また,出口流路部側のフィン34のフィン高さHは,入
口流路部側のフィン24のフィン高さGよりも小さく形
成してある。そして,本例においては,上記流路厚みの
比(E/D)は,約2に,またフィン高さの比(H/G
)は約0.8に形成してある。なお,両流路部の幅(流
路厚みと直角方向長さ)は,同じである。また,上記フ
ィン23,24は,ルーバフィンを用いてある。
[0011] Furthermore, the passage thickness E of the outlet passage section 3 is as follows:
It is formed to be larger than the channel thickness D of the inlet channel section 2. Further, the fin height H of the fins 34 on the outlet flow path side is smaller than the fin height G of the fins 24 on the inlet flow path side. In this example, the channel thickness ratio (E/D) is approximately 2, and the fin height ratio (H/G
) is set to approximately 0.8. Note that the widths (channel thickness and length in the perpendicular direction) of both channel portions are the same. Further, the fins 23 and 24 are louver fins.

【0012】また,図5は,積層型冷媒蒸発器1の全体
側面図を示している。同図に示すごとく,多数の流路管
10の間にフィン34が介設されている。また,入口タ
ンク部20には冷媒流入パイプ26が,出口タンク部3
0には冷媒排出パイプ36が接続されている。その他は
,従来と同様である。なお,図1において符号15は,
プレート11,11の接合部分で,入口流路部2と出口
流路部3の隔壁を構成する。
FIG. 5 shows an overall side view of the stacked refrigerant evaporator 1. As shown in FIG. As shown in the figure, fins 34 are interposed between a large number of flow pipes 10. Further, a refrigerant inflow pipe 26 is provided in the inlet tank portion 20, and a refrigerant inflow pipe 26 is provided in the outlet tank portion 20.
0 is connected to a refrigerant discharge pipe 36. Others are the same as before. In addition, in FIG. 1, the reference numeral 15 is
The joining portion of the plates 11 and 11 constitutes a partition wall between the inlet flow path section 2 and the outlet flow path section 3.

【0013】次に作用効果につき説明する。本例の積層
型冷媒蒸発器1においては,冷媒流入パイプ26より入
口タンク部20(図4)内に液状の冷媒が送られる。該
冷媒は,図4に矢印で示すごとく,流入口201より入
口流路部2内に流入して,下方へ流れ,隔壁15の下方
をU字状に通って出口流路部3内に流入する。次いで,
上方の流出口301より出口タンク部30に入り,上記
冷媒排出パイプ36へ流出する。そして,冷媒は,上記
両流路部内を流れる間に蒸発し,その気化熱によって流
路管10が冷却され,フィン24,34が冷却される。
Next, the effects will be explained. In the stacked refrigerant evaporator 1 of this example, liquid refrigerant is sent into the inlet tank section 20 (FIG. 4) from the refrigerant inflow pipe 26. As shown by the arrow in FIG. 4, the refrigerant flows into the inlet channel section 2 from the inlet 201, flows downward, passes under the partition wall 15 in a U-shape, and flows into the outlet channel section 3. do. Next,
The refrigerant enters the outlet tank section 30 through the upper outlet 301 and flows out to the refrigerant discharge pipe 36 . Then, the refrigerant evaporates while flowing through the two flow passages, and the heat of vaporization cools the flow pipe 10 and the fins 24 and 34.

【0014】一方,図1に示すごとく,上記フィン24
,34の通路内には,出口流路部3側のフィン34に対
して空気Rが送られる。そして,この空気Rは出口流路
部側のフィン34,入口流路部側のフィン24により冷
却される。この冷却空気は,クーラーに送られる。そし
て,本例においては,冷媒流路後方の出口流路部3の流
路厚みEが,入口流路部2の流路厚みDよりも大きく形
成してある。そのため,冷媒ガスの容積が大きくなって
も,冷媒の流速が増大せず,圧力損失は増大しない。 それ故,冷媒は円滑に流れ,大きな放熱能力を得ること
ができる。更に,出口流路部側のフィン高さHは入口流
路部側のフィン高さGよりも小さい。そのため,出口流
路部側のフィン34間においては,空気Rの流速が大き
く,放熱能力が向上する。特に,出口流路部3において
は前記のごとく伝熱効率が低いので,フィン34側にお
ける放熱能力の向上は,その意義が大きい。
On the other hand, as shown in FIG.
, 34, air R is sent to the fins 34 on the outlet flow path section 3 side. This air R is cooled by the fins 34 on the outlet flow path side and the fins 24 on the inlet flow path side. This cooling air is sent to the cooler. In this example, the passage thickness E of the outlet passage part 3 at the rear of the refrigerant passage is formed to be larger than the passage thickness D of the inlet passage part 2. Therefore, even if the volume of refrigerant gas increases, the flow rate of the refrigerant does not increase, and pressure loss does not increase. Therefore, the refrigerant flows smoothly and a large heat dissipation capacity can be obtained. Furthermore, the fin height H on the outlet flow path side is smaller than the fin height G on the inlet flow path side. Therefore, the flow velocity of the air R is high between the fins 34 on the outlet flow path side, and the heat dissipation ability is improved. In particular, since the heat transfer efficiency is low in the outlet passage section 3 as described above, improving the heat dissipation ability on the fin 34 side is of great significance.

【0015】また,図3に示すごとく,出口流路部3側
のフィン高さHは,入口流路部2側のフィン高さGより
も小さい。そのため,出口流路部側のフィン34の間の
空気流通断面積は,入口流路部側のそれぞれも小さい。 それ故,出口流路部側のフィン34を流れてきた空気R
は,入口流路部側のフィン24の間に入ったとき流路が
拡大され,フィン高さの大きいフィン24に衝突する。 そして,大きな乱流を生ずる。そのため,フィン24側
の放熱能力も向上する。以上のごとく,本例によれば,
冷媒側の圧力損失の低下,放熱能力の向上と共に,フィ
ン側の放熱能力の向上とを図ることができ,両者の相乗
効果によって一層高い放熱能力を得ることができる。
Furthermore, as shown in FIG. 3, the fin height H on the outlet flow path section 3 side is smaller than the fin height G on the inlet flow path section 2 side. Therefore, the air flow cross-sectional area between the fins 34 on the outlet flow path side is also small on the inlet flow path side. Therefore, the air R flowing through the fins 34 on the outlet flow path side
When it enters between the fins 24 on the inlet flow path side, the flow path is enlarged and it collides with the fins 24 having a large fin height. This results in large turbulence. Therefore, the heat dissipation ability on the fin 24 side is also improved. As described above, according to this example,
In addition to reducing the pressure loss on the refrigerant side and improving the heat dissipation capacity, it is possible to improve the heat dissipation capacity on the fin side, and the synergistic effect of the two makes it possible to obtain even higher heat dissipation capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例にかかる積層型冷媒蒸発器の要部断面図
FIG. 1 is a sectional view of main parts of a stacked refrigerant evaporator according to an embodiment.

【図2】実施例にかかる積層型冷媒蒸発器の要部斜視図
FIG. 2 is a perspective view of main parts of a stacked refrigerant evaporator according to an embodiment.

【図3】実施例におけるフィン間の空気流れの説明図。FIG. 3 is an explanatory diagram of air flow between fins in the example.

【図4】実施例における流路管断面図。FIG. 4 is a sectional view of a flow path tube in an example.

【図5】実施例にかかる積層型冷媒蒸発器の側面図。FIG. 5 is a side view of the stacked refrigerant evaporator according to the embodiment.

【図6】従来例の積層型冷媒蒸発器の要部断面図。FIG. 6 is a sectional view of main parts of a conventional stacked refrigerant evaporator.

【符号の説明】[Explanation of symbols]

1...積層型冷媒蒸発器, 10...流路管, 11...プレート, 15...隔壁, 2...入口流路部, 20...入口タンク部, 3...出口流路部, 30...出口タンク部, 24,34...フィン, D...入口流路部の流路厚み, E...出口流路部の流路厚み, G...入口流路部側のフィン高さ, H...出口流路部側のフィン高さ, 1. .. .. stacked refrigerant evaporator, 10. .. .. flow pipe, 11. .. .. plate, 15. .. .. bulkhead, 2. .. .. Inlet channel section, 20. .. .. Inlet tank section, 3. .. .. Outlet passage section, 30. .. .. Outlet tank section, 24, 34. .. .. fin, D. .. .. Channel thickness of inlet channel section, E. .. .. Channel thickness of outlet channel section, G. .. .. Fin height on the inlet flow path side, H. .. .. Fin height on the outlet flow path side,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一対のプレートの間に入口タンク部と
出口タンク部とを形成すると共に上記入口タンク部から
出口タンク部に向けて冷媒が流れる入口流路部と出口流
路部とを形成した流路管を有し,該流路管を複数個積層
すると共にその間に放熱用のフィンを介設してなる積層
型冷媒蒸発器において,上記出口流路部の流路厚みは入
口流路部の流路厚みよりも大きく形成し,また上記出口
流路部に対面して設けたフィンのフィン高さは入口流路
部に対面して設けたフィンのフィン高さよりも小さいこ
とを特徴とする積層型冷媒蒸発器。
Claim 1: An inlet tank portion and an outlet tank portion are formed between a pair of plates, and an inlet flow path portion and an outlet flow path portion are formed through which refrigerant flows from the inlet tank portion to the outlet tank portion. In a stacked refrigerant evaporator having flow pipes, in which a plurality of flow pipes are stacked and heat dissipation fins are interposed between them, the flow passage thickness of the outlet flow passage section is equal to that of the inlet flow passage section. The thickness of the fins is larger than the thickness of the flow path, and the height of the fins facing the outlet flow path is smaller than the height of the fins facing the inlet flow path. Stacked refrigerant evaporator.
JP3056258A 1991-01-31 1991-01-31 Stacked refrigerant evaporator Expired - Lifetime JP2903745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3056258A JP2903745B2 (en) 1991-01-31 1991-01-31 Stacked refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3056258A JP2903745B2 (en) 1991-01-31 1991-01-31 Stacked refrigerant evaporator

Publications (2)

Publication Number Publication Date
JPH04254170A true JPH04254170A (en) 1992-09-09
JP2903745B2 JP2903745B2 (en) 1999-06-14

Family

ID=13022060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3056258A Expired - Lifetime JP2903745B2 (en) 1991-01-31 1991-01-31 Stacked refrigerant evaporator

Country Status (1)

Country Link
JP (1) JP2903745B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942867A (en) * 1995-07-28 1997-02-14 Honda Motor Co Ltd Heat exchanger
JPH0942869A (en) * 1995-07-28 1997-02-14 Honda Motor Co Ltd Heat exchanger
US6343645B1 (en) * 1999-05-03 2002-02-05 Behr Gmbh & Co. Multi-chamber tube and heat exchanger arrangement for a motor vehicle
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942867A (en) * 1995-07-28 1997-02-14 Honda Motor Co Ltd Heat exchanger
JPH0942869A (en) * 1995-07-28 1997-02-14 Honda Motor Co Ltd Heat exchanger
US6343645B1 (en) * 1999-05-03 2002-02-05 Behr Gmbh & Co. Multi-chamber tube and heat exchanger arrangement for a motor vehicle
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device

Also Published As

Publication number Publication date
JP2903745B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
KR100216052B1 (en) Evaporator
AU703687B2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
US5448899A (en) Refrigerant evaporator
US6431264B2 (en) Heat exchanger with fluid-phase change
JPS58217195A (en) Heat exchanger
US7051796B2 (en) Heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP2002081795A (en) Evaporator
JPH10288480A (en) Plate type heat-exchanger
JPS6214751B2 (en)
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JPH04254170A (en) Multiunit type refrigerant evaporator
JP2001221535A (en) Refrigerant evaporator
JPH06194001A (en) Refrigerant evaporator
JPH05215482A (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JPS62131195A (en) Heat exchanger
JPS61191889A (en) Heat exchanger
JPH085198A (en) Air conditioning heat exchanger
JP2813732B2 (en) Stacked heat exchanger
JPH07103609A (en) Heat exchanger for freezing cycle
JP2001141382A (en) Air heat exchanger
JPH051864A (en) Multipath evaporator
JPH02171591A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

EXPY Cancellation because of completion of term