JPH11312784A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH11312784A
JPH11312784A JP11842898A JP11842898A JPH11312784A JP H11312784 A JPH11312784 A JP H11312784A JP 11842898 A JP11842898 A JP 11842898A JP 11842898 A JP11842898 A JP 11842898A JP H11312784 A JPH11312784 A JP H11312784A
Authority
JP
Japan
Prior art keywords
capacitance
ratio
elements
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11842898A
Other languages
Japanese (ja)
Inventor
Fuminori Hashimoto
史則 橋本
Kenichi Komaba
賢一 駒場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11842898A priority Critical patent/JPH11312784A/en
Publication of JPH11312784A publication Critical patent/JPH11312784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a pair of capacitance devices to be controlled in capacitance and shortened in development period by a method, wherein a small capacitive device for control is connected to the capacitive devices and set trimmable. SOLUTION: Capacitive devices Ca and Cb are formed in an island region, the control capacitance element Cx are provided adjacent to the devices Ca and Cb. The capacitance elements Ca and Cb and the control capacitance elements Cx are connected in parallel with connection electrodes 11. A pattern of capacitance elements Ca and Cb is designed so as to realize a prescribed capacitance ratio of Ca to Cb, including the control capacitance element Cx. When the capacitance elements Ca and Cb is broken in a prescribed capacitance ratio, the connection electrodes 11 of the control capacitance elements Cx are cut off to control the capacitance elements Ca and Cb in capacitance. If the result of adjustment is satisfactory, the connection electrodes 11 are changed in pattern, and a semiconductor integrated circuit device of this constitution is put in production.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集積回路内に組み
込まれ、回路的な容量値の比を得るための容量素子を組
み込んだ半導体集積回路装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device incorporated in an integrated circuit and incorporating a capacitance element for obtaining a circuit capacitance ratio.

【0002】[0002]

【従来の技術】半導体集積回路装置に組み込まれた集積
回路網において、例えばアクティブフィルタ回路を複数
個内蔵し、これらの特性のペア性が必要な場合に、前記
フィルタ回路に含まれる容量素子の特性のペア性が重要
視される場合がある。
2. Description of the Related Art In an integrated circuit network incorporated in a semiconductor integrated circuit device, for example, a plurality of active filter circuits are incorporated, and when a pair of these characteristics is required, the characteristics of a capacitive element included in the filter circuit are required. In some cases, the importance of pairing is important.

【0003】図3(A)にBIP型集積回路において用
いられる容量素子の一例を示した。図中、1はP型の半
導体基板、2はP型の分離領域、3は分離領域2で囲ま
れたN型層からなる島領域、4は島領域3の表面に形成
されたN型の下部電極領域、5は酸化膜、6はシリコン
窒化膜等の誘電体薄膜、7はアルミの上部電極、8は下
部電極の取り出し電極である。容量値は、誘電体薄膜6
が下部電極4の表面に接している面積で概略決定され、
この面積は、下部電極4を被覆する酸化膜5を除去した
開口部5aの面積に等しくなる。
FIG. 3A shows an example of a capacitive element used in a BIP type integrated circuit. In the figure, 1 is a P-type semiconductor substrate, 2 is a P-type isolation region, 3 is an island region composed of an N-type layer surrounded by the isolation region 2, and 4 is an N-type island formed on the surface of the island region 3. A lower electrode region, 5 is an oxide film, 6 is a dielectric thin film such as a silicon nitride film, 7 is an aluminum upper electrode, and 8 is a lower electrode extraction electrode. The capacitance value is the dielectric thin film 6
Is roughly determined by the area in contact with the surface of the lower electrode 4,
This area is equal to the area of the opening 5a from which the oxide film 5 covering the lower electrode 4 has been removed.

【0004】例えば、1:3の容量比を得る場合は、図
3(B)に示すように、容量素子Caの開口部5aの面
積に対して容量素子Cbの開口部5aの面積を3倍の面
積でパターン設計することが多かった。例えば容量素子
Caを5pFとし、容量素子Cbを15pFとすれば、
両者の比を1:3に設計できる。尚、図3(A)は図3
(B)のAA線断面図である。
For example, to obtain a capacitance ratio of 1: 3, as shown in FIG. 3B, the area of the opening 5a of the capacitor Cb is three times the area of the opening 5a of the capacitor Ca. In many cases, patterns were designed with the area of For example, if the capacitance element Ca is 5 pF and the capacitance element Cb is 15 pF,
The ratio between the two can be designed to be 1: 3. Incidentally, FIG.
FIG. 3B is a sectional view taken along line AA of FIG.

【0005】[0005]

【発明が解決しようとする課題】上述の容量素子は、誘
電体薄膜6によって決定される容量の他に、島領域3
(埋め込み層9)と基板1との接合容量C1、島領域3
と分離領域2との接合容量C2とが不可避的に接続され
る構造である。特に下部電極領域4として島領域3と同
じ導電型の拡散領域を使用すると、本来の容量に対して
並列に接続されるので、接合容量C1、C2の値は直接
本来の容量に影響が出る。
The above-described capacitance element has an island region 3 in addition to the capacitance determined by the dielectric thin film 6.
(Embedding layer 9) and junction capacitance C1 between substrate 1 and island region 3
This is a structure in which the junction capacitance C2 of the isolation region 2 is inevitably connected. In particular, when a diffusion region of the same conductivity type as that of the island region 3 is used as the lower electrode region 4, the connection is made in parallel with the original capacitance, so that the values of the junction capacitances C1 and C2 directly affect the original capacitance.

【0006】このような影響を抱えたままで図3(B)
に示すようなパターン設計を行うと、前記接合容量C
1、C2を形成するPN接合の面積の比が設計した容量
比と同じにはならないので、その結果、容量値の比が崩
れるという現象があった。即ち、酸化膜5の開口部5a
の面積を1:3に設計しても、これらを収納している島
領域3のPN接合面積の比は1:3にはならず、この影
響で、例えば5pF:16pF等のようにずれが生じる
のである。
[0006] With such an effect, FIG.
When the pattern design shown in FIG.
1. Since the ratio of the area of the PN junction forming C2 does not become the same as the designed capacitance ratio, there is a phenomenon that the ratio of the capacitance values collapses. That is, the opening 5a of the oxide film 5
Is designed to be 1: 3, the ratio of the PN junction area of the island regions 3 accommodating them is not 1: 3, and due to this effect, a deviation such as 5 pF: 16 pF is caused. It will happen.

【0007】従来は、これらのずれを、先ず試作品を開
発し、実測データを基にして開口部5bの面積を調整
し、改めて試作するというような手法を取っていた。し
かしながら、酸化膜5のパターニング工程は、製造工程
の比較的中盤に位置し、そのため変更を加えてもそのロ
ットが完成するまでに更に長い期間を費やすことにな
り、開発時間が長くなるという欠点があった。尚、製造
上のばらつきの影響を受けて容量値の値が変動しても、
容量素子CA、CBの容量値の比は崩れないことを、ペ
ア性が良いと称している。
Conventionally, a method has been adopted in which a prototype is developed first, the area of the opening 5b is adjusted based on the actually measured data, and the prototype is newly produced. However, the patterning process of the oxide film 5 is located relatively in the middle of the manufacturing process, so that even if a change is made, a longer time is required until the lot is completed, and the development time is longer. there were. It should be noted that even if the capacitance value fluctuates due to the influence of manufacturing variations,
The fact that the ratio of the capacitance values of the capacitance elements CA and CB does not collapse is referred to as good pairing.

【0008】[0008]

【課題を解決するための手段】本発明はかかる従来の課
題に鑑みなされたもので、第1の容量素子と第2の容量
素子とで容量の比を得る半導体集積回路装置において、
前記第1と第2の容量素子の一方または両方に、前記第
1と第2の容量素子の値よりは小さい値を持つ調整用容
量素子を複数個並列接続し、前記調整用容量素子の接続
を切断することで前記第1と第2の容量素子の容量比を
調整できるように構成したことを特徴とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is directed to a semiconductor integrated circuit device which obtains a capacitance ratio between a first capacitance element and a second capacitance element.
Connecting one or both of the first and second capacitive elements with a plurality of adjusting capacitive elements having a value smaller than the values of the first and second capacitive elements in parallel, and connecting the adjusting capacitive elements. Is cut so that the capacitance ratio of the first and second capacitance elements can be adjusted.

【0009】[0009]

【発明の実施の形態】以下に本発明の一実施の形態を図
面を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】図1において、第1の容量素子Caと第2
の容量素子Cbとが隣接して配置され、その各々に、隣
接して調整用容量素子Cxが配置されている。容量素子
Ca、Cbと調整用容量素子Cxは各々が図3に示した
断面構造と同じ構造を持ち、電気的に分離された島領域
3内に個々に収納されている。
In FIG. 1, a first capacitive element Ca and a second
Are arranged adjacent to each other, and an adjusting capacitance element Cx is arranged adjacent to each of them. The capacitance elements Ca and Cb and the adjustment capacitance element Cx each have the same structure as the cross-sectional structure shown in FIG. 3 and are individually housed in electrically isolated island regions 3.

【0011】各容量素子Ca、Cbと調整用容量素子C
xとは、上部電極7に接続される電極配線11によって
並列に接続されている。電極配線は、例えば3層アルミ
配線であるとすると、第3層目の配線層、つまり最も上
層に位置する配線層で形成されている。これらの容量素
子Ca、Cb、Cxの下部電極4は接地電位GNDに接
続されている。
Each of the capacitance elements Ca and Cb and the adjustment capacitance element C
x is connected in parallel by an electrode wiring 11 connected to the upper electrode 7. Assuming that the electrode wiring is, for example, a three-layer aluminum wiring, the electrode wiring is formed of a third wiring layer, that is, a wiring layer located at the uppermost layer. The lower electrodes 4 of these capacitive elements Ca, Cb, Cx are connected to the ground potential GND.

【0012】調整用の容量素子Cxは、例えば1pHの
最小設計単位の容量値を持つように設計される。この容
量値は、酸化膜5の開口部5aの面積と、誘電体薄膜6
の誘電率と膜厚とによって制御される。この例では、容
量素子Caに1個の調整用容量素子Cxが接続されてお
り、容量素子Caの値が4pFであるとすると、総和の
容量値は5pFとなる。容量素子Cbには3個の調整用
容量素子Cxが接続されており、容量素子Cbの値が1
2pFであるとすると、総和の容量値は5pFとなる。
これで、5:15=1:3の容量比が得られる。試作ロ
ット完成後、容量素子Ca、Cbの個々の値を測定し、
両者の比が崩れたことが判明したとする。例えば、容量
素子Caが設計値5pF(総和の容量値で)であるのに
対して仕上がりが4pF、容量素子Cbが設計値15p
F(総和の容量値で)で仕上がりが13pFであったと
する。これでは4pF:13pF=1:3.25とな
り、ペア性が崩れたことが明白である。
The capacitance element Cx for adjustment is designed to have a capacitance value of, for example, the minimum design unit of 1 pH. This capacitance value depends on the area of the opening 5 a of the oxide film 5 and the dielectric thin film 6.
Is controlled by the dielectric constant and the film thickness. In this example, assuming that one adjustment capacitance element Cx is connected to the capacitance element Ca and the value of the capacitance element Ca is 4 pF, the total capacitance value is 5 pF. The capacitance element Cb is connected to three adjustment capacitance elements Cx, and the value of the capacitance element Cb is 1
Assuming 2 pF, the total capacitance value is 5 pF.
This gives a capacity ratio of 5: 15 = 1: 3. After the completion of the prototype lot, the individual values of the capacitance elements Ca and Cb were measured,
Suppose that it turns out that the ratio of both has collapsed. For example, while the capacitance element Ca has a design value of 5 pF (with the total capacitance value), the finish is 4 pF, and the capacitance element Cb has a design value of 15 pF.
Assume that the finish is 13 pF in F (in the total capacitance value). In this case, 4 pF: 13 pF = 1: 3.25, and it is clear that the pairing property has been lost.

【0013】ここで、レーザートリミングによって接続
電極11を切断し、調整用容量素子Cxを分離すること
で容量値の調整を行う。上記の例では、容量素子Cbに
連結された1個の調整用容量素子Cxを分離する事によ
り、4pF:12pF=1:3の比を得るのである。こ
の状態で再度測定試験を行い、良好な結果が得られれ
ば、接続電極11を切断した3層目配線のマスク変更を
行う。そして、3層目のアルミ配線のパターニング直前
で止めていたロットを前記変更したマスクで製造する。
この方法であれば、修正から完成品ができるまでの期間
を大幅に短縮することができる。
The capacitance value is adjusted by cutting the connection electrode 11 by laser trimming and separating the adjustment capacitance element Cx. In the above example, a ratio of 4 pF: 12 pF = 1: 3 is obtained by separating one adjusting capacitive element Cx connected to the capacitive element Cb. In this state, a measurement test is performed again. If a good result is obtained, the mask of the third-layer wiring from which the connection electrode 11 is cut is changed. Then, a lot stopped immediately before patterning of the third-layer aluminum wiring is manufactured using the changed mask.
With this method, the period from modification to completion of the finished product can be greatly reduced.

【0014】接続されない調整用容量素子CXは単なる
ダミーとなる。例えば、調整用容量素子CXの個数を、
容量比の値にあわせた比(この例では、1:3=1個:
3個)にあわせておくことにより、島領域3で発生する
接合容量C1、C2の面積比もこれに対応するので、ペ
ア性の確保に寄与することができる。
The adjustment capacitance element CX not connected is merely a dummy. For example, the number of the adjusting capacitive elements CX is
A ratio according to the value of the capacity ratio (in this example, 1: 3 = 1 piece:
3), the area ratio of the junction capacitances C1 and C2 generated in the island region 3 corresponds to this, so that it is possible to contribute to ensuring pairing.

【0015】図2は本発明の第2の実施の形態を示すも
のである。先の実施の形態は、容量値を調整すること、
または調整用容量素子CXの接合容量の面積比を容量比
に合致させることは可能であるが、本体である容量素子
Ca、Cbの接合容量C1、C2の面積比をあわせるこ
とはできない。そこで本実施例では、最小トリミング単
位(例えば1pH)の単位容量素子Cyを並列接続する
ことで、容量素子Ca、Cbを構成する。容量値が5:
15であれば、単位容量素子Cyを5個並べて容量素子
Ca、単位容量素子Cyを15個並べて容量素子Cbと
し、各々を接続電極11で共通電極12、13に接続す
る。単位容量素子Cyは各々が島領域3に収納されてい
る。
FIG. 2 shows a second embodiment of the present invention. The previous embodiment adjusts the capacitance value,
Alternatively, the area ratio of the junction capacitance of the adjustment capacitance element CX can be matched with the capacitance ratio, but the area ratio of the junction capacitances C1 and C2 of the main body capacitance elements Ca and Cb cannot be matched. Therefore, in the present embodiment, the capacitance elements Ca and Cb are configured by connecting the unit capacitance elements Cy of the minimum trimming unit (for example, 1 pH) in parallel. Capacity value is 5:
If it is 15, five unit capacitance elements Cy are arranged to form a capacitance element Ca, and fifteen unit capacitance elements Cy are arranged to form a capacitance element Cb, and each is connected to the common electrodes 12 and 13 by the connection electrode 11. Each of the unit capacitance elements Cy is housed in the island region 3.

【0016】斯かる構成であれば、開口部5aの面積で
決まる容量値の比に加えて、島領域3に不可避的に発生
する接合容量C1、C2の面積比までもを、設計した容
量比の値に設定できる。そのため、製造ばらつき等によ
る容量値の変化が容量素子Ca、Cbに完全に同様に現
れるので、ペア性のばらつきには影響しない構成とする
ことができる。しかも、接続電極11を切断することで
容量値のトリミングができるので、変更が極めて容易で
ある。
With such a configuration, in addition to the ratio of the capacitance value determined by the area of the opening 5a, the area ratio of the junction capacitances C1 and C2 inevitably generated in the island region 3 is determined by the designed capacitance ratio. Can be set to Therefore, a change in the capacitance value due to a manufacturing variation or the like appears completely in the capacitive elements Ca and Cb in the same manner, so that a configuration that does not affect the variation in the pairing property can be achieved. Moreover, since the capacitance value can be trimmed by cutting the connection electrode 11, the change is extremely easy.

【0017】[0017]

【発明の効果】以上に説明したとおり、本発明によれ
ば、容量値のペア性を要求される素子に対して調整用容
量素子Cxを付加したことにより、容量値のトリミング
が可能となる。そのため、試作品でペア性が崩れている
ことが判明しても、容量値を調整する事により設計した
とおりの容量比を即座に実現でき、しかもその結果によ
る影響を即座に実測することができる。また、調整が製
造工程における終盤付近に実施できるので、その直前で
止めていたロットを使用して設計変更・製造することに
より、即座に製品を出荷することができる。
As described above, according to the present invention, the trimming of the capacitance value becomes possible by adding the adjusting capacitance element Cx to the element requiring the pairing of the capacitance values. Therefore, even if it turns out that the pairing is broken in the prototype, it is possible to immediately achieve the designed capacity ratio by adjusting the capacitance value, and immediately measure the effect of the result. . In addition, since the adjustment can be performed near the end of the manufacturing process, the product can be shipped immediately by changing the design and manufacturing using the lot stopped immediately before.

【0018】また、第2の実施の形態によれば、トリミ
ング用の容量素子だけを並列接続して容量比を得ている
ので、島領域3の接合容量C1、C2の比も容量比にあ
わせることができ、容量値のペア性を更に改善できる利
点を有する。
Further, according to the second embodiment, since only the trimming capacitance elements are connected in parallel to obtain the capacitance ratio, the ratio of the junction capacitances C1 and C2 of the island region 3 is also adjusted to the capacitance ratio. This has the advantage that the pairing of the capacitance values can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するための平面図である。FIG. 1 is a plan view for explaining the present invention.

【図2】本発明の第2の実施の形態を説明するための平
面図である。
FIG. 2 is a plan view for explaining a second embodiment of the present invention.

【図3】従来例を説明するための(A)断面図、(B)
平面図である。
3A is a cross-sectional view for explaining a conventional example, and FIG.
It is a top view.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の容量素子と第2の容量素子とで容
量の比を得る半導体集積回路装置において、 前記第1と第2の容量素子の一方または両方に、前記第
1と第2の容量素子の値よりは小さい値を持つ調整用容
量素子を複数個並列接続し、 前記調整用容量素子の接続を切断することで前記第1と
第2の容量素子の容量比を調整できるように構成したこ
とを特徴とする半導体集積回路装置。
1. A semiconductor integrated circuit device for obtaining a capacitance ratio between a first capacitor and a second capacitor, wherein one or both of the first and second capacitors are provided with the first and second capacitors. A plurality of adjustment capacitance elements having a value smaller than the value of the capacitance element are connected in parallel, and the capacitance ratio of the first and second capacitance elements can be adjusted by disconnecting the connection of the adjustment capacitance element. A semiconductor integrated circuit device characterized in that:
【請求項2】 前記第1または第2の容量素子と前記調
整用容量素子との接続が多層配線のうち最も上部の配線
層で接続され、該最も上部の配線層を切断するように構
成したことを特徴とする請求項1記載の半導体集積回路
装置。
2. The multi-layer wiring according to claim 1, wherein the connection between the first or second capacitance element and the adjustment capacitance element is connected to an uppermost wiring layer of the multilayer wiring and cut off the uppermost wiring layer. 2. The semiconductor integrated circuit device according to claim 1, wherein:
【請求項3】 前記第1と第2の容量素子及び前記調整
用容量素子の各々が、電気的に分離された島領域に形成
されていることを特徴とする請求項1記載の半導体集積
回路装置。
3. The semiconductor integrated circuit according to claim 1, wherein each of the first and second capacitors and the adjustment capacitor is formed in an electrically isolated island region. apparatus.
【請求項4】 第1と第2の容量素子と、前記調整用の
容量素子とが、全て同じ容量値を持つように構成されて
いることを特徴とする請求項1記載の半導体集積回路装
置。
4. The semiconductor integrated circuit device according to claim 1, wherein the first and second capacitance elements and the capacitance element for adjustment all have the same capacitance value. .
JP11842898A 1998-04-28 1998-04-28 Semiconductor integrated circuit device Pending JPH11312784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11842898A JPH11312784A (en) 1998-04-28 1998-04-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11842898A JPH11312784A (en) 1998-04-28 1998-04-28 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH11312784A true JPH11312784A (en) 1999-11-09

Family

ID=14736410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11842898A Pending JPH11312784A (en) 1998-04-28 1998-04-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH11312784A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130181B2 (en) 2003-07-15 2006-10-31 Sanyo Electric Co., Ltd. Semiconductor device
US7141864B2 (en) 2003-07-15 2006-11-28 Sanyo Electric Co, Ltd. Grouped capacitive element
CN1297005C (en) * 2003-07-15 2007-01-24 三洋电机株式会社 Semiconductor device
JP2008522504A (en) * 2004-11-30 2008-06-26 スーパー・コンダクター・テクノロジーズ・インコーポレーテッド System and method for tuning a filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130181B2 (en) 2003-07-15 2006-10-31 Sanyo Electric Co., Ltd. Semiconductor device
US7141864B2 (en) 2003-07-15 2006-11-28 Sanyo Electric Co, Ltd. Grouped capacitive element
CN1297003C (en) * 2003-07-15 2007-01-24 三洋电机株式会社 Semiconductor device and bleeder circuit
CN1297005C (en) * 2003-07-15 2007-01-24 三洋电机株式会社 Semiconductor device
CN1297004C (en) * 2003-07-15 2007-01-24 三洋电机株式会社 Semiconductor device and bleeder circuit
KR100682437B1 (en) * 2003-07-15 2007-02-15 산요덴키가부시키가이샤 Semiconductor device and voltage divider circuit
JP2008522504A (en) * 2004-11-30 2008-06-26 スーパー・コンダクター・テクノロジーズ・インコーポレーテッド System and method for tuning a filter

Similar Documents

Publication Publication Date Title
US8330251B2 (en) Semiconductor device structure for reducing mismatch effects
WO2010059337A1 (en) Integrated capacitor with alternating layered segments
KR100568450B1 (en) On-chip bypass capacitor and method of manufacturing the same
US20100237465A1 (en) Capacitor and a method of manufacturing a capacitor
KR100395182B1 (en) Electronic components with thin film structure with passive elements
JPH11312784A (en) Semiconductor integrated circuit device
TW200910576A (en) Metal-insulator-metal capacitor and method for manufacturing the same
JP2000311964A (en) Semiconductor device
JP3177971B2 (en) Semiconductor device having resistance element
KR100526867B1 (en) Capacitor and manufacturing method thereof
KR100644526B1 (en) Method of fabricating embossing-typed capacitor
JP2508301B2 (en) Semiconductor integrated circuit
JPH04111462A (en) Semiconductor device
US8796813B2 (en) Method for controlling electrical property of passive device during fabrication of integrated component and related integrated component
KR101159112B1 (en) Variable capacitance capacitor and method for fabricating the same
KR100672684B1 (en) Capacitor and method for fabricating the same
JPH03203212A (en) Compound chip parts and manufacture thereof
KR100682437B1 (en) Semiconductor device and voltage divider circuit
KR100475730B1 (en) Variable Capacitors and Manufacturing Methods
JPS63166256A (en) Semiconductor device and manufacture thereof
US6627936B2 (en) Semiconductor device and method of producing the same
JPS6348186B2 (en)
KR20100059276A (en) Manufacturing method of polysilicon-insulator-polysilicon capacitor for semiconductor device
JP3730031B2 (en) Method for manufacturing passive element for integrated circuit
US7130181B2 (en) Semiconductor device