JPH04111462A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04111462A
JPH04111462A JP23113890A JP23113890A JPH04111462A JP H04111462 A JPH04111462 A JP H04111462A JP 23113890 A JP23113890 A JP 23113890A JP 23113890 A JP23113890 A JP 23113890A JP H04111462 A JPH04111462 A JP H04111462A
Authority
JP
Japan
Prior art keywords
connection
layer
conductive layer
capacitive element
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23113890A
Other languages
Japanese (ja)
Inventor
Yuji Segawa
裕司 瀬川
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23113890A priority Critical patent/JPH04111462A/en
Publication of JPH04111462A publication Critical patent/JPH04111462A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance an area efficiency and reduce a chip size by laying out a connection terminal of each conductor layer so that its connection position may be arranged at least on a pair of diagonal line in terms of a capacity device formed by clamping an insulation layer with two conductor layers and preventing their connection positions from being lapped. CONSTITUTION:Conductor layers 1 and 2 form a capacity device by clamping an insulation layer 3 as if it were a sandwich. The position at which each conductor layer is connected with a connection terminal is laid out on the conductor layer 1 as marked with 8-1 and 8-2, and on the conductor layer 2 as marked with 9-1 and 9-2. More specifically, two corners out of the four corners on the conductor layer are properly selected so that each connection point on the conductor layers 1 and 2 may not be lapped. The selection of any connection position with the connections terminals to use is properly determined by the structure of the capacity device. For example, it is possible to use such locations as marked with 8-1 or 9-1 or 8-2 and 9-1. The terminal of the capacity device is arranged based on these connection positions so that it may be used as a single device or as a plurality of devices connected in parallel or in series.

Description

【発明の詳細な説明】 〔概要〕 面積効率の良い容量素子を含む半導体装置に関し、 面積効率の良い複数の容量素子により大容量値を得ると
き、簡易に正確な大容量値が得られるような半導体装置
を提供することを目的とし、2層の第1の導電層及び第
2の導電層に絶縁層を挟んで形成した容量素子を含む半
導体装置において、前記容量素子の前記第1及び第2の
導電層の接続端子は、その接続位置を各々少なくとも1
組の対角線上に配置し、且つ上下に重ならないように構
成する。
[Detailed Description of the Invention] [Summary] Regarding a semiconductor device including a capacitive element with good area efficiency, when obtaining a large capacitance value using a plurality of capacitive elements with good area efficiency, the present invention provides a method for easily obtaining an accurate large capacitance value. The purpose of providing a semiconductor device is to provide a semiconductor device including a capacitive element formed between two layers of a first conductive layer and a second conductive layer with an insulating layer sandwiched between the first and second conductive layers of the capacitive element. The connection terminals of the conductive layer each have at least one connection position.
They are arranged diagonally across the set and configured so that they do not overlap vertically.

〔産業上の利用分野〕[Industrial application field]

本発明は面積効率の良い容量素子を含む半導体装置に関
する。
The present invention relates to a semiconductor device including a capacitive element with high area efficiency.

2層の導電層の間を絶縁層で絶縁して得られる容量素子
は、大容量値を得るように並列接続するとき、面積効率
が悪かった。そのため配線領域を減らしたり、配線がパ
ターン上を通らないようにすることで製造し易い容量素
子を含む半導体装置を開発することが要望された。
A capacitive element obtained by insulating two conductive layers with an insulating layer has poor area efficiency when connected in parallel to obtain a large capacitance value. Therefore, it has been desired to develop a semiconductor device including a capacitive element that is easy to manufacture by reducing the wiring area and preventing the wiring from passing over the pattern.

〔従来の技術〕[Conventional technology]

半導体製造技術により得られる容量素子は、2層の導電
層(例えばポリシリコン)の間を絶縁層で絶縁すること
により得ている。第5図はそのような容量素子の断面図
を示している。第5図において、1.2は例えばポリシ
リコンの導電層、3は絶縁層、4,5は接続孔(コンタ
クトホール)、6は被覆層を示している。導電層1.2
の間が絶縁層3によって絶縁されているから、導電層1
゜2の間の間隔に逆比例し、対向面積に比例する容量値
が得られる。容量素子として使用するとき、端子を必要
とするから、導電層1,2と接触した接続孔4.5が、
被覆層6の上部分において、他の容量素子と接触してい
る配線と接続される。コンタクトホール4,5は通常は
被覆層6を貫通して設けた孔に導電性材料を詰めて形成
する。この容量素子の導電層パターンは通常正方形状に
なっているが、コンタクトホールを両側に設け、且つ容
量値を増大するように並列接続するときには、第6図の
上面図に示すように接続線を用いる。第6図においては
、第5図の被覆層6を取り除き示している。7−1.7
−2は接続線であり、半導体装置として製造するときは
、被覆層6と路間−の水平面上に配線層として作られる
Capacitive elements obtained by semiconductor manufacturing technology are obtained by insulating two conductive layers (for example, polysilicon) with an insulating layer. FIG. 5 shows a cross-sectional view of such a capacitive element. In FIG. 5, 1.2 is a conductive layer made of, for example, polysilicon, 3 is an insulating layer, 4 and 5 are contact holes, and 6 is a covering layer. Conductive layer 1.2
Since the space between the conductive layer 1 and the conductive layer 1 is insulated by the insulating layer 3,
A capacitance value is obtained that is inversely proportional to the spacing between .degree. 2 and proportional to the facing area. When used as a capacitive element, a terminal is required, so the connection hole 4.5 in contact with the conductive layers 1 and 2 is
The upper portion of the covering layer 6 is connected to wiring that is in contact with other capacitive elements. The contact holes 4 and 5 are usually formed by penetrating the covering layer 6 and filling the holes with a conductive material. The conductive layer pattern of this capacitive element is usually square, but when contact holes are provided on both sides and the capacitance is increased in parallel to increase the capacitance, connecting lines are connected as shown in the top view of Figure 6. use In FIG. 6, the covering layer 6 of FIG. 5 is removed. 7-1.7
Reference numeral 2 denotes a connection line, which is formed as a wiring layer on the horizontal plane between the covering layer 6 and the path when the semiconductor device is manufactured.

第7図は第5図の他の構成を示す横断面図である。第8
図は第7図の上面図であって、第5図・第6図と同一符
号は同様のものを示す。第7図において下側の導電層2
に対して、上側の導電層1は小面積となっている。導電
層1.2パターンの上側に配線層か設けられる特徴を有
する。
FIG. 7 is a cross-sectional view showing another configuration of FIG. 5. 8th
The figure is a top view of FIG. 7, and the same reference numerals as in FIGS. 5 and 6 indicate the same parts. In FIG. 7, the lower conductive layer 2
In contrast, the upper conductive layer 1 has a small area. It has a feature that a wiring layer is provided above the conductive layer 1 and 2 patterns.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

第5図の構成によると、端子を設けるため導電層パター
ンの一部が外部へ突出しているから、半導体装置として
活用している面積の割合いか小さくなる。即ち、面性効
率か悪いという欠点かある。
According to the configuration shown in FIG. 5, a portion of the conductive layer pattern protrudes to the outside in order to provide a terminal, so that the proportion of the area utilized as a semiconductor device is reduced. In other words, it has the disadvantage of poor surface efficiency.

第7図の構成によると、隣接の容量素子との中間におい
て、配線層か被覆層のすぐ上を通ってから、容量素子と
容量素子との中間を通り、再び容量素子間の被覆層の上
を通ることのため、段差か大きく、断線し易いという欠
点かあった。
According to the configuration shown in FIG. 7, it passes directly over the wiring layer or covering layer between adjacent capacitive elements, passes between the capacitive elements, and then passes over the covering layer between the capacitive elements again. Because the wires pass through the wire, there are large steps and wire breaks easily.

第9図は、上下方向を水平方向よりも拡大したスケール
で示す第8図の容量素子の断面図である。
FIG. 9 is a cross-sectional view of the capacitive element of FIG. 8, showing the vertical direction on a scale larger than the horizontal direction.

配線層は大きな段差を有して次の容量素子と接続してい
る。被覆層から上部導電層・絶縁層を経て、下部導電層
に到る距離が短いため、上部導電層の端子部分の電界は
、絶縁層にピンホールか生じていると、それを通して下
部導電層に到達して、ショートを起こし易いという欠点
があった。
The wiring layer has a large step and is connected to the next capacitive element. Since the distance from the covering layer to the lower conductive layer via the upper conductive layer/insulating layer is short, the electric field at the terminal part of the upper conductive layer will pass through the pinhole and reach the lower conductive layer if there is a pinhole in the insulating layer. It has the disadvantage that it is easy to reach the target and cause a short circuit.

本発明の目的は前述の欠点を除き、面積効率の良い複数
の容量素子により大容量値を得るとき、簡易に正確な大
容量値が得られるような半導体装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device which eliminates the above-mentioned drawbacks and allows a simple and accurate large capacitance value to be obtained when obtaining a large capacitance value using a plurality of area-efficient capacitor elements.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理構成を示す図である。第1図にお
いて、1,2は導電層、3は絶縁層で、1.2.3は全
体を半導体製造技術で製造し、容量素子を形成する。8
−1.8−2.9−1.9−2は容量素子の接続端子と
の接続位置を示す。
FIG. 1 is a diagram showing the basic configuration of the present invention. In FIG. 1, 1 and 2 are conductive layers, 3 is an insulating layer, and 1, 2, and 3 are entirely manufactured using semiconductor manufacturing technology to form a capacitive element. 8
-1.8-2.9-1.9-2 indicates the connection position with the connection terminal of the capacitive element.

2層の第1の導電層l及び第2の導電層2に絶縁層3を
挟んで形成した容量素子を含む半導体装置において、本
発明は下記の構成としている。即ち、 前記容量素子の前記第1及び第2の導電層の接続端子は
、その接続位置8−1.8−2.9−1.9−2を各々
少な(とも1組の対角線上に配置し、且つ上下に重なら
ないように構成する。
In a semiconductor device including a capacitive element formed between two layers of a first conductive layer 1 and a second conductive layer 2 with an insulating layer 3 sandwiched therebetween, the present invention has the following configuration. That is, the connection terminals of the first and second conductive layers of the capacitive element have their connection positions 8-1. and configured so that they do not overlap vertically.

〔作用〕[Effect]

導電層1.2は第1図に示すように絶縁層3をサンドウ
ィッチ状に挟んで容量素子を形成する。
As shown in FIG. 1, the conductive layer 1.2 sandwiches the insulating layer 3 to form a capacitive element.

各導電層が接続端子と接続する位置は、導電層・1上に
計1.8−2の口印、導電層2上に9−1.9−2の・
印で示すように配置されている。即ち導電層1゜2上の
各接続位置が上下に重ならないように、導電層の四隅の
うちの二つを適宜使用している。接続端子との接続位置
の何れを使用するかは、容量素子の構成により適宜に使
用できる。例えば8−1゜9−1の2箇所を使用するこ
と、或いは8−2.9−1を使用することも出来る。こ
れらの接続位置により容量素子の端子を構成させて単一
素子として接続使用したり、複数の素子を並列または直
列に接続して使用する。
The positions where each conductive layer connects to the connection terminal are a total of 1.8-2 marks on conductive layer 1 and 9-1, 9-2 marks on conductive layer 2.
They are located as indicated by the marks. That is, two of the four corners of the conductive layer are used as appropriate so that the connection positions on the conductive layer 1.2 do not overlap vertically. Which of the connection positions with the connection terminals to use can be used as appropriate depending on the configuration of the capacitive element. For example, two locations of 8-1° and 9-1 may be used, or 8-2.9-1 may be used. Terminals of the capacitive element are configured depending on these connection positions, and the capacitive element is connected and used as a single element, or a plurality of elements are connected in parallel or in series.

〔実施例〕〔Example〕

第2図は本発明の実施例の構成を示す図である。 FIG. 2 is a diagram showing the configuration of an embodiment of the present invention.

第2図において第1図と同一符号は同様のものを示して
いる。第1図と異なる点は導電層1. 2のパターンの
形状のみであって、各導電層の二隅は外部端子との接続
位置を設けないため、その部分で各導電層共に平面的に
角を削っている。なお接続位置の所定のものを使用する
ことは第1図と同様である。
In FIG. 2, the same reference numerals as in FIG. 1 indicate the same components. The difference from FIG. 1 is that the conductive layer 1. Since the two corners of each conductive layer do not have connection positions with external terminals, the corners of each conductive layer are rounded off in a plane at the two corners of each conductive layer. Note that the use of predetermined connection positions is the same as in FIG. 1.

第3図は本発明の他の実施例として、第2図の構成の容
量素子を2個接続する場合の構成を示す平面図である。
FIG. 3 is a plan view showing a configuration in which two capacitive elements having the configuration shown in FIG. 2 are connected as another embodiment of the present invention.

第3図Aは並列接続の場合で、上側導電層と下側導電層
の形を1点鎖線において線対称に設け、図示するように
端子・同士、四同士を接続線11.12により接続し、
端子8−1.9−2から見ると、個別層の容量値の2倍
の容量値か得られる。
Figure 3A shows the case of parallel connection, in which the upper conductive layer and the lower conductive layer are arranged symmetrically with respect to the dashed dotted line, and the terminals are connected to each other and to each other by connection lines 11 and 12 as shown in the figure. ,
When viewed from the terminals 8-1 and 9-2, a capacitance value twice that of the individual layer is obtained.

第3図Bは直列接続の場合で、各素子の導電層の形とし
て同形のものを横に並べ、端子8−3・と9−10とを
接続線13により接続し、端子8−1.93から見ると
、個別素子の容量値の172の容量値か得られる。
FIG. 3B shows a case of series connection, in which the conductive layers of the respective elements are arranged horizontally, and the terminals 8-3 and 9-10 are connected by the connecting wire 13, and the terminals 8-1 and 9-10 are connected in series. 93, a capacitance value of 172 of the capacitance value of the individual element is obtained.

次に第4図は本発明の更に他の実施例として個別素子の
種々な倍数値を得る配列を示す図である。
Next, FIG. 4 is a diagram showing an arrangement for obtaining various multiple values of individual elements as yet another embodiment of the present invention.

第4図Aは平面図、第4図Bは横断面図を示す。FIG. 4A shows a plan view, and FIG. 4B shows a cross-sectional view.

第4図Bにおいて、1.2はポリシリコンの導電層、3
はSiO□の絶縁層、4,5は接続孔(コンタクトホー
ル)、6とSiO□の被覆層、7−1.7−2−はAf
の接続線(配線層)を示す。第4図Aに破線で区切って
示すように、容量Iは容量値Cの単位素子を2個並列接
続しているから、合成容量は2Cとなる。容量■は4個
並列接続して4Cを得ている。同様に容量■は6Cを、
容量■は8Cを得ている。容量I、容量■と示す字の下
側の2本の端子から見ると所定の容量値となることを示
している。
In FIG. 4B, 1.2 is a conductive layer of polysilicon, 3
is an insulating layer of SiO□, 4 and 5 are connection holes (contact holes), 6 and a covering layer of SiO□, 7-1.7-2- is Af
The connection line (wiring layer) is shown. As shown by broken lines in FIG. 4A, the capacitance I is made up of two unit elements having a capacitance value C connected in parallel, so the combined capacitance is 2C. Four capacitors (■) are connected in parallel to obtain 4C. Similarly, the capacity ■ is 6C,
The capacity ■ is 8C. When viewed from the two terminals below the letters Capacity I and Capacity ■, it shows that a predetermined capacitance value is obtained.

また容量■と容量■とを更に並列接続して10Cを得る
こともてきる。導電層1,2の材質として拡散層やAf
層を用いることが出来る。配線層や絶縁層の材質も他の
ものに変えることが出来ることは明らかである。
It is also possible to obtain 10C by further connecting capacitors (2) and (2) in parallel. The material of the conductive layers 1 and 2 is a diffusion layer or Af.
Layers can be used. It is clear that the materials of the wiring layers and insulating layers can also be changed to other materials.

〔発明の効果〕〔Effect of the invention〕

このようにして本発明によると、容量素子を複数接続す
るときに、使用する配線層の位置・長さが導電層パター
ンの関連で小さくなっているから、面積効率を高く維持
でき、チップサイズを縮小することに有効である。LS
Iとして製造する時にコストを低下させることに寄与で
きる。また容量のパターンを点対称に作るとき、マスク
の位置合わせにずれが生じても容量値に与える影響が少
なく、容量特性のばらつきを少なくてきる。したかって
スイッチド・キャパシタ・フィルタのように相対的容量
比を高度に要求する回路を形成するとき容易に対応でき
るから、製造上も極めて有効である。
In this way, according to the present invention, when connecting multiple capacitive elements, the position and length of the wiring layer used are reduced in relation to the conductive layer pattern, so area efficiency can be maintained high and chip size can be reduced. It is effective in reducing the size. L.S.
This can contribute to lowering costs when manufacturing as I. Furthermore, when the capacitor pattern is made point-symmetrically, even if a misalignment occurs in the mask alignment, the capacitance value is less affected, and variations in capacitance characteristics are reduced. Therefore, it can be easily applied when forming a circuit that requires a high relative capacitance ratio, such as a switched capacitor filter, and is extremely effective in terms of manufacturing.

第2図は本発明の実施例の構成を示す図、第3図は本発
明の他の実施例の構成を示す図、第4図は本発明の更に
他の実施例の構成を示す図、第5図は従来の半導体容量
素子の構成を示す図、第6図は第5図の素子を並列接続
する構成を示す図、 第7図は第5図の他の構成を示す図、 第8図は第7図の上面図、 第9図は第8図の縦断面図である。
FIG. 2 is a diagram showing the configuration of an embodiment of the invention, FIG. 3 is a diagram showing the configuration of another embodiment of the invention, and FIG. 4 is a diagram showing the configuration of still another embodiment of the invention. 5 is a diagram showing the configuration of a conventional semiconductor capacitive element, FIG. 6 is a diagram showing a configuration in which the elements of FIG. 5 are connected in parallel, FIG. 7 is a diagram showing another configuration of FIG. 5, The figure is a top view of FIG. 7, and FIG. 9 is a longitudinal sectional view of FIG. 8.

1.2−・導電層 3−絶縁層 8−1.8−2.9−1.9−2・・・接続端子との接
続位置特許出願人   富士通株式会社 代 理 人  弁理士 銘木栄枯
1.2-・Conductive layer 3-Insulating layer 8-1.8-2.9-1.9-2...Connection position with connection terminal Patent applicant Fujitsu Ltd. Representative Patent attorney Seiki Eika

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成を示す図、 本Y明の尼到F購成因 第 図 ツWL皆1 第 区 頭症臂) 第 図 第3図 埒来の+) 第 図 fW11tkilf+F 第 図 FIG. 1 is a diagram showing the principle configuration of the present invention, The reason behind the purchase of this book Y Ming No. figure Twl everyone 1 No. Ward cephalic arm) No. figure Figure 3 +) No. figure fW11tkilf+F No. figure

Claims (1)

【特許請求の範囲】 1、2層の第1の導電層(1)及び第2の導電層(2)
に絶縁層(3)を挟んで形成した容量素子を含む半導体
装置において、 前記容量素子の前記第1及び第2の導電層の接続端子は
、その接続位置(8−1)(8−2)(9−1)(9−
2)を各々少なくとも1組の対角線上に配置し、且つ上
下に重ならないこと を特徴とする半導体装置。 2、請求項第1項記載の容量形成の各導電層は、前記第
1または第2の導電層の接続端子の接続位置が互いに接
近するように複数近接して配置されていることを特徴と
する半導体装置。
[Claims] One or two first conductive layers (1) and second conductive layers (2)
In a semiconductor device including a capacitive element formed with an insulating layer (3) in between, connection terminals of the first and second conductive layers of the capacitive element are located at connection positions (8-1) (8-2). (9-1) (9-
2) are arranged on at least one set of diagonal lines, and do not overlap vertically. 2. A plurality of capacitor-forming conductive layers according to claim 1 are arranged close to each other such that connection positions of connection terminals of the first or second conductive layer are close to each other. semiconductor devices.
JP23113890A 1990-08-31 1990-08-31 Semiconductor device Pending JPH04111462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23113890A JPH04111462A (en) 1990-08-31 1990-08-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23113890A JPH04111462A (en) 1990-08-31 1990-08-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04111462A true JPH04111462A (en) 1992-04-13

Family

ID=16918881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23113890A Pending JPH04111462A (en) 1990-08-31 1990-08-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04111462A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106626A (en) * 1993-10-05 1995-04-21 Nec Corp Optical semiconductor device
JP2009152621A (en) * 1996-06-27 2009-07-09 Gennum Corp Multi-layer film capacitor structure and method
US8185855B2 (en) 2007-03-29 2012-05-22 Fujitsu Limited Capacitor-cell, integrated circuit, and designing and manufacturing methods
JP2017183373A (en) * 2016-03-29 2017-10-05 日本電信電話株式会社 Mim capacitance element
WO2018198330A1 (en) * 2017-04-28 2018-11-01 ゼンテルジャパン株式会社 Capacitor device and manufacturing method therefor
US10153092B2 (en) 2016-10-11 2018-12-11 Tdk Corporation Thin-film capacitor
US10319524B2 (en) 2016-10-11 2019-06-11 Tdk Corporation Thin-film capacitor
US10529495B2 (en) 2016-10-11 2020-01-07 Tdk Corporation Thin-film capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106626A (en) * 1993-10-05 1995-04-21 Nec Corp Optical semiconductor device
JP2009152621A (en) * 1996-06-27 2009-07-09 Gennum Corp Multi-layer film capacitor structure and method
US8185855B2 (en) 2007-03-29 2012-05-22 Fujitsu Limited Capacitor-cell, integrated circuit, and designing and manufacturing methods
JP2017183373A (en) * 2016-03-29 2017-10-05 日本電信電話株式会社 Mim capacitance element
US10153092B2 (en) 2016-10-11 2018-12-11 Tdk Corporation Thin-film capacitor
US10319524B2 (en) 2016-10-11 2019-06-11 Tdk Corporation Thin-film capacitor
US10529495B2 (en) 2016-10-11 2020-01-07 Tdk Corporation Thin-film capacitor
WO2018198330A1 (en) * 2017-04-28 2018-11-01 ゼンテルジャパン株式会社 Capacitor device and manufacturing method therefor
JPWO2018198330A1 (en) * 2017-04-28 2020-01-16 ゼンテルジャパン株式会社 Capacitor device and manufacturing method thereof
US11038012B2 (en) 2017-04-28 2021-06-15 AP Memory Technology Corp. Capacitor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2001127247A (en) Semiconductor device
CN100499106C (en) Semiconductor device
JP3677346B2 (en) Semiconductor devices that can be controlled by field effects
JP3407020B2 (en) Semiconductor device
US20060205111A1 (en) Method for producing chip stacks and chip stacks formed by integrated devices
JPH04111462A (en) Semiconductor device
KR20010014709A (en) Layered capacitor device
KR100773097B1 (en) Semiconductor devcie having pads
JP2003258107A5 (en)
US4697159A (en) Tuning capacitors with selectable capacitance configurations for coupling between microwave circuits
US7872293B2 (en) Capacitance cell, semiconductor device, and capacitance cell arranging method
US6445071B1 (en) Semiconductor device having an improved multi-layer interconnection structure and manufacturing method thereof
JPH03257855A (en) Semiconductor device
JPS6325716Y2 (en)
US6627936B2 (en) Semiconductor device and method of producing the same
JPH03215995A (en) Multilayer wired module
JP2613941B2 (en) Semiconductor capacitance element
JPS58225662A (en) Semiconductor device
JPS61230340A (en) Semiconductor integrated circuit device
JPS60137051A (en) Semiconductor device
JPH028772Y2 (en)
JPH02213159A (en) Capacitor
JPH02296306A (en) Inductor
KR100247911B1 (en) Semiconductor device and method of fabricating the same
JP2567121B2 (en) Semiconductor capacitance element