JPH0942869A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0942869A
JPH0942869A JP7193208A JP19320895A JPH0942869A JP H0942869 A JPH0942869 A JP H0942869A JP 7193208 A JP7193208 A JP 7193208A JP 19320895 A JP19320895 A JP 19320895A JP H0942869 A JPH0942869 A JP H0942869A
Authority
JP
Japan
Prior art keywords
passage
heat transfer
fluid passage
temperature fluid
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193208A
Other languages
Japanese (ja)
Inventor
Tsuneo Endo
恒雄 遠藤
Toshiki Kawamura
俊樹 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7193208A priority Critical patent/JPH0942869A/en
Publication of JPH0942869A publication Critical patent/JPH0942869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure sufficiently the cross-sectional area of a flow passage at the entrance and exit of a fluid passage and thereby to minimize a pressure loss by forming the entrance of a high-temperature fluid passage and the exit of a low- temperature fluid passage in one end part in the direction of the flow passage of a heat exchanger and by forming the exit of the high-temperature fluid passage and the entrance of the low-temperature fluid passage in the other end part in the direction of the flow passage thereof. SOLUTION: A large number of heat transfer plates S1 bent zigzag are joined to the inner periphery of an outer casing 6 and the outer periphery of an inner casing 1 and thereby high-temperature combustion gas passages 4 and low-temperature air passages 5 are formed alternately. The high-temperature combustion gas passage 4 and the low-temperature air passage 5 are cut in an angled shape at one end part thereof and the entrance 11 of the combustion gas passage and the exit 16 of the air passage are formed by closing up one and the other sides of this part. The exit 12 of the combustion gas passage and the entrance 15 of the air passage are formed likewise in the other end parts of the high-temperature combustion gas passage 4 and the low-temperature air passage 5. Accordingly, it is possible to ensure sufficiently the cross-sectional area of a flow passage at the entrance and exit of the fluid passage and thereby to minimize a pressure loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の第1伝熱板
及び複数の第2伝熱板を第1折り線及び第2折り線を介
して交互に連設してなる折り板素材を該第1、第2折り
線においてつづら折り状に折り曲げ、隣接する第1折り
線間の隙間を該第1折り線と第1端板との接合により閉
塞するとともに、隣接する第2折り線間の隙間を該第2
折り線と第2端板との接合により閉塞し、隣接する前記
第1伝熱板及び第2伝熱板間に高温流体通路及び低温流
体通路を交互に形成してなる熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a folding plate material formed by alternately arranging a plurality of first heat transfer plates and a plurality of second heat transfer plates via first folding lines and second folding lines. The first and second folding lines are folded in a zigzag shape, and the gap between the adjacent first folding lines is closed by the joining of the first folding line and the first end plate, and the space between the adjacent second folding lines is closed. The second gap
The present invention relates to a heat exchanger that is closed by joining a fold line and a second end plate and alternately forms a high temperature fluid passage and a low temperature fluid passage between the adjacent first heat transfer plate and second heat transfer plate.

【0002】[0002]

【従来の技術】かかる熱交換器として、特開昭58−4
0116号公報に記載されたものが知られている。
2. Description of the Related Art As such a heat exchanger, Japanese Patent Laid-Open No. 58-4 is available.
The one described in Japanese Patent No. 0116 is known.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
ものは、高温流体通路及び低温流体通路の出入口におい
て、その流路断面積が約2分の1に絞られているため、
その部分で大きな圧損を生じる問題がある。しかも、隣
接して形成された流体の出入口が相互に入り組んでいる
ので、出入口を仕切り部材で仕切ろうとすると該仕切り
部材の構造が複雑化するばかりか、ロー付け等の接合部
の面積が増加して流体漏れが発生する可能性がある。
By the way, in the above-mentioned conventional device, the cross-sectional area of the flow passage is narrowed to about half at the entrance and exit of the high temperature fluid passage and the low temperature fluid passage.
There is a problem that large pressure loss occurs in that portion. Moreover, since the fluid inlets and outlets formed adjacent to each other are intertwined with each other, attempting to partition the inlet and outlet with a partition member not only complicates the structure of the partition member, but also increases the area of the joint portion such as brazing. Fluid leakage may occur.

【0004】本発明は前述の事情に鑑みてなされたもの
で、流体通路の出入口における流路断面積を充分に確保
して圧損を最小限に抑えることが可能であり、しかも仕
切り部材による出入口の仕切りが容易な熱交換器を提供
することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to sufficiently secure the flow passage cross-sectional area at the entrance and exit of the fluid passage to minimize the pressure loss, and moreover, the entrance and exit of the entrance and exit by the partition member. An object is to provide a heat exchanger that can be easily partitioned.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、複数の第1伝熱板及び複数の第2伝熱板
を第1折り線及び第2折り線を介して交互に連設してな
る折り板素材を該第1、第2折り線においてつづら折り
状に折り曲げ、隣接する第1折り線間の隙間を該第1折
り線と第1端板との接合により閉塞するとともに、隣接
する第2折り線間の隙間を該第2折り線と第2端板との
接合により閉塞し、隣接する前記第1伝熱板及び第2伝
熱板間に高温流体通路及び低温流体通路を交互に形成し
てなる熱交換器において、第1伝熱板及び第2伝熱板の
流路方向両端部を2つの端縁を有する山形に切断し、高
温流体通路の流路方向一端部において前記2つの端縁の
一方を閉塞して他方を開放することにより高温流体通路
入口を形成するとともに、高温流体通路の流路方向他端
部において前記2つの端縁の一方を閉塞して他方を開放
することにより高温流体通路出口を形成し、更に低温流
体通路の流路方向他端部において前記2つの端縁の他方
を閉塞して一方を開放することにより低温流体通路入口
を形成するとともに、低温流体通路の流路方向一端部に
おいて前記2つの端縁の他方を閉塞して一方を開放する
ことにより低温流体通路出口を形成し、且つ流路方向一
端側の山形の頂点部分に仕切り板を接合して前記高温流
体通路入口及び低温流体通路出口間を仕切るとともに、
流路方向他端側の山形の頂点部分に仕切り板を接合して
前記低温流体通路入口及び高温流体通路出口間を仕切っ
たことを特徴とする。
In order to achieve the above object, the present invention provides a plurality of first heat transfer plates and a plurality of second heat transfer plates which are alternately arranged via a first fold line and a second fold line. Folding plate materials continuously provided in the first and second folding lines are folded into a zigzag shape, and a gap between adjacent first folding lines is closed by joining the first folding line and the first end plate. At the same time, the gap between the adjacent second folding lines is closed by joining the second folding line and the second end plate, and a high temperature fluid passage and a low temperature are provided between the adjacent first heat transfer plate and second heat transfer plate. In a heat exchanger in which fluid passages are alternately formed, both ends of the first heat transfer plate and the second heat transfer plate in the flow passage direction are cut into a chevron having two edges, and the high temperature fluid passage is formed in the flow passage direction. When the hot fluid passage inlet is formed by closing one of the two edges and opening the other at one end At the other end of the high temperature fluid passage in the flow direction, one of the two edges is closed and the other end is opened to form a high temperature fluid outlet, and the other end of the low temperature fluid passage in the flow direction is formed. In order to form a low temperature fluid passage inlet by closing the other of the two edges and opening one of the two edges, the other of the two edges is closed at one end of the low temperature fluid passage in the flow direction. A low-temperature fluid passage outlet is formed by opening, and a partition plate is joined to the mountain-shaped apex portion on one end side in the flow passage direction to partition the high-temperature fluid passage inlet and the low-temperature fluid passage outlet,
It is characterized in that a partition plate is joined to the apex portion of the mountain shape on the other end side in the flow path direction to partition the low temperature fluid passage inlet and the high temperature fluid passage outlet.

【0006】[0006]

【作用】前記構成によれば、高温流体通路の流路方向一
端部及び他端部に高温流体通路入口及び出口が形成さ
れ、エアー通路の流路方向他端部及び一端部にエアー通
路入口及び出口が形成され、第1伝熱板及び第2伝熱板
を挟んで高温流体及びエアーが逆方向に流れて熱交換が
行われる。第1伝熱板及び第2伝熱板の流路方向両端部
が山形に切断され、その山形の二つの端縁の一方及び他
方に前記入口及び出口が形成されるので、入口及び出口
の流路断面積が充分に確保されるとともに滑らかな流路
が形成されて圧損が減少し、しかも入口及び出口の分離
も容易になる。また、山形の頂点部分に仕切り板を接合
するので、仕切り板によって入口及び出口の流路断面積
が減少することがないばかりか、第1伝熱板及び第2伝
熱板と仕切り板との接合部の面積が小さくなって流体の
漏れの可能性が減少する。
According to the above construction, the high temperature fluid passage inlet and outlet are formed at one end and the other end in the flow passage of the high temperature fluid passage, and the air passage inlet and outlet are formed at the other end and one end in the passage direction of the air passage. The outlet is formed, and the high temperature fluid and the air flow in opposite directions with the first heat transfer plate and the second heat transfer plate sandwiched therebetween, and heat exchange is performed. Both ends of the first heat transfer plate and the second heat transfer plate in the flow path direction are cut into a mountain shape, and the inlet and the outlet are formed on one and the other of the two edge edges of the mountain shape. A sufficient cross-sectional area of the road is secured, a smooth flow path is formed, pressure loss is reduced, and the inlet and the outlet are easily separated. Further, since the partition plate is joined to the apex portion of the chevron, the partition plate does not reduce the flow passage cross-sectional area of the inlet and the outlet, and the partition plate is divided into the first heat transfer plate and the second heat transfer plate. The smaller joint area reduces the potential for fluid leakage.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below based on the embodiments of the present invention shown in the accompanying drawings.

【0008】図1〜図12は本発明の第1実施例を示す
もので、図1はガスタービンエンジンの全体側面図、図
2は図1の2−2線断面図、図3は図2の3−3線拡大
断面図(燃焼ガス通路の断面図)、図4は図2の4−4
線拡大断面図(エアー通路の断面図)、図5は図3の5
−5線拡大断面図、図6は図5の6部拡大図、図7は図
3の7−7線拡大断面図、図8は図7の8部拡大図、図
9は図3の9−9線拡大断面図、図10は折り板の展開
図、図11は熱交換器の要部斜視図、図12は燃焼ガス
及びエアーの流れを示す模式図である。
FIGS. 1 to 12 show a first embodiment of the present invention. FIG. 1 is an overall side view of a gas turbine engine, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. 2 is an enlarged sectional view taken along line 3-3 (a sectional view of a combustion gas passage), and FIG.
3 is an enlarged sectional view of the line (a sectional view of the air passage), and FIG.
-5 line enlarged sectional view, FIG. 6 is an enlarged view of 6 part of FIG. 5, FIG. 7 is an enlarged sectional view of 7-7 line of FIG. 3, FIG. 8 is an enlarged view of 8 part of FIG. 7, and FIG. 9 is 9 of FIG. -9 line enlarged sectional view, FIG. 10 is a developed view of the folded plate, FIG. 11 is a perspective view of the main part of the heat exchanger, and FIG. 12 is a schematic view showing the flow of combustion gas and air.

【0009】図1及び図2に示すように、ガスタービン
エンジンEは、図示せぬ燃焼器、コンプレッサ、タービ
ン等を内部に収納したエンジン本体1を備えており、こ
のエンジン本体1の外周を囲繞するように円環状の熱交
換器2が配置される。熱交換器2は90°の中心角を有
する4個のモジュール21 …をサイドプレート3…を挟
んで円周方向に配列したもので、タービンを通過した比
較的高温の燃焼ガスが通過する燃焼ガス通路4…と、コ
ンプレッサで圧縮された比較的低温のエアーが通過する
エアー通路5…とが、円周方向に交互に形成される(図
5〜図9参照)。尚、図1における断面は燃焼ガス通路
4…に対応しており、その燃焼ガス通路4…の手前側と
向こう側に隣接してエアー通路5…が形成される。
As shown in FIGS. 1 and 2, the gas turbine engine E includes an engine body 1 in which a combustor, a compressor, a turbine, and the like (not shown) are housed. An annular heat exchanger 2 is arranged in such a manner as to perform the heat treatment. The heat exchanger 2 is an arrangement in which four modules 2 1 having a central angle of 90 ° are arranged in the circumferential direction with the side plates 3 sandwiched therebetween. Combustion where relatively high temperature combustion gas passing through the turbine passes. The gas passages 4 and the air passages 5 through which the relatively low temperature air compressed by the compressor passes are alternately formed in the circumferential direction (see FIGS. 5 to 9). The cross section in FIG. 1 corresponds to the combustion gas passages 4, and air passages 5 are formed adjacent to the front side and the rear side of the combustion gas passages 4.

【0010】熱交換器2の軸線に沿う断面形状は、軸方
向に長く半径方向に短い偏平な六角形であり、その半径
方向外周面が大径円筒状のアウターケーシング6により
閉塞されるとともに、その半径方向内周面が小径円筒状
のインナーケーシング7により閉塞される。熱交換器2
の断面における前端側(図1の左側)は山形にカットさ
れており、その山形の頂点に対応する端面にエンジン本
体1の外周に連なるエンドプレート8がロー付けされ
る。また熱交換器2の断面における後端側(図1の右
側)は山形にカットされており、その山形の頂点に対応
する端面に後部アウターハウジング9に連なるエンドプ
レート10がロー付けされる。
The cross-sectional shape along the axis of the heat exchanger 2 is a flat hexagon that is long in the axial direction and short in the radial direction, and the outer peripheral surface in the radial direction is closed by a large-diameter cylindrical outer casing 6. The radially inner peripheral surface is closed by a small-diameter cylindrical inner casing 7. Heat exchanger 2
The front end side (left side in FIG. 1) of the cross section is cut into a mountain shape, and the end plate 8 connected to the outer periphery of the engine body 1 is brazed to the end surface corresponding to the apex of the mountain shape. The rear end side (right side in FIG. 1) in the cross section of the heat exchanger 2 is cut into a chevron shape, and the end plate 10 connected to the rear outer housing 9 is brazed to the end face corresponding to the apex of the chevron shape.

【0011】熱交換器2の各燃焼ガス通路4は、図1に
おける左上及び右下に燃焼ガス通路入口11及び燃焼ガ
ス通路出口12を備えており、燃焼ガス通路入口11に
はエンジン本体1の外周に沿って形成された燃焼ガス導
入ダクト13の下流端が接続されるとともに、燃焼ガス
通路出口12にはエンジン本体1の内部に延びる燃焼ガ
ス排出ダクト14の上流端が接続される。
Each combustion gas passage 4 of the heat exchanger 2 is provided with a combustion gas passage inlet 11 and a combustion gas passage outlet 12 at the upper left and the lower right in FIG. A downstream end of a combustion gas introduction duct 13 formed along the outer circumference is connected, and an upstream end of a combustion gas discharge duct 14 extending inside the engine body 1 is connected to the combustion gas passage outlet 12.

【0012】熱交換器2の各エアー通路5は、図1にお
ける右上及び左下にエアー通路入口15及びエアー通路
出口16を備えており、エアー通路入口15には後部ア
ウターハウジング9の内周に沿って形成されたエアー導
入ダクト17の下流端が接続されるとともに、エアー通
路出口16にはエンジン本体1の内部に延びるエアー排
出ダクト18の上流端が接続される。
Each air passage 5 of the heat exchanger 2 is provided with an air passage inlet 15 and an air passage outlet 16 at the upper right and lower left in FIG. 1, and the air passage inlet 15 extends along the inner circumference of the rear outer housing 9. The downstream end of the air introduction duct 17 formed as described above is connected, and the upstream end of the air discharge duct 18 extending inside the engine body 1 is connected to the air passage outlet 16.

【0013】このようにして、図3、図4及び図12に
示す如く、燃焼ガスとエアーとが相互に逆方向に流れて
且つ相互に交差することになり、熱交換効率の高い所謂
クロスフローが実現される。即ち、高温流体と低温流体
とを相互に逆方向に流すことにより、その流路の全長に
亘って高温流体及び低温流体間の温度差を大きく保ち、
熱交換効率を向上させることができる。
In this way, as shown in FIGS. 3, 4 and 12, the combustion gas and the air flow in opposite directions and cross each other, so-called cross flow having high heat exchange efficiency. Is realized. That is, by flowing the high temperature fluid and the low temperature fluid in mutually opposite directions, a large temperature difference between the high temperature fluid and the low temperature fluid is maintained over the entire length of the flow path,
Heat exchange efficiency can be improved.

【0014】而して、タービンを駆動した燃焼ガスの温
度は燃焼ガス通路入口11…において約600〜700
℃であり、その燃焼ガスが燃焼ガス通路4…を通過する
際にエアーとの間で熱交換を行うことにより、燃焼ガス
通路出口12…において約300〜400℃まで冷却さ
れる。一方、コンプレッサにより圧縮されたエアーの温
度はエアー通路入口15…において約200〜300℃
であり、そのエアーがエアー通路5…を通過する際に燃
焼ガスとの間で熱交換を行うことにより、エアー通路出
口16…において約500〜600℃まで加熱される。
The temperature of the combustion gas driving the turbine is about 600 to 700 at the combustion gas passage inlets 11.
° C, and when the combustion gas passes through the combustion gas passages 4, heat is exchanged with air to be cooled to about 300 to 400 ° C at the combustion gas passage outlets 12. On the other hand, the temperature of the air compressed by the compressor is about 200 to 300 ° C. at the air passage inlets 15.
When the air passes through the air passages 5 and performs heat exchange with the combustion gas, the air is heated to about 500 to 600 ° C. at the air passage outlets 16.

【0015】次に、熱交換器2の構造を図3〜図11を
参照しながら説明する。
Next, the structure of the heat exchanger 2 will be described with reference to FIGS.

【0016】図3、図4及び図10に示すように、熱交
換器2のモジュール21 は、ステンレス等の金属薄板を
所定の形状に予めカットした後、その表面にプレス加工
により凹凸を施した折り板素材21から製造される。折
り板素材21は、第1伝熱板S1…及び第2伝熱板S2
…を交互に配置したものであって、山折り線L1及び谷
折り線L2を介してつづら折り状に折り曲げられる。
尚、山折りとは紙面の手前側に向けて凸に折ることであ
り、谷折りとは紙面の向こう側に向けて凸に折ることで
ある。各山折り線L1及び谷折り線L2は単純な直線で
はなく、第1伝熱板S1…及び第2伝熱板S2…間に所
定の空間を形成するために実際には略平行な2本の線か
らなっており、しかもその両端部は後述する閉塞突起2
1 …,251 …を形成するために、直線から外れた折
れ線になっている。
[0016] As shown in FIGS. 3, 4 and 10, module 2 1 of the heat exchanger 2, after previously cut sheet metal such as stainless steel into a predetermined shape, facilities irregularities by pressing on the surface It is manufactured from the folded plate material 21. The folded plate material 21 includes a first heat transfer plate S1 ... and a second heat transfer plate S2.
Are alternately arranged and are folded in a zigzag shape through the mountain fold line L1 and the valley fold line L2.
Note that mountain fold is to fold convexly toward the front side of the paper, and valley fold is to fold convexly toward the other side of the paper. Each of the mountain fold line L1 and the valley fold line L2 is not a simple straight line, and actually two parallel lines are formed so as to form a predetermined space between the first heat transfer plate S1 ... And the second heat transfer plate S2. , And both ends of the closing projection 2 are described later.
4 1 ..., 25 1 ... are formed as broken lines deviating from a straight line.

【0017】各第1、第2伝熱板S1,S2には、碁盤
目状に配置された多数の第1突起22…と第2突起23
…とがプレス成形される。第1突起22…は、図10に
おいて紙面の手前側に向けて突出するとともに、第2突
起23…は紙面の向こう側に向けて突出し、それらは交
互に(即ち、第1突起22…どうし或いは第2突起23
…どうしが連続しないように)配列される。
Each of the first and second heat transfer plates S1 and S2 has a large number of first projections 22 ... And second projections 23 arranged in a grid pattern.
Are press-formed. The first protrusions 22 ... project toward the front side of the paper surface in FIG. 10, and the second protrusions 23 ... project toward the other side of the paper surface, and they alternate (that is, the first projections 22 ... Second protrusion 23
... arranged so that they are not continuous.

【0018】各第1、第2伝熱板S1,S2の山形にカ
ットされた前端部及び後端部には、図10において紙面
の手前側に向けて突出する第1凸条24F …,24R
と、紙面の向こう側に向けて突出する第2凸条25
F …,25R …とがプレス成形される。第1伝熱板S1
及び第2伝熱板S2の何れについても、前後一対の第1
凸条24F ,24R が対角位置に配置され、前後一対の
第2凸条25F ,25R が他の対角位置に配置される。
At the front and rear end portions of each of the first and second heat transfer plates S1 and S2, which are cut in a chevron shape, the first ridges 24 F, ..., Which project toward the front side of the paper surface in FIG. 24 R ...
And a second protruding ridge 25 protruding toward the other side of the paper surface.
F ..., 25 R. First heat transfer plate S1
And both of the first and second heat transfer plates S2
Projections 24 F, 24 R are disposed at diagonal positions, front and rear pair of second projections 25 F, 25 R are disposed on the other diagonal line.

【0019】図3及び図10を参照すると明らかなよう
に、折り板素材21の第1伝熱板S1…及び第2伝熱板
S2…を山折り線L1で折り曲げて両伝熱板S1…,S
2…間に燃焼ガス通路4…を形成するとき、第1伝熱板
S1の第2突起23…の先端と第2伝熱板S2の第2突
起23…の先端とが相互に当接してロー付けされる。ま
た、第1伝熱板S1の第2凸条25F ,25R と第2伝
熱板S2の第2凸条25F ,25R とが相互に当接して
ロー付けされ、図3に示した燃焼ガス通路4の左下部分
及び右上部分を閉塞するとともに、第1伝熱板S1の第
1凸条24F ,24R と第2伝熱板S2の第1凸条24
F ,24R とが相互に対向して図3に示した燃焼ガス通
路4の左上部分及び右下部分にそれぞれ燃焼ガス通路入
口11及び燃焼ガス通路出口12を形成する。尚、図3
の第1伝熱板S1は、図10の第1伝熱板S1を基準に
として、その裏面側が示されている。
As is apparent from FIGS. 3 and 10, the first heat transfer plates S1 ... And the second heat transfer plates S2 ... Of the folding plate material 21 are bent along the mountain fold line L1 to both heat transfer plates S1. , S
When the combustion gas passages 4 are formed between the two, the tips of the second protrusions 23 of the first heat transfer plate S1 and the tips of the second protrusions 23 of the second heat transfer plate S2 contact each other. Brazed. Further, a second ridge 25 F, 25 R of the second projections 25 F, 25 R and the second heat-transfer plate S2 of the first heat-transfer plate S1 is brazed in contact with each other, shown in FIG. 3 The lower left portion and the upper right portion of the combustion gas passage 4 are closed, and the first ridges 24 F and 24 R of the first heat transfer plate S1 and the first ridges 24 of the second heat transfer plate S2 are closed.
F and 24 R face each other to form a combustion gas passage inlet 11 and a combustion gas passage outlet 12 in the upper left portion and the lower right portion of the combustion gas passage 4 shown in FIG. 3, respectively. FIG.
The back surface side of the first heat transfer plate S1 is shown with reference to the first heat transfer plate S1 of FIG.

【0020】また、図4及び図10を参照すると明らか
なように、折り板素材21の第1伝熱板S1…及び第2
伝熱板S2…を谷折り線L2で折り曲げて両伝熱板S1
…,S2…間にエアー通路5…を形成するとき、第1伝
熱板S1の第1突起22…の先端と第2伝熱板S2の第
1突起22…の先端とが相互に当接してロー付けされ
る。また、第1伝熱板S1の第1凸条24F ,24R
第2伝熱板S2の第1凸条24F ,24R とが相互に当
接してロー付けされ、図4に示したエアー通路5の左上
部分及び右下部分を閉塞するとともに、第1伝熱板S1
の第2凸条25F,25R と第2伝熱板S2の第2凸条
25F ,25R とが相互に対向して図4に示したエアー
通路5の右上部分及び左下部分にそれぞれエアー通路入
口15及びエアー通路出口16を形成する。尚、図4の
第2伝熱板S2は、図10の第2伝熱板S2を基準にと
して、その表面側が示されている。
Further, as apparent from FIG. 4 and FIG. 10, the first heat transfer plates S1 ...
Both heat transfer plates S1 are formed by bending the heat transfer plates S2 ...
,, S2 ... When the air passages 5 are formed between the first heat transfer plate S1, the tips of the first protrusions 22 and the second heat transfer plate S2 contact the tips of the first protrusions 22. Be brazed. Further, the first projections 24 F, 24 R of the first projections 24 F, 24 R and the second heat-transfer plate S2 of the first heat-transfer plate S1 is brazed in contact with each other, shown in FIG. 4 In addition to closing the upper left portion and the lower right portion of the air passage 5, the first heat transfer plate S1
The second projections 25 F, 25 R and the second projections 25 F, 25 R and each in the upper right portion and lower left portion of the air passage 5 shown in FIG. 4 to be opposed to each other of the second heat transfer plate S2 of An air passage inlet 15 and an air passage outlet 16 are formed. The second heat transfer plate S2 in FIG. 4 is shown on the front surface side with reference to the second heat transfer plate S2 in FIG.

【0021】図9の上側(半径方向外側)には、第1凸
条24F …によりエアー通路5…が閉塞された状態が示
されており、下側(半径方向外側)には、第2凸条25
F …により燃焼ガス通路4…が閉塞された状態が示され
ている。
The upper side (outer side in the radial direction) of FIG. 9 shows a state in which the air passages 5 are closed by the first ridges 24 F , and the lower side (outer side in the radial direction) shows the second passage. Ridge 25
The state in which the combustion gas passages 4 are closed by F is shown.

【0022】第1突起22…及び第2突起23…は概略
円錐台形状を有しており、それらの先端部は後述するロ
ー付け強度を高めるべく相互に面接触する。また第1凸
条24F …,24R …及び第2凸条25F …,25R
も概略台形状の断面を有しており、それらの先端部もロ
ー付け強度を高めるべく相互に面接触する。
The first projections 22 ... And the second projections 23 ... Have a substantially truncated cone shape, and their tips are in surface contact with each other in order to enhance the brazing strength described later. The first ridges 24 F , 24 R, and the second ridges 25 F , 25 R, ...
Also have a substantially trapezoidal cross section, and their tips also make surface contact with each other to enhance brazing strength.

【0023】図3、図4及び図11から明らかなよう
に、折り板素材21をつづら折り状に折り曲げる際に、
第1凸条24F …,24R …及び第2凸条25F …,2
R …の軸方向内端部(山折り線L1及び谷折り線L2
に連なる部分)には、該第1凸条24F …,24R …及
び第2凸条25F …,25R …から一体に延びる閉塞突
起241 …,251 …が形成される。対向する第1凸条
24F …,24R …の先端どうしが接合されたとき、そ
れらに連設された閉塞突起241 …の先端どうしも接合
され、また対向する第2凸条25F …の先端どうしが接
合されたとき、それらに連設された閉塞突起251 …の
先端どうしも接合される。そして、接合された閉塞突起
241 …,251 …の半径方向外周面及び半径方向内周
面に、それぞれアウターケーシング6の半径方向内周面
及びインナーケーシング7の半径方向外周面が接続され
る。
As is apparent from FIGS. 3, 4 and 11, when the folding plate material 21 is folded into a zigzag shape,
First ridge 24 F , 24 R, and second ridge 25 F , 2,
5 R ... Axial inner end (mountain fold line L1 and valley fold line L2
The portion) connecting to, first projections 24 F ..., 24 R ... and the second projections 25 F ..., 25 R ... obstruction projections 24 1 ... extending integrally from 25 1 ... are formed. When the tips of the first ridges 24 F, ..., 24 R that face each other are joined, the tips of the closing protrusions 24 1 that are provided in series are also joined, and the second ridges 25 F that face each other also. When the tips of the closed projections are joined together, the tips of the closing projections 25 1 ... Connected to them are also joined together. The radially inner peripheral surface of the outer casing 6 and the radially outer peripheral surface of the inner casing 7 are connected to the radially outer peripheral surface and the radially inner peripheral surface of the joined closure projections 24 1, ..., 25 1 , . .

【0024】図7の上側(半径方向外側)及び図8に
は、閉塞突起241 …によりエアー通路5…が閉塞され
た状態が示されており、図7の下側(半径方向内側)に
は、閉塞突起251 …により燃焼ガス通路4…が閉塞さ
れた状態が示されている。閉塞突起241 …によるエア
ー通路5…の閉塞は図4のA部においても示されてお
り、また閉塞突起251 …による燃焼ガス通路4…の閉
塞は図3のA部においても示されている。
The upper side (radially outer side) of FIG. 7 and FIG. 8 show the state in which the air passages 5 are closed by the closing projections 24 1 ... And the lower side (radially inner side) of FIG. Shows the state where the combustion gas passages 4 are closed by the closing projections 25 1 . The blockage of the air passages 5 by the block projections 24 1 is also shown in the portion A of FIG. 4, and the blockage of the combustion gas passages 4 by the block projections 25 1 is also shown in the portion A of FIG. There is.

【0025】図5及び図6を参照すると明らかなよう
に、エアー通路5…の半径方向内周部分は折り板素材2
1の折曲部(谷折り線L2)に相当するために自動的に
閉塞されるが、エアー通路5…の半径方向外周部分は開
放されており、その開放部がアウターケーシング6によ
り閉塞される。一方、燃焼ガス通路4…の半径方向外周
部分は折り板素材21の折曲部(山折り線L1)に相当
するために自動的に閉塞されるが、燃焼ガス通路4…の
半径方向内周部分は開放されており、その開放部がイン
ナーケーシング7により閉塞される。
As is apparent from FIGS. 5 and 6, the radially inner portion of the air passages 5 ...
Although it is automatically closed because it corresponds to the bent portion 1 (valley fold line L2), the radially outer peripheral portion of the air passage 5 is open, and the open portion is closed by the outer casing 6. . On the other hand, the radially outer peripheral portion of the combustion gas passages 4 ... Is automatically closed because it corresponds to the bent portion (mountain fold line L1) of the folded plate material 21, but the radially inner periphery of the combustion gas passages 4 ... The part is open, and the open part is closed by the inner casing 7.

【0026】このように、熱交換器2の半径方向外周部
及び内周部に沿う可及的に広い領域で燃焼ガス通路4…
とエアー通路5…とを円周方向に交互に配置することに
より、熱交換効率の向上が図られる(図5参照)。
In this way, the combustion gas passages 4 ... Are formed in as wide a region as possible along the outer peripheral portion and the inner peripheral portion of the heat exchanger 2 in the radial direction.
By alternately arranging the air passages 5 and the air passages 5 in the circumferential direction, the heat exchange efficiency can be improved (see FIG. 5).

【0027】前記折り板素材21をつづら折り状に折り
曲げて熱交換器2のモジュール21を製作するとき、第
1伝熱板S1…及び第2伝熱板S2…は熱交換器2の中
心から放射状に配置される。従って、隣接する第1伝熱
板S1…及び第2伝熱板S2…間の距離は、アウターケ
ーシング6に接する半径方向外周部において最大、且つ
インナーケーシング7に接する半径方向内周部において
最小となる。従って、前記第1突起22…,第2突起2
3…、第1凸条24F ,24R 及び第2凸条25F ,2
R の高さは半径方向内側から外側に向けて漸増してお
り、これにより第1伝熱板S1…及び第2伝熱板S2…
を正確に放射状に配置することができる(図5及び図7
参照)。
When the folded plate material 21 is folded in a zigzag shape to manufacture the module 2 1 of the heat exchanger 2, the first heat transfer plates S1 ... And the second heat transfer plates S2. Radially arranged. Therefore, the distance between the adjacent first heat transfer plates S1 and the second heat transfer plates S2 is maximum at the radial outer peripheral portion contacting the outer casing 6 and minimum at the radial inner peripheral portion contacting the inner casing 7. Become. Therefore, the first protrusion 22 ..., The second protrusion 2
3 ..., 1st ridge 24 F , 24 R and 2nd ridge 25 F , 2
The height of 5 R gradually increases from the inner side to the outer side in the radial direction, whereby the first heat transfer plate S1 ... And the second heat transfer plate S2.
Can be arranged exactly radially (see FIGS. 5 and 7).
reference).

【0028】上述した放射状の折り板構造を採用するこ
とにより、アウターケーシング6及びインナーケーシン
グ7を同心に位置決めし、熱交換器2の軸対称性を精密
に保持することができる。
By adopting the radial folded plate structure described above, the outer casing 6 and the inner casing 7 can be positioned concentrically, and the axial symmetry of the heat exchanger 2 can be precisely maintained.

【0029】熱交換器2を同一構造の4個のモジュール
1 …の組み合わせにより構成することにより、製造の
容易化及び構造の簡略化が可能となる。また、折り板素
材21を放射状且つつづら折り状に折り曲げて第1伝熱
板S1…及び第2伝熱板S2…を連続して形成すること
により、1枚ずつ独立した多数の第1伝熱板S1…と1
枚ずつ独立した多数の第2伝熱板S2…とを交互にロー
付けする場合に比べて、部品点数及びロー付け個所を大
幅に削減することができるばかりか、完成した製品の寸
法精度を高めることができる。
By constructing the heat exchanger 2 by combining four modules 2 1 having the same structure, it becomes possible to simplify the manufacturing and simplify the structure. Moreover, the first heat transfer plates S1 and the second heat transfer plates S2 are continuously formed by bending the folded plate material 21 radially and in a zigzag manner so that a large number of independent first heat transfer plates are provided one by one. S1 ... and 1
Compared with the case where a large number of independent second heat transfer plates S2 ... Are alternately brazed, the number of parts and brazing points can be significantly reduced, and the dimensional accuracy of the finished product is improved. be able to.

【0030】ガスタービンエンジンEの運転中に、燃焼
ガス通路4…の圧力は比較的に低圧になり、エアー通路
5…の圧力は比較的に高圧になるため、その圧力差によ
って第1伝熱板S1…及び第2伝熱板S2…に曲げ荷重
が作用するが、相互に当接してロー付けされた第1突起
22…及び第2突起23…により、前記荷重に耐え得る
充分な剛性を得ることができる。
During the operation of the gas turbine engine E, the combustion gas passages 4 ... Have a relatively low pressure and the air passages 5 ... Have a relatively high pressure. Therefore, the pressure difference causes the first heat transfer. A bending load acts on the plates S1 ... And the second heat transfer plates S2. However, the first projections 22 ... And the second projections 23 ... that are in contact with each other and brazed to each other provide sufficient rigidity to withstand the load. Obtainable.

【0031】また、第1突起22…及び第2突起23…
によって第1伝熱板S1…及び第2伝熱板S2…の表面
積(即ち、燃焼ガス通路4…及びエアー通路5…の表面
積)が増加し、しかも燃焼ガス及びエアーの流れが攪拌
されるために熱交換効率の向上が可能となる。
The first projections 22 and the second projections 23 are provided.
The surface areas of the first heat transfer plates S1 and the second heat transfer plates S2 (that is, the surface areas of the combustion gas passages 4 and the air passages 5) increase, and the flows of the combustion gas and the air are agitated. Therefore, the heat exchange efficiency can be improved.

【0032】更に、熱交換器2の前端部及び後端部をそ
れぞれ山形にカットし、熱交換器2の前端部において前
記山形の二辺に沿ってそれぞれ燃焼ガス通路入口11及
びエアー通路出口16を形成するとともに、熱交換器2
の後端部において前記山形の二辺に沿ってそれぞれ燃焼
ガス通路出口12及びエアー通路入口15を形成してい
るので、熱交換器2の前端部及び後端部を山形にカット
せずに前記入口11,15及び出口12,16を形成し
た場合に比べて、それら入口11,15及び出口12,
16における流路断面積を大きく確保して圧損を最小限
に抑えることができる。
Further, the front end portion and the rear end portion of the heat exchanger 2 are each cut into a chevron shape, and the combustion gas passage inlet 11 and the air passage outlet 16 are formed along the two sides of the chevron at the front end portion of the heat exchanger 2. Forming a heat exchanger 2
Since the combustion gas passage outlet 12 and the air passage inlet 15 are formed along the two sides of the chevron at the rear end of the chevron, the front end and the rear end of the heat exchanger 2 are not cut into the chevron. Compared with the case where the inlets 11, 15 and the outlets 12, 16 are formed, those inlets 11, 15 and the outlet 12,
A large flow passage cross-sectional area in 16 can be secured to minimize pressure loss.

【0033】しかも、前記山形の二辺に沿って入口1
1,15及び出口12,16を形成したので、燃焼ガス
通路4…及びエアー通路5…に出入りする燃焼ガスやエ
アーの流路を滑らかにして圧損を更に減少させることが
できるばかりか、入口11,15及び出口12,16に
連なるダクトを流路を急激に屈曲させることなく軸方向
に沿って配置し、熱交換器2の半径方向寸法を小型化す
ることができる。
Moreover, the entrance 1 is provided along the two sides of the mountain shape.
1, 15 and the outlets 12, 16 are formed, the flow paths of the combustion gas and the air flowing in and out of the combustion gas passages 4 and the air passages 5 can be smoothed to further reduce the pressure loss, and also the inlet 11 , 15 and the outlets 12, 16 are arranged along the axial direction without sharply bending the flow path, and the radial dimension of the heat exchanger 2 can be reduced.

【0034】更にまた、山形に形成した熱交換器2の前
端部及び後端部の先端の端面にエンドプレート8,10
をロー付けしているので、ロー付け面積を最小限にして
ロー付け不良による燃焼ガスやエアーの漏れの可能性を
減少させることができ、しかも入口11,15及び出口
12,16の開口面積の減少を抑えながら該入口11,
15及び出口12,16を簡単且つ確実に仕切ることが
可能となる。
Furthermore, the end plates 8 and 10 are formed on the end faces of the front end and the rear end of the heat exchanger 2 formed in a mountain shape.
Since brazing is performed, the brazing area can be minimized to reduce the possibility of leakage of combustion gas and air due to improper brazing, and the opening areas of the inlets 11 and 15 and the outlets 12 and 16 can be reduced. The entrance 11, while suppressing the decrease
15 and the outlets 12 and 16 can be easily and reliably partitioned.

【0035】図13は本発明の第2実施例を示すもの
で、この第2実施例は、燃焼ガス通路4…の入口11…
及び出口12…が何れも半径方向外側に形成されてお
り、それらの半径方向内側にエアー通路5…の出口16
…及び入口15…が形成されている。即ち、第1実施例
では逆方向に流れる燃焼ガスとエアーとが相互に交差す
るが、第2実施例では逆方向に流れる燃焼ガスとエアー
とが相互にすれ違う。
FIG. 13 shows a second embodiment of the present invention. In this second embodiment, the inlets 11 ... Of the combustion gas passages 4 ...
And outlets 12 ... Are formed on the outer side in the radial direction, and the outlets 16 of the air passages 5 are formed on the inner side in the radial direction.
... and the entrance 15 are formed. That is, in the first embodiment, the combustion gas and air flowing in opposite directions cross each other, but in the second embodiment, the combustion gas and air flowing in opposite directions pass each other.

【0036】第2実施例におけるその他の構造は第1実
施例と同一であり、第1実施例と同様の作用効果を奏す
ることが可能である。
The other structure of the second embodiment is the same as that of the first embodiment, and it is possible to obtain the same effect as that of the first embodiment.

【0037】以上、本発明の実施例を詳述したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention can be modified in various ways without departing from the scope of the invention.

【0038】例えば、実施例ではガスタービンエンジン
E用の熱交換器2を例示したが、本発明は他の用途の熱
交換器に対しても適用することができる。また、実施例
の熱交換器2は軸対称型であって伝熱板S1…,S2…
が放射状に配置されているが、本発明は伝熱板を平行に
配置したボックス型の熱交換器に対しても適用すること
が可能である。
For example, although the heat exchanger 2 for the gas turbine engine E is illustrated in the embodiment, the present invention can be applied to a heat exchanger for other uses. Further, the heat exchanger 2 of the embodiment is an axially symmetric type, and the heat transfer plates S1 ..., S2 ...
Are arranged radially, but the present invention can also be applied to a box-type heat exchanger in which heat transfer plates are arranged in parallel.

【0039】[0039]

【発明の効果】以上のように、本発明によれば、熱交換
器の流路方向一端部に高温流体通路入口と低温流体通路
出口とが形成され、流路方向他端部に高温流体通路出口
と低温流体通路入口とが形成されるので、高温流体及び
低温流体を相互に逆方向に流して熱交換効率を向上させ
ることができる。また第1伝熱板及び第2伝熱板の流路
方向両端部を山形に切断して該山形の2つの端縁の一方
を開放することにより入口及び出口を形成しているの
で、高温流体通路及び低温流体通路の流路が滑らかに形
成され、且つ該入口及び出口の流路断面積が充分に確保
されて圧損の発生が最小限に抑えられ、しかも入口及び
出口を容易に分離して高温流体及び低温流体の混合を回
避することができる。更に、山形の頂点部分に仕切り板
を接合するので、仕切り板によって入口及び出口の流路
断面積が減少することが最小限に抑えられ、しかも第1
伝熱板及び第2伝熱板と仕切り板との接合部の面積を最
小限に抑えて流体の漏れの可能性を減少させることがで
きる。
As described above, according to the present invention, the high temperature fluid passage inlet and the low temperature fluid passage outlet are formed at one end of the heat exchanger in the passage direction, and the high temperature fluid passage is formed at the other end in the passage direction. Since the outlet and the inlet for the low temperature fluid passage are formed, the high temperature fluid and the low temperature fluid can flow in mutually opposite directions to improve heat exchange efficiency. Further, since both ends of the first heat transfer plate and the second heat transfer plate in the flow path direction are cut into a chevron shape and one of the two end edges of the chevron shape is opened to form an inlet and an outlet, a high temperature fluid is obtained. The flow passages of the passage and the low temperature fluid passage are formed smoothly, and the passage cross-sectional areas of the inlet and the outlet are sufficiently secured to minimize the occurrence of pressure loss, and the inlet and the outlet are easily separated. Mixing of hot and cold fluids can be avoided. Further, since the partition plate is joined to the apex of the chevron, it is possible to minimize the reduction of the flow passage cross-sectional area of the inlet and the outlet by the partition plate.
The area of the joint between the heat transfer plate and the second heat transfer plate and the partition plate can be minimized to reduce the possibility of fluid leakage.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガスタービンエンジンの全体側面図FIG. 1 is an overall side view of a gas turbine engine.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】図2の3−3線拡大断面図(燃焼ガス通路の断
面図)
FIG. 3 is an enlarged sectional view taken along line 3-3 of FIG. 2 (a sectional view of a combustion gas passage).

【図4】図2の4−4線拡大断面図(エアー通路の断面
図)
FIG. 4 is an enlarged sectional view taken along line 4-4 of FIG. 2 (a sectional view of an air passage);

【図5】図3の5−5線拡大断面図5 is an enlarged sectional view taken along line 5-5 of FIG.

【図6】図5の6部拡大図FIG. 6 is an enlarged view of part 6 of FIG.

【図7】図3の7−7線拡大断面図FIG. 7 is an enlarged sectional view taken along line 7-7 of FIG. 3;

【図8】図7の8部拡大図FIG. 8 is an enlarged view of part 8 of FIG.

【図9】図3の9−9線拡大断面図9 is an enlarged sectional view taken along line 9-9 of FIG.

【図10】折り板の展開図FIG. 10 is a development view of a folding plate

【図11】熱交換器の要部斜視図FIG. 11 is a perspective view of a main part of the heat exchanger.

【図12】燃焼ガス及びエアーの流れを示す模式図FIG. 12 is a schematic diagram showing the flow of combustion gas and air.

【図13】本発明の第2実施例に係る、前記12に対応
する模式図
FIG. 13 is a schematic diagram corresponding to the above-mentioned 12 according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 燃焼ガス通路(高温流体通路) 5 エアー通路(低温流体通路) 6 アウターケーシング(第1端板) 7 インナーケーシング(第2端板) 8 エンドプレート(仕切り板) 10 エンドプレート(仕切り板) 11 燃焼ガス通路入口(高温流体通路入口) 12 燃焼ガス通路出口(高温流体通路出口) 15 エアー通路入口(低温流体通路入口) 16 エアー通路出口(低温流体通路出口) 21 折り板素材 L1 山折り線(第1折り線) L2 谷折り線(第2折り線) S1 第1伝熱板 S2 第2伝熱板 4 Combustion gas passage (high temperature fluid passage) 5 Air passage (low temperature fluid passage) 6 Outer casing (first end plate) 7 Inner casing (second end plate) 8 End plate (partition plate) 10 End plate (partition plate) 11 Combustion gas passage inlet (high temperature fluid passage inlet) 12 Combustion gas passage outlet (high temperature fluid passage outlet) 15 Air passage inlet (low temperature fluid passage inlet) 16 Air passage outlet (low temperature fluid passage outlet) 21 Folded plate material L1 mountain fold line ( First fold line) L2 Valley fold line (second fold line) S1 First heat transfer plate S2 Second heat transfer plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の第1伝熱板(S1)及び複数の第
2伝熱板(S2)を第1折り線(L1)及び第2折り線
(L2)を介して交互に連設してなる折り板素材(2
1)を該第1、第2折り線(L1,L2)においてつづ
ら折り状に折り曲げ、隣接する第1折り線(L1)間の
隙間を該第1折り線(L1)と第1端板(6)との接合
により閉塞するとともに、隣接する第2折り線(L2)
間の隙間を該第2折り線(L2)と第2端板(7)との
接合により閉塞し、隣接する前記第1伝熱板(S1)及
び第2伝熱板(S2)間に高温流体通路(4)及び低温
流体通路(5)を交互に形成してなる熱交換器におい
て、 第1伝熱板(S1)及び第2伝熱板(S2)の流路方向
両端部を2つの端縁を有する山形に切断し、高温流体通
路(4)の流路方向一端部において前記2つの端縁の一
方を閉塞して他方を開放することにより高温流体通路入
口(11)を形成するとともに、高温流体通路(4)の
流路方向他端部において前記2つの端縁の一方を閉塞し
て他方を開放することにより高温流体通路出口(12)
を形成し、更に低温流体通路(5)の流路方向他端部に
おいて前記2つの端縁の他方を閉塞して一方を開放する
ことにより低温流体通路入口(15)を形成するととも
に、低温流体通路(5)の流路方向一端部において前記
2つの端縁の他方を閉塞して一方を開放することにより
低温流体通路出口(16)を形成し、且つ流路方向一端
側の山形の頂点部分に仕切り板(8)を接合して前記高
温流体通路入口(11)及び低温流体通路出口(16)
間を仕切るとともに、流路方向他端側の山形の頂点部分
に仕切り板(10)を接合して前記低温流体通路入口
(15)及び高温流体通路出口(12)間を仕切ったこ
とを特徴とする熱交換器。
1. A plurality of first heat transfer plates (S1) and a plurality of second heat transfer plates (S2) are alternately arranged via a first fold line (L1) and a second fold line (L2). Folding plate material (2
1) is folded in a zigzag shape at the first and second folding lines (L1, L2), and a gap between the adjacent first folding lines (L1) is set to the first folding line (L1) and the first end plate (6). ) And the second fold line (L2) adjacent to the second fold line
The gap between them is closed by joining the second folding line (L2) and the second end plate (7), and a high temperature is generated between the adjacent first heat transfer plate (S1) and second heat transfer plate (S2). In the heat exchanger in which the fluid passages (4) and the low temperature fluid passages (5) are alternately formed, the first heat transfer plate (S1) and the second heat transfer plate (S2) are provided with two end portions in the flow passage direction. A high temperature fluid passage inlet (11) is formed by cutting into a chevron shape having an edge and closing one of the two edges and opening the other at one end of the high temperature fluid passage (4) in the flow path direction. A hot fluid passage outlet (12) by closing one of the two edges and opening the other at the other end of the hot fluid passage (4) in the flow direction.
And closing the other of the two edges at the other end of the low-temperature fluid passageway (5) in the flow path direction and opening one of the two edges, thereby forming the low-temperature fluid passage inlet (15). A low-temperature fluid passage outlet (16) is formed by closing the other of the two edges and opening one of the two edges at one end of the passage (5) in the flow path direction, and a mountain-shaped apex portion on one end side in the flow direction. A high temperature fluid passage inlet (11) and a low temperature fluid passage outlet (16)
In addition to partitioning the space, a partition plate (10) is joined to the apex portion of the mountain shape on the other end side in the flow direction to partition the low temperature fluid passage inlet (15) and the high temperature fluid passage outlet (12). Heat exchanger to.
JP7193208A 1995-07-28 1995-07-28 Heat exchanger Pending JPH0942869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193208A JPH0942869A (en) 1995-07-28 1995-07-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193208A JPH0942869A (en) 1995-07-28 1995-07-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0942869A true JPH0942869A (en) 1997-02-14

Family

ID=16304106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193208A Pending JPH0942869A (en) 1995-07-28 1995-07-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0942869A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500945A (en) * 1980-07-07 1982-05-27
JPS6060592U (en) * 1983-09-27 1985-04-26 株式会社日阪製作所 Plate heat exchanger
JPH04254170A (en) * 1991-01-31 1992-09-09 Nippondenso Co Ltd Multiunit type refrigerant evaporator
JPH0658690A (en) * 1992-08-07 1994-03-04 Nippondenso Co Ltd Lamination plate type heat-exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57500945A (en) * 1980-07-07 1982-05-27
JPS6060592U (en) * 1983-09-27 1985-04-26 株式会社日阪製作所 Plate heat exchanger
JPH04254170A (en) * 1991-01-31 1992-09-09 Nippondenso Co Ltd Multiunit type refrigerant evaporator
JPH0658690A (en) * 1992-08-07 1994-03-04 Nippondenso Co Ltd Lamination plate type heat-exchanger

Similar Documents

Publication Publication Date Title
JPH0942865A (en) Heat exchanger
WO1998033030A1 (en) Heat exchanger
EP0933608B1 (en) Heat exchanger
JP3685890B2 (en) Heat exchanger
JPH10206067A (en) Supporting structure for heat-exchanger
JPH10122768A (en) Heat exchanger
JPH0942869A (en) Heat exchanger
JPH0942867A (en) Heat exchanger
JP3400192B2 (en) Heat exchanger
JPH0942866A (en) Heat exchanger
JPH10122764A (en) Heat exchanger
JP3689204B2 (en) Heat exchanger
JP3923118B2 (en) Heat exchanger
JP3685888B2 (en) Heat exchanger
JP3685889B2 (en) Heat exchanger
JP3715044B2 (en) Heat exchanger
JPH10206044A (en) Heat exchanger
JPH10206043A (en) Heat exchanger
WO1998016788A1 (en) Heat exchanger
JPH10122766A (en) Heat exchanger