JPH11310458A - Glass ceramic composition, its baking and glass ceramic composite material - Google Patents

Glass ceramic composition, its baking and glass ceramic composite material

Info

Publication number
JPH11310458A
JPH11310458A JP10119425A JP11942598A JPH11310458A JP H11310458 A JPH11310458 A JP H11310458A JP 10119425 A JP10119425 A JP 10119425A JP 11942598 A JP11942598 A JP 11942598A JP H11310458 A JPH11310458 A JP H11310458A
Authority
JP
Japan
Prior art keywords
glass
ceramic
weight
ceramic composition
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10119425A
Other languages
Japanese (ja)
Other versions
JP3860336B2 (en
Inventor
Shigeru Taga
茂 多賀
Hiroyuki Takahashi
裕之 高橋
Yoshitaka Yoshida
美隆 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP11942598A priority Critical patent/JP3860336B2/en
Priority to EP99114996A priority patent/EP1074524B1/en
Priority to US09/365,028 priority patent/US6207905B1/en
Publication of JPH11310458A publication Critical patent/JPH11310458A/en
Application granted granted Critical
Publication of JP3860336B2 publication Critical patent/JP3860336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49805Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers the leads being also applied on the sidewalls or the bottom of the substrate, e.g. leadless packages for surface mounting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49149Assembling terminal to base by metal fusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass ceramic composite material which is good in not only ceramic characteristic but also matching property with an Ag-based or an Au-based conductor material. SOLUTION: This glass ceramic composition is used for forming a printed circuit board and the composition comprises 40-60 wt.% glass and 40-60 wt.% ceramic and the glass has a composition comprising 40-60 wt.% SiO2 , 2-10 wt.% Al2 O3 , 1-10 wt.% B2 O3 , 3-5 wt.% Na2 O+K2 O, 3-15 wt.% CaO+MgO+ZnO and 15-40 wt.% PbO and does not contain Li2 O and has 650-780 deg.C softening point of glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば回路基板や
チップ部品に用いられるガラスセラミック組成物、その
焼成方法、およびガラスセラミック組成物を焼成して得
られるガラスセラミック複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass ceramic composition used for, for example, circuit boards and chip parts, a method for firing the same, and a glass ceramic composite obtained by firing the glass ceramic composition.

【0002】[0002]

【従来の技術】近年のセラミック基板の高性能化、チッ
プ部品の小型化等の要求に対しガラスセラミック基板が
実用化されつつある。その詳細な組成、製造方法等は特
公平6−97565号や特公平6−69902号等に記
載されている。
2. Description of the Related Art In recent years, glass ceramic substrates have been put into practical use in response to demands for higher performance of ceramic substrates and miniaturization of chip components. The detailed composition, production method and the like are described in JP-B-6-97565 and JP-B-6-69902.

【0003】例えば、特公平6−97565号公報の実
施例1には、ガラスセラミック組成物として、ガラスと
Al23の重量比が66:34(33.5重量%:1
7.1重量%)であり、そのうちガラスの組成がPbO
17.2重量%、B234.5重量%、SiO256.
5重量%、Al239.1重量%、CaO8.6重量
%、Na2O2.4重量%、K2O1.7重量%であり、
ガラスの変形温度が590℃、軟化点が660℃、軟化
点と変形温度との差が70℃のものが開示されており、
このガラスセラミック組成物を焼成して得られたガラス
セラミック複合体としてのテープは寸法安定性の優れた
ものであったと記載されている。
[0003] For example, in Example 1 of Japanese Patent Publication No. 6-97565, the weight ratio of glass to Al 2 O 3 is 66:34 (33.5% by weight: 1) as a glass ceramic composition.
7.1% by weight), of which the glass composition is PbO
17.2 wt%, B 2 O 3 4.5 wt%, SiO 2 56.
5 wt%, Al 2 O 3 9.1 wt%, CaO 8.6 wt%, Na 2 O 2.4 wt%, K 2 O 1.7 wt%,
A glass having a deformation temperature of 590 ° C, a softening point of 660 ° C, and a difference between the softening point and the deformation temperature of 70 ° C is disclosed,
It is described that the tape as a glass-ceramic composite obtained by firing this glass-ceramic composition had excellent dimensional stability.

【0004】また、特公平6−69902号公報の実施
例1には、ガラスセラミック組成物として、ガラス60
重量%とAl2340重量%からなり、ガラスの組成が
SiO250重量%、Al236重量%、PbO35重
量%、(MgO+CaO+SrO+BaO)5重量%、
ZnO1重量%、B230.5重量%、(Li2O+N
2O+K2O)0重量%、(TiO2+ZrO2)2.5
重量%のものが開示されており、この組成物をスラリー
化してグリーンシートとしたあと焼成して得られた基板
は抵抗強度や熱伝導率が大きく、耐熱性、耐薬品性に優
れていると記載されている。また、グリーンシート上に
スクリーン印刷によりAg−Pd導体を形成し、これを
積層した後焼成して製造したガラスセラミック複合体と
しての多層回路素子は、ハンダ濡れ性や接着強度に優れ
ていると記載されている。
[0004] Further, in Example 1 of Japanese Patent Publication No. 6-69902, glass 60 is used as a glass ceramic composition.
% By weight and 40% by weight of Al 2 O 3 , and the composition of the glass is 50% by weight of SiO 2, 6% by weight of Al 2 O 3 , 35% by weight of PbO, 5% by weight of (MgO + CaO + SrO + BaO),
ZnO 1% by weight, B 2 O 3 0.5% by weight, (Li 2 O + N
a 2 O + K 2 O) 0% by weight, (TiO 2 + ZrO 2 ) 2.5
The substrate obtained by sintering this composition into a green sheet and then firing it has high resistance strength and thermal conductivity, and is excellent in heat resistance and chemical resistance. Are listed. Moreover, it is described that a multilayer circuit element as a glass-ceramic composite manufactured by forming an Ag-Pd conductor on a green sheet by screen printing, laminating this, and then firing is excellent in solder wettability and adhesive strength. Have been.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
のガラスセラミック組成物又はガラスセラミック複合体
は、本来その内部あるいは表面に導体経路が形成され、
回路基板として使用されるものであるにもかかわらず、
各種導体材料とのマッチング性については十分に検討さ
れていなかった。
However, these glass-ceramic compositions or glass-ceramic composites essentially have conductor paths formed inside or on the surface thereof.
Despite being used as a circuit board,
The matching with various conductor materials has not been sufficiently studied.

【0006】そこで、本発明者はこの点について検討を
重ねたところ、下記の課題を見出した。即ち、ガラスの
軟化点が高すぎる場合には、グリーンシート上にAg系
又はAu系の導体回路をスクリーン印刷した後焼成を行
ったときに導体材料がセラミック中へ拡散し、セラミッ
クの絶縁抵抗や誘電率が悪化して設計どおりの性能が得
られないおそれがあった。また、ガラスの軟化点が低す
ぎる場合には、Ag系又はAu系の導体材料が十分に焼
結しないため、ガラスセラミック複合体と導体回路との
密着強度が不十分になるおそれがあった。特に問題とな
ることの1つには、導体材料と共に焼成する際の基板の
反り、変形であり、例えば100×100mm程度の大
板に10×10mm程度の個片が多数個配列されている
ような形状の基板では、この反り、歪みの発生は基板焼
成後のハンダ印刷工程、部品実装工程に致命的な欠陥と
なった。
Therefore, the present inventor has repeatedly examined this point, and found the following problem. That is, when the softening point of the glass is too high, the conductor material is diffused into the ceramic when performing firing after screen-printing an Ag-based or Au-based conductor circuit on the green sheet, and the insulation resistance and the insulation resistance of the ceramic are reduced. There is a possibility that the performance as designed may not be obtained due to deterioration of the dielectric constant. If the softening point of the glass is too low, the Ag-based or Au-based conductor material does not sinter sufficiently, and the adhesion strength between the glass ceramic composite and the conductor circuit may be insufficient. One of the particular problems is the warpage and deformation of the substrate when firing together with the conductive material. For example, a large plate of about 100 × 100 mm has many pieces of about 10 × 10 mm arranged. In the case of a substrate having an irregular shape, the occurrence of the warp and the distortion became a fatal defect in the solder printing process and the component mounting process after the substrate was fired.

【0007】本発明は上記課題に鑑みなされたものであ
り、セラミック特性が良好なばかりでなく、Ag系又は
Au系導体材料とのマッチング性も良好なガラスセラミ
ック組成物、その焼成方法及びガラスセラミック複合体
を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a glass-ceramic composition which not only has good ceramic characteristics but also has good matching with Ag-based or Au-based conductor materials, a firing method thereof, and a glass-ceramic composition. It is intended to provide a complex.

【0008】[0008]

【課題を解決するための手段、発明の実施の形態及び発
明の効果】上記課題を解決するため、第1発明のガラス
セラミック組成物は、回路基板を形成するためのグリー
ンシートに用いるガラスセラミック組成物であって、ガ
ラスとセラミックの重量比が40〜60:60〜40で
あり、前記ガラスの組成は、SiO2:40〜60重量
%、Al23:2〜10重量%、B23:1〜10重量
%、Na2O+K2O:3〜5重量%、CaO+MgO+
ZnO:3〜15重量%、PbO:15〜40重量%で
あってLi2Oを含まず、前記ガラスの軟化点が650
〜780℃であることを特徴とする。
Means for Solving the Problems, Embodiments of the Invention and Effects of the Invention In order to solve the above problems, a glass ceramic composition of the first invention is a glass ceramic composition used for a green sheet for forming a circuit board. be one, the weight ratio of glass and ceramic 40-60: a 60 to 40, wherein the composition of the glass, SiO 2: 40-60 wt%, Al 2 O 3: 2~10 wt%, B 2 O 3: 1 to 10 wt%, Na 2 O + K 2 O: 3~5 wt%, CaO + MgO +
ZnO: 3 to 15% by weight, PbO: 15 to 40% by weight, not containing Li 2 O, and the softening point of the glass is 650.
~ 780 ° C.

【0009】このガラスセラミック組成物は、マイクロ
波帯用の回路基板を形成するためのグリーンシートとし
て用いるのに好適である。また、ガラスセラミック組成
物をグリーンシート化したのちその内部あるいは表面に
Ag系又はAu系の導体を形成し該導体と共に焼成する
のに用いられるのに好適である。また、このガラスセラ
ミック組成物は、ガラスの物性として、軟化点と屈伏点
との差が95℃以上であること、ガラス転移点が520
〜620℃であることが好ましい。このガラスセラミッ
ク組成物の焼成は、酸化雰囲気下、焼成温度800〜9
30℃で行うのが好ましい。
This glass ceramic composition is suitable for use as a green sheet for forming a circuit board for a microwave band. Further, it is suitable to be used for forming an Ag-based or Au-based conductor inside or on the surface after forming the glass ceramic composition into a green sheet and firing it together with the conductor. The glass-ceramic composition has a physical property that the difference between the softening point and the sag point is 95 ° C. or more and the glass transition point is 520.
It is preferable that it is -620 degreeC. This glass ceramic composition is fired in an oxidizing atmosphere at a firing temperature of 800 to 9
It is preferably carried out at 30 ° C.

【0010】第2発明のガラスセラミック複合体は、ガ
ラスセラミック組成物をグリーンシート化したのち焼成
することにより得られる回路基板用のものであり、ガラ
スとセラミックの重量比が40〜60:60〜40であ
り、ガラスの組成及び物性は第1発明と同様のものであ
る。このガラスセラミック複合体は、マイクロ波帯用の
回路基板として好適であり、ガラスセラミック組成物を
グリーンシート化したのちその内部あるいは表面にAg
系又はAu系の導体を形成し該導体と共に焼成して形成
してもよい。このガラスセラミック複合体は、第1発明
と同様、ガラスの物性として、軟化点と屈伏点との差が
95℃以上であること、ガラス転移点が520〜620
℃であることが好ましい。
The glass-ceramic composite of the second invention is for a circuit board obtained by firing a glass-ceramic composition after forming it into a green sheet, and the weight ratio of glass to ceramic is 40-60: 60-. 40, and the composition and physical properties of the glass are the same as those of the first invention. This glass-ceramic composite is suitable as a circuit board for a microwave band, and after a glass-ceramic composition is formed into a green sheet, Ag is added to the inside or surface thereof.
Or an Au-based conductor may be formed and fired together with the conductor. As in the first invention, the glass-ceramic composite has, as physical properties of glass, a difference between a softening point and a yield point of 95 ° C. or more, and a glass transition point of 520 to 620.
C. is preferred.

【0011】ところで、低抵抗導体を使用した回路基板
としては、従来よりCu導体を使用したものが知られて
いる。このCu導体を使用した回路基板においては、基
板材料として、例えばFR−4等が用いられる。しか
し、このFR−4等に用いられる耐熱エポキシ樹脂は、
マイクロ波帯における誘電体損失が大きいため信号の伝
送損失も大きく、マイクロ波帯で使用する基板用途には
このような樹脂は適さないという問題があった。このた
め、マイクロ波帯用としては導体損失と誘電体損失の双
方が小さいものが要求され、この点でAg系又はAu系
導体材料を使用した、本発明のガラスセラミック複合体
が優れている。
As a circuit board using a low-resistance conductor, a circuit board using a Cu conductor is conventionally known. In a circuit board using this Cu conductor, for example, FR-4 or the like is used as a board material. However, the heat-resistant epoxy resin used for FR-4 and the like is as follows:
Since the dielectric loss in the microwave band is large, the signal transmission loss is also large, and there is a problem that such a resin is not suitable for a substrate used in the microwave band. For this reason, for the microwave band, it is required that both the conductor loss and the dielectric loss are small, and in this regard, the glass-ceramic composite of the present invention using an Ag-based or Au-based conductor material is excellent.

【0012】本発明のガラスセラミックス組成物及びガ
ラスセラミックス複合体において、ガラスとセラミック
の重量比を40〜60:60〜40としたのは、以下の
理由による。即ち、ガラスとセラミックの重量全体を1
00としたときのガラスの含有量が40未満では、ガラ
スセラミック組成物を焼成してガラスセラミック複合体
を形成する際にセラミック粒子のまわりを覆うガラス成
分量が不足し、良好な濡れが形成できず、基板の見かけ
気孔率がゼロにならず、基板強度が低下し、一方、ガラ
スの含有量が60を越えると、十分な曲げ強度が得られ
ないからである。なお、ガラスセラミック組成物又はガ
ラスセラミック複合体はガラスとセラミックのみで構成
されていてもよいし、その他の成分を含んでいてもよ
い。また、好ましい数値範囲はガラスとセラミックの重
量比が45〜55:55〜45である。また、セラミッ
クとしては、アルミナ、ムライト、チタニア、ジルコニ
アなどを単体でもしくは適宜混合して用いることができ
る。
The weight ratio of glass to ceramic in the glass-ceramic composition and glass-ceramic composite of the present invention is set to 40-60: 60-40 for the following reasons. That is, the total weight of glass and ceramic is 1
When the glass content is less than 40 when the glass content is set to 00, the amount of the glass component covering around the ceramic particles when the glass ceramic composition is fired to form the glass ceramic composite is insufficient, and good wetting can be formed. This is because the apparent porosity of the substrate does not become zero and the substrate strength is reduced. On the other hand, if the glass content exceeds 60, sufficient bending strength cannot be obtained. The glass ceramic composition or the glass ceramic composite may be composed of only glass and ceramic, or may contain other components. A preferable numerical range is such that the weight ratio of glass to ceramic is 45 to 55:55 to 45. In addition, as the ceramic, alumina, mullite, titania, zirconia, or the like can be used alone or in an appropriate mixture.

【0013】ガラスの成分につき、SiO2はガラスの
ネットワークフォーマーでありガラスの基本組成である
が、このSiO2の含有量を40〜60重量%としたの
は、40重量%未満では軟化点が650℃よりも低くな
る傾向にあり、60重量%を越えると軟化点が780℃
よりも高くなる傾向にあり十分な強度が得られないから
である。
Regarding the components of glass, SiO 2 is a network former of glass and is the basic composition of glass. The reason that the content of SiO 2 is 40 to 60% by weight is that the softening point is less than 40% by weight. Tends to be lower than 650 ° C., and if it exceeds 60% by weight, the softening point is 780 ° C.
This is because the strength tends to be higher than this, and sufficient strength cannot be obtained.

【0014】ガラスの成分につき、Al23はガラスの
溶解性あるいはガラス特性の耐水性を向上させるもので
あるが、このAl23の含有量を2〜10重量%とした
のは、2重量%未満ではガラス溶融時に失透するおそれ
があり、10重量%を越えると軟化点が高くなりすぎる
からである。
With respect to the glass components, Al 2 O 3 improves the solubility of the glass or the water resistance of the glass properties, but the content of Al 2 O 3 is 2 to 10% by weight. If the amount is less than 2% by weight, the glass may be devitrified at the time of melting, and if it exceeds 10% by weight, the softening point becomes too high.

【0015】ガラスの成分につき、B23はガラスのフ
ラックス成分として軟化点を下げる役割を果たすが、こ
のB23の含有量を1〜10重量%としたのは、1重量
%未満では軟化点が高くなる傾向にあり、10重量%を
越えるとAg系又はAu系の導体材料と共に焼成する際
にガラスが流動しすぎてガラスセラミック複合体中へA
g又はAuが拡散するおそれがあるからである。
Regarding the components of glass, B 2 O 3 plays a role of lowering the softening point as a flux component of glass. However, the content of B 2 O 3 is set to 1 to 10% by weight, but less than 1% by weight. , The softening point tends to be high, and if it exceeds 10% by weight, the glass flows too much when fired with an Ag-based or Au-based conductor material, so that A enters the glass ceramic composite.
This is because g or Au may be diffused.

【0016】ガラスの成分につき、(Na2O+K2O)
はガラスの軟化点を下げる役割を果たすが、この(Na
2O+K2O)の含有量を3〜5重量%としたのは、3重
量%未満では軟化点が高くなる傾向にあり、5重量%を
越えるとガラスセラミック複合体の絶縁抵抗を低下させ
るからである。また、同じアルカリ金属酸化物としては
Li2Oも同様の作用を奏するが、このLi2Oはイオン
半径が小さくガラス中を動きやすいため、Ag系又はA
u系の導体材料と共に焼成する際にガラスセラミック複
合体中へAg又はAuが拡散しやすくなる。このため、
本発明ではガラス成分中にLi2Oを含まない。
With respect to the components of the glass, (Na 2 O + K 2 O)
Plays a role in lowering the softening point of glass.
2 O + K 2 O) of the content was 3-5% by weight of at less than 3% by weight tends to softening point becomes high, since reducing the insulation resistance of the glass ceramic composite exceeds 5 wt% It is. As the same alkali metal oxide, Li 2 O has a similar effect. However, since Li 2 O has a small ionic radius and easily moves in glass, it is difficult to use Ag or A
Ag or Au is easily diffused into the glass ceramic composite when firing with the u-based conductor material. For this reason,
In the present invention, Li 2 O is not contained in the glass component.

【0017】ガラスの成分につき、(CaO+MgO+
ZnO)はガラスの熱膨張係数を調整すると共に軟化点
を下げる役割を果たすが、この(CaO+MgO+Zn
O)の含有量を3〜15重量%としたのは、3重量%未
満では上記役割を十分果たさず、15重量%を越えると
失透したりガラス化が困難になったりするからである。
With respect to the components of the glass, (CaO + MgO +
ZnO) adjusts the thermal expansion coefficient of the glass and lowers the softening point, and this (CaO + MgO + Zn)
The reason why the content of O) is 3 to 15% by weight is that if it is less than 3% by weight, the above-mentioned role is not sufficiently fulfilled, and if it exceeds 15% by weight, devitrification or vitrification becomes difficult.

【0018】ガラスの成分につき、PbOはガラスのフ
ラックス成分としてガラスの軟化点を下げる役割を果た
すが、このPbOの含有量を15〜40重量%としたの
は、この範囲を外れると逆に軟化点が高くなる傾向にあ
るからである。ここで、ガラス成分中のB23、(Na
2O+K2O)、PbOはいずれも軟化点を下げる役割を
果たすため、これらの成分を単独で用いて軟化点を下げ
ることも考えられる。しかし、B23あるいは(Na2
O+K2O)のいずれかを単独で用いて軟化点を十分に
下げようとすると、多量過ぎて別の不具合(前者ではA
g又はAuのセラミックへの拡散、後者では絶縁抵抗の
低下)が発生してしまうので、不適当である。また、P
bOを単独で用いて軟化点を十分に下げようとしても、
PbOは多量すぎると逆に軟化点が上昇するため、不適
当である。したがって、軟化点が650〜780℃の範
囲になるように、B23、(Na2O+K2O)、PbO
の各成分を上述の数値範囲内で適宜定める必要がある。
Regarding the glass components, PbO plays a role of lowering the softening point of the glass as a flux component of the glass. However, the content of PbO is set to 15 to 40% by weight. This is because the points tend to be higher. Here, B 2 O 3 , (Na
2 O + K 2 O), to serve PbO neither lower the softening point, it is conceivable to lower the softening point using these components alone. However, B 2 O 3 or (Na 2
O + K 2 O) alone, if it is attempted to sufficiently lower the softening point, the amount is too large and another defect (A in the former case) occurs.
It is not suitable because g or Au diffuses into the ceramic, and in the latter case, the insulation resistance decreases. Also, P
Even if bO alone is used to lower the softening point sufficiently,
If PbO is too large, the softening point rises conversely, which is inappropriate. Accordingly, B 2 O 3 , (Na 2 O + K 2 O), PbO are used so that the softening point is in the range of 650 to 780 ° C.
Need to be appropriately determined within the above numerical range.

【0019】本発明のガラスセラミックス複合体におい
て、軟化点を650〜780℃としたが、この数値範囲
に限定したのは、これらの物性が下限値を下回るとAg
系又はAu系の導体材料と共に焼成する際に温度が十分
上がらず導体材料が十分焼結しないおそれがあり、これ
らの物性が上限値を上回ると焼成温度が高くなりすぎて
Ag又はAuがガラスセラミック複合体に拡散するおそ
れがあるからである。
In the glass-ceramic composite of the present invention, the softening point was set at 650 to 780 ° C., but the reason why the softening point was limited to this numerical range is that when these physical properties are lower than the lower limit, Ag is lowered.
When sintering with an aluminum-based or Au-based conductor material, the temperature may not rise sufficiently and the conductor material may not be sufficiently sintered. If these physical properties exceed the upper limit, the sintering temperature becomes too high and Ag or Au becomes glass ceramic. This is because there is a risk of diffusion into the complex.

【0020】また、軟化点と屈伏点(変形温度ともい
う)との差は95℃以上が好ましい。その理由はこの差
が95℃未満ではAg系又はAu系導体材料と共に焼成
した際の反りが大きくなるからである。特にこの差は9
5〜120℃であることが好ましい。なお、同様の理由
から、屈伏点は555〜685℃、ガラス転移点は52
0〜620℃の範囲であることが好ましい。
The difference between the softening point and the sagging point (also called the deformation temperature) is preferably 95 ° C. or more. The reason is that if this difference is less than 95 ° C., the warpage when firing together with the Ag-based or Au-based conductor material becomes large. Especially this difference is 9
Preferably it is 5 to 120 ° C. For the same reason, the yield point is 555-685 ° C., and the glass transition point is 52
It is preferably in the range of 0 to 620 ° C.

【0021】本発明のガラスセラミックス複合体は、ガ
ラス成分にPbOを含むため、焼成は酸性雰囲気下(例
えば大気雰囲気下)で行うことが好ましい。還元雰囲気
下で焼成した場合には、PbOが還元されて絶縁抵抗の
低下を引き起こすおそれがあるからである。また、この
ように酸性雰囲気下で焼成を行う場合には、導体材料と
して酸化されにくいAg系又はAu系を用いることが好
ましく、例えばAg系導体材料としてはAg−Pd、A
g−Ptなどを用いることができる。更に、焼成しよう
とするグリーンシート中の有機物を蒸発(焼失)させる
と共に、導体材料とのマッチング性(ガラスセラミック
と導体材料を焼成した際の両者の焼結性、Ag又はAu
の拡散防止等)を考慮すると、焼成温度は800〜93
0℃とすることが好ましい。
Since the glass-ceramic composite of the present invention contains PbO in the glass component, it is preferable that the firing be performed in an acidic atmosphere (for example, in an air atmosphere). This is because when firing in a reducing atmosphere, PbO may be reduced to cause a decrease in insulation resistance. In the case where firing is performed in such an acidic atmosphere, it is preferable to use an Ag-based or Au-based material that is hardly oxidized as the conductor material. For example, Ag-Pd, A
g-Pt or the like can be used. Further, the organic matter in the green sheet to be fired is evaporated (burned out), and at the same time, the matching property with the conductor material (the sinterability of both the glass ceramic and the conductor material when the conductor material is fired, Ag or Au).
Taking into account the prevention of the diffusion of
The temperature is preferably set to 0 ° C.

【0022】[0022]

【実施例】[実施例1〜5、比較例1〜5]表1のガラ
ス組成となるように各種成分を混合し、これを溶融後固
化、粉砕し、平均粒径3〜5μmのガラス粉末を得た。
そして、このガラス粉末と、平均粒径3μmのα−アル
ミナとを表1の割合で混合し、実施例1〜5、比較例1
〜5のガラスセラミック組成物を得た。次いで、各ガラ
スセラミック組成物100重量部に対して、バインダ成
分としてアクリル系の樹脂を10重量部、可塑剤として
ジブチルフタレートを5重量部、さらに有機溶剤として
メチルエチルケトンを適量添加して混合し、スラリーに
した後、ドクターブレード法によりグリーンシート(厚
み0.3mm)を作製した。
EXAMPLES [Examples 1 to 5, Comparative Examples 1 to 5] Various components were mixed so as to obtain the glass compositions shown in Table 1, and then melted, solidified and pulverized to obtain glass powder having an average particle size of 3 to 5 μm. I got
Then, this glass powder and α-alumina having an average particle size of 3 μm were mixed at the ratio shown in Table 1, and Examples 1 to 5 and Comparative Example 1 were mixed.
~ 5 glass ceramic compositions were obtained. Next, 10 parts by weight of an acrylic resin as a binder component, 5 parts by weight of dibutyl phthalate as a plasticizer, and an appropriate amount of methyl ethyl ketone as an organic solvent were added to 100 parts by weight of each glass ceramic composition, and mixed and mixed. After that, a green sheet (thickness: 0.3 mm) was produced by a doctor blade method.

【0023】尚、ガラス転移点、軟化点、屈伏点は、測
定器として(株)リガク製の型式:TG−DTA TA
S300を用い、試料粉末を白金製のアンプルに30〜
50mg入れ、室温から1200℃までを10℃/mi
nにて昇温することにより行った。
The glass transition point, softening point and sagging point were measured by Rigaku Corporation as TG-DTA TA.
Using S300, put the sample powder in a platinum ampoule
50 mg, 10 ° C / mi from room temperature to 1200 ° C
The temperature was raised at n.

【0024】[0024]

【表1】 [Table 1]

【0025】・セラミック特性試験 得られたグリーンシートを表1に記載した焼成温度にて
焼成してガラスセラミック複合体基板とし、該基板につ
いて下記の項目を評価した。その結果を表2に示した。
Ceramic Property Test The obtained green sheet was fired at the firing temperature shown in Table 1 to obtain a glass-ceramic composite substrate, and the following items were evaluated for the substrate. The results are shown in Table 2.

【0026】見かけ気孔率:JIS−C2141(電
気絶縁用セラミック材料試験方法)に準じて試験を行っ
た。 曲げ強度:JIS−R1601(ファインセラミック
スの曲げ強さ試験方法)にて3点曲げ試験を行った。
Apparent porosity: The test was carried out in accordance with JIS-C2141 (Test method for ceramic materials for electrical insulation). Bending strength: A three-point bending test was performed according to JIS-R1601 (Bending strength test method for fine ceramics).

【0027】ヤング率:JIS−R1602の超音波
パルス法にて行った。 誘電率、誘電損失:基板を厚み0.63に研磨加工し
た後、誘電体共振器摂動法にて測定した。 耐電圧:JIS−C2110にて行った。
Young's modulus: This was measured by the ultrasonic pulse method of JIS-R1602. Dielectric constant and dielectric loss: After the substrate was polished to a thickness of 0.63, it was measured by a dielectric resonator perturbation method. Withstand voltage: Performed according to JIS-C2110.

【0028】熱膨張率:JIS−R1618にて行っ
た。 熱伝導率:JIS−R1611にて行った。 ・同時焼結性試験 Agメタライズペーストを次のようにして調製した。即
ち、平均粒径3μmのAg粉末100重量部に対して、
ガラスセラミック組成物中のガラスと同じ組成のガラス
粉末を2重量部添加し、これに有機バインダとしてエチ
ルセルロース及び溶剤としてブチルカルビトールを定量
添加し、3本ロールにて混合することにより、調製し
た。得られたペーストを、縦50×横50×厚み0.3
(mm)のグリーンシートに縦30×横30×厚み20
(μm)の条件にてスクリーン印刷した。これを表2中
に記載のあるそれぞれのセラミックの焼成温度にて焼成
してAg粉末とセラミックを同時に焼結させ、焼成後の
ガラスセラミック複合体基板の反りを測定した。またそ
の際の基板の着色を目視にて評価した。その結果を表2
に示した。なお、Ag拡散発生時には基板と導体との境
界部が黄色に着色した。
Thermal expansion coefficient: Measured according to JIS-R1618. Thermal conductivity: Conducted according to JIS-R1611. -Simultaneous sinterability test An Ag metallized paste was prepared as follows. That is, for 100 parts by weight of Ag powder having an average particle size of 3 μm,
A glass powder was prepared by adding 2 parts by weight of glass powder having the same composition as the glass in the glass ceramic composition, quantitatively adding ethyl cellulose as an organic binder and butyl carbitol as a solvent, and mixing with a three-roll mill. The obtained paste is vertically 50 × horizontal 50 × thickness 0.3.
(Mm) green sheet 30 × 30 × 20
(Μm) screen printing. This was fired at the firing temperature of each ceramic described in Table 2 to simultaneously sinter the Ag powder and the ceramic, and the warpage of the fired glass ceramic composite substrate was measured. The coloring of the substrate at that time was visually evaluated. Table 2 shows the results.
It was shown to. When Ag diffusion occurred, the boundary between the substrate and the conductor was colored yellow.

【0029】[0029]

【表2】 [Table 2]

【0030】・評価結果 表2から明らかなように、実施例1のガラスセラミック
組成物又はガラスセラミック複合体基板は、いずれのセ
ラミック特性も良好であり、Ag系導体材料と共に焼成
した際の反りも極めて少なくAg拡散もみられず、グリ
ーンシート、回路基板として満足のいく特性が得られ
た。
Evaluation Results As is clear from Table 2, the glass-ceramic composition or the glass-ceramic composite substrate of Example 1 has good ceramic properties, and also shows warpage when fired with an Ag-based conductor material. Very little Ag diffusion was observed, and satisfactory characteristics as a green sheet and a circuit board were obtained.

【0031】実施例2、3のガラスセラミック組成物又
はガラスセラミック複合体基板は、実施例1と比較し
て、ガラスとアルミナの重量比が異なる以外は同様であ
るが、実施例1と同様、いずれのセラミック特性も良好
であり、Ag系導体材料と共に焼成した際の反りが極め
て少なくAg拡散もみられず、グリーンシート、回路基
板として満足のいく特性が得られた。
The glass-ceramic composition or the glass-ceramic composite substrate of Examples 2 and 3 was the same as Example 1, except that the weight ratio of glass to alumina was different. All of the ceramic characteristics were good, the warpage when fired together with the Ag-based conductor material was extremely small, and no Ag diffusion was observed, and satisfactory characteristics as a green sheet and a circuit board were obtained.

【0032】実施例4、5のガラスセラミック組成物又
はガラスセラミック複合体基板は、実施例1と比較し
て、ガラス組成が異なる以外はほぼ同様であるが、実施
例1と同様、Ag系導体材料と共に焼成した際の反りが
極めて少なくAg拡散もみられなかった。なお、実施例
4は、軟化点を低下させる主成分である“B23とK2
O+Na2OとPbO”の合計量が他の実施例に比べて
少ないため、軟化点が高くなった。
The glass-ceramic compositions or glass-ceramic composite substrates of Examples 4 and 5 are almost the same as Example 1 except that the glass composition is different. The warpage when firing with the material was extremely small, and no Ag diffusion was observed. In Example 4, “B 2 O 3 and K 2, which are the main components that lower the softening point,
Since the total amount of O + Na 2 O and PbO ″ was smaller than in the other examples, the softening point was increased.

【0033】比較例1のガラスセラミック組成物又はガ
ラスセラミック複合体基板は、実施例1と比較して、ガ
ラス組成が異なる点(特にLi2Oを含む点)、およ
び、ガラス転移点Tg、屈伏点Td、軟化点Tsが共に
低いうえ(Ts−Td)が86℃と小さい点が異なる以
外はほぼ同様であるが、Ag系導体材料と共に焼成した
際のAg拡散による変色がみられ、グリーンシート、回
路基板として満足のいく特性が得られなかった。
The glass-ceramic composition or the glass-ceramic composite substrate of Comparative Example 1 was different from Example 1 in the point that the glass composition was different (particularly, the point containing Li 2 O), the glass transition point Tg, and the sag. Both the point Td and the softening point Ts are low and (Ts-Td) is almost the same except that the point is as small as 86 ° C., but discoloration due to Ag diffusion when sintering with an Ag-based conductor material is observed, and the green sheet is observed. However, satisfactory characteristics as a circuit board could not be obtained.

【0034】比較例2のガラスセラミック組成物又はガ
ラスセラミック複合体基板は、実施例1と比較して、ガ
ラス組成が異なる点(特にLi2Oを含む点)および
(Ts−Td)が92℃と小さい点が異なる以外はほぼ
同様であるが、Ag系導体材料と共に焼成した際の反り
が大きく、Ag拡散による変色もみられ、グリーンシー
ト、回路基板として満足のいく特性が得られなかった。
The glass-ceramic composition or the glass-ceramic composite substrate of Comparative Example 2 was different from Example 1 in that the glass composition was different (particularly, containing Li 2 O) and (Ts-Td) was 92 ° C. Except that the difference was small, but the warpage when firing together with the Ag-based conductor material was large, discoloration due to Ag diffusion was also observed, and satisfactory characteristics as a green sheet and a circuit board were not obtained.

【0035】比較例3、4のガラスセラミック組成物又
はガラスセラミック複合体基板は、実施例1と比較し
て、ガラスとアルミナの重量比が異なる以外はほぼ同様
であるが、ガラスが多すぎる比較例3ではセラミックの
曲げ強度が低く、ガラスが少なすぎる比較例4では見か
け気孔率がゼロにならず焼結が不十分であり、共に実用
に適さなかった。
The glass-ceramic compositions or glass-ceramic composite substrates of Comparative Examples 3 and 4 are almost the same as Example 1, except that the weight ratio of glass to alumina is different. In Example 3, the flexural strength of the ceramic was low, and the amount of glass was too small. In Comparative Example 4, the apparent porosity did not become zero and sintering was insufficient, and both were not suitable for practical use.

【0036】尚、本発明の実施の形態は、上記実施形態
に何ら限定されるものではなく、本発明の技術的範囲に
属する限り種々の形態を採り得ることはいうまでもな
い。
The embodiments of the present invention are not limited to the above-described embodiments, and it goes without saying that various forms can be adopted as long as they fall within the technical scope of the present invention.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 回路基板を形成するためのグリーンシー
トに用いるガラスセラミック組成物であって、 ガラスとセラミックとの重量比が40〜60:60〜4
0であり、 前記ガラスの組成は、 SiO2:40〜60重量%、 Al23:2〜10重量%、 B23:1〜10重量%、 Na2O+K2O:3〜5重量%、 CaO+MgO+ZnO:3〜15重量%、 PbO:15〜40重量% であってLi2Oを含まず、 前記ガラスの軟化点が650〜780℃であることを特
徴とするガラスセラミック組成物。
1. A glass-ceramic composition used for a green sheet for forming a circuit board, wherein the weight ratio of glass to ceramic is 40-60: 60-4.
0, the composition of the glass, SiO 2: 40 to 60 wt%, Al 2 O 3: 2~10 wt%, B 2 O 3: 1~10 wt%, Na 2 O + K 2 O: 3~5 wt%, CaO + MgO + ZnO: 3~15 wt%, PbO: a 15 to 40% by weight free of Li 2 O, the glass ceramic composition, wherein the softening point of the glass is six hundred and fifty to seven hundred eighty ° C..
【請求項2】 前記回路基板はマイクロ波帯用である請
求項1記載のガラスセラミック組成物。
2. The glass-ceramic composition according to claim 1, wherein the circuit board is for a microwave band.
【請求項3】 前記グリーンシートはその内部あるいは
表面にAg系又はAu系の導体を形成し該導体と共に焼
成するのに用いられる請求項1又は2記載のガラスセラ
ミック組成物。
3. The glass-ceramic composition according to claim 1, wherein said green sheet is used for forming an Ag-based or Au-based conductor inside or on a surface thereof and firing it together with said conductor.
【請求項4】 前記ガラスの軟化点と屈伏点との差が9
5℃以上であることを特徴とする請求項1〜3のいずれ
かに記載のガラスセラミック組成物。
4. The difference between the softening point and the yield point of the glass is 9
The glass-ceramic composition according to claim 1, wherein the temperature is 5 ° C. or higher.
【請求項5】 前記ガラスのガラス転移点が520〜6
20℃であることを特徴とする請求項1〜4のいずれか
に記載のガラスセラミック組成物。
5. The glass transition point of the glass is 520-6.
The glass-ceramic composition according to any one of claims 1 to 4, wherein the temperature is 20 ° C.
【請求項6】 請求項1〜5のいずれかに記載のガラス
セラミック組成物を、酸化雰囲気下、焼成温度800〜
930℃で焼成することを特徴とするガラスセラミック
組成物の焼成方法。
6. The glass ceramic composition according to claim 1, which is fired in an oxidizing atmosphere at a firing temperature of 800 to 800.
A method for firing a glass ceramic composition, comprising firing at 930 ° C.
【請求項7】 ガラスセラミック組成物をグリーンシー
ト化したのち焼成することにより得られる回路基板用の
ガラスセラミック複合体であって、 ガラスとセラミックとの重量比が40〜60:60〜4
0であり、 前記ガラスの組成は、 SiO2:40〜60重量%、 Al23:2〜10重量%、 B23:1〜10重量%、 Na2O+K2O:3〜5重量%、 CaO+MgO+ZnO:3〜15重量%、 PbO:15〜40重量% であってLi2Oを含まず、 前記ガラスの軟化点が650〜780℃であることを特
徴とするガラスセラミック複合体。
7. A glass-ceramic composite for a circuit board obtained by forming a glass-ceramic composition into a green sheet and then firing, wherein the weight ratio of glass to ceramic is 40-60: 60-4.
0, the composition of the glass, SiO 2: 40 to 60 wt%, Al 2 O 3: 2~10 wt%, B 2 O 3: 1~10 wt%, Na 2 O + K 2 O: 3~5 A glass-ceramic composite, comprising: CaO + MgO + ZnO: 3 to 15% by weight; PbO: 15 to 40% by weight; not containing Li 2 O; and the softening point of the glass is 650 to 780 ° C.
【請求項8】 前記回路基板はマイクロ波帯用である請
求項7記載のガラスセラミック複合体。
8. The glass-ceramic composite according to claim 7, wherein the circuit board is for a microwave band.
【請求項9】 前記グリーンシート化したのちその内部
あるいは表面にAg系又はAu系の導体を形成し該導体
と共に焼成することにより得られる請求項7又は8記載
のガラスセラミック組成物。
9. The glass-ceramic composition according to claim 7, which is obtained by forming an Ag-based or Au-based conductor inside or on the surface after forming the green sheet and firing the conductor together with the conductor.
【請求項10】 前記ガラスの軟化点と屈伏点との差が
95℃以上であることを特徴とする請求項7〜9のいず
れかに記載のガラスセラミック複合体。
10. The glass-ceramic composite according to claim 7, wherein a difference between a softening point and a sag point of the glass is 95 ° C. or more.
【請求項11】 前記ガラスのガラス転移点が520〜
620℃であることを特徴とする請求項7〜10のいず
れかに記載のガラスセラミック複合体。
11. The glass transition point of the glass is 520 to 520.
The glass-ceramic composite according to any one of claims 7 to 10, wherein the temperature is 620 ° C.
JP11942598A 1998-04-28 1998-04-28 Glass ceramic composite Expired - Fee Related JP3860336B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11942598A JP3860336B2 (en) 1998-04-28 1998-04-28 Glass ceramic composite
EP99114996A EP1074524B1 (en) 1998-04-28 1999-07-31 Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
US09/365,028 US6207905B1 (en) 1998-04-28 1999-08-02 Glass-ceramic composition, circuit substrate using the same and manufacture method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11942598A JP3860336B2 (en) 1998-04-28 1998-04-28 Glass ceramic composite
EP99114996A EP1074524B1 (en) 1998-04-28 1999-07-31 Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
US09/365,028 US6207905B1 (en) 1998-04-28 1999-08-02 Glass-ceramic composition, circuit substrate using the same and manufacture method thereof

Publications (2)

Publication Number Publication Date
JPH11310458A true JPH11310458A (en) 1999-11-09
JP3860336B2 JP3860336B2 (en) 2006-12-20

Family

ID=27240000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11942598A Expired - Fee Related JP3860336B2 (en) 1998-04-28 1998-04-28 Glass ceramic composite

Country Status (3)

Country Link
US (1) US6207905B1 (en)
EP (1) EP1074524B1 (en)
JP (1) JP3860336B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074524A1 (en) * 1998-04-28 2001-02-07 Ngk Spark Plug Co., Ltd Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
JP2005197285A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Multilayer ceramic substrate and its manufacturing method
CN114656261A (en) * 2022-03-28 2022-06-24 电子科技大学 LTCC microwave dielectric ceramic material with medium dielectric constant and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413620B1 (en) * 1999-06-30 2002-07-02 Kyocera Corporation Ceramic wiring substrate and method of producing the same
JP2001302280A (en) * 2000-04-19 2001-10-31 Sumitomo Chem Co Ltd Inorganic powder for compounding glass paste and glass paste using the same
JP2001339203A (en) * 2000-05-29 2001-12-07 Murata Mfg Co Ltd Dual-mode band-pass filter
US6406791B1 (en) * 2000-08-14 2002-06-18 Motorola, Inc. Multiphase dielectric composition and multilayered device incorporating the same
DE10145363A1 (en) * 2001-09-14 2003-04-10 Epcos Ag Process for producing a ceramic substrate and ceramic substrate
JP4145262B2 (en) * 2004-03-23 2008-09-03 三洋電機株式会社 Multilayer ceramic substrate
EP1775766A4 (en) * 2004-08-06 2010-06-09 Almt Corp Collective substrate, semiconductor element mounting member, semiconductor device, imaging device, light emitting diode constituting member, and light emitting diode
US8724832B2 (en) 2011-08-30 2014-05-13 Qualcomm Mems Technologies, Inc. Piezoelectric microphone fabricated on glass
US8824706B2 (en) 2011-08-30 2014-09-02 Qualcomm Mems Technologies, Inc. Piezoelectric microphone fabricated on glass
US8811636B2 (en) 2011-11-29 2014-08-19 Qualcomm Mems Technologies, Inc. Microspeaker with piezoelectric, metal and dielectric membrane
JP6297914B2 (en) * 2014-05-01 2018-03-20 日本特殊陶業株式会社 Temperature sensor and temperature sensor
JP2017199761A (en) * 2016-04-26 2017-11-02 キヤノン株式会社 Ceramic package, method for manufacturing the same, electronic component, and module
CN112500172B (en) * 2020-05-11 2021-10-01 深圳前海发维新材料科技有限公司 Application of glass composite material with high softening point, low thermal expansion coefficient, high wear resistance and low thermal conductivity in engine gas turbine
RU2753522C1 (en) * 2020-12-18 2021-08-17 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Low temperature glass ceramic material for electronic technology

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945616B2 (en) 1978-05-12 1984-11-07 旭硝子株式会社 glass composition
JPS60136294A (en) * 1983-12-23 1985-07-19 株式会社日立製作所 Ceramic multilayer wiring circuit board
JPS60235744A (en) * 1984-05-04 1985-11-22 Asahi Glass Co Ltd Composition for ceramic base
JPS60240188A (en) 1984-05-15 1985-11-29 株式会社日立製作所 Multilayer circuit board and method of producing same
US4752531A (en) 1985-03-25 1988-06-21 E. I. Du Pont De Nemours And Company Dielectric composition
US4655864A (en) * 1985-03-25 1987-04-07 E. I. Du Pont De Nemours And Company Dielectric compositions and method of forming a multilayer interconnection using same
US4654095A (en) 1985-03-25 1987-03-31 E. I. Du Pont De Nemours And Company Dielectric composition
JPS6227353A (en) * 1985-07-25 1987-02-05 Nippon Electric Glass Co Ltd Glass ceramic composite material
JP2507418B2 (en) * 1986-05-02 1996-06-12 旭硝子株式会社 Circuit board composition
US4948759A (en) * 1986-07-15 1990-08-14 E. I. Du Pont De Nemours And Company Glass ceramic dielectric compositions
JPS63107095A (en) * 1986-10-23 1988-05-12 富士通株式会社 Multilayer ceramic circuit board
US4897509A (en) * 1987-04-27 1990-01-30 Corning Incorporated Glass-ceramics for electronic packaging
JPH01179741A (en) 1988-01-12 1989-07-17 Asahi Glass Co Ltd Glass-ceramic composition
US5164342A (en) * 1988-10-14 1992-11-17 Ferro Corporation Low dielectric, low temperature fired glass ceramics
JPH0475185A (en) 1990-07-17 1992-03-10 Mitsubishi Electric Corp Input device
JP2642253B2 (en) * 1991-02-27 1997-08-20 日本特殊陶業株式会社 Glass-ceramic composite
JPH05129739A (en) 1991-10-30 1993-05-25 Asahi Glass Co Ltd Glass paste
JPH0669902A (en) 1992-08-15 1994-03-11 Iwatsu Electric Co Ltd Time division communication method for mobile body communication
JP3315182B2 (en) 1993-02-10 2002-08-19 日本山村硝子株式会社 Composition for ceramic substrate
DE69528868T2 (en) * 1994-08-19 2003-03-27 Hitachi Ltd Ceramic composition for circuit substrate and its manufacture
JP3860336B2 (en) * 1998-04-28 2006-12-20 日本特殊陶業株式会社 Glass ceramic composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074524A1 (en) * 1998-04-28 2001-02-07 Ngk Spark Plug Co., Ltd Glass-ceramic composition, circuit substrate using the same and manufacture method thereof
JP2005197285A (en) * 2003-12-26 2005-07-21 Ngk Spark Plug Co Ltd Multilayer ceramic substrate and its manufacturing method
JP4567328B2 (en) * 2003-12-26 2010-10-20 日本特殊陶業株式会社 Manufacturing method of multilayer ceramic substrate
CN114656261A (en) * 2022-03-28 2022-06-24 电子科技大学 LTCC microwave dielectric ceramic material with medium dielectric constant and preparation method thereof
CN114656261B (en) * 2022-03-28 2023-06-02 电子科技大学 Medium dielectric constant LTCC microwave dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
EP1074524B1 (en) 2005-06-15
JP3860336B2 (en) 2006-12-20
EP1074524A1 (en) 2001-02-07
US6207905B1 (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP5303552B2 (en) Conductive paste for ceramic substrate and electric circuit
JP3240271B2 (en) Ceramic substrate
JPH11310458A (en) Glass ceramic composition, its baking and glass ceramic composite material
WO2007021400A2 (en) Copper termination inks containing lead free and cadmium free glasses for capacitors
JP2002226259A (en) Composition for substrate of ceramic electronic parts, ceramic electronic parts and method for manufacturing laminated type ceramic electronic parts
JPH04231363A (en) Conductive composition containing iolite and glass
EP1505040B1 (en) Thick film dielectric compositions for use on aluminium nitride substrates
JP2800176B2 (en) Glass ceramic composition
JP3943341B2 (en) Glass ceramic composition
JP2000319066A (en) Low temperature simultaneously firing dielectric ceramic composition
JPH01252548A (en) Glass ceramic composition
JPH01179741A (en) Glass-ceramic composition
US20060009036A1 (en) High thermal cycle conductor system
JP3678260B2 (en) Glass ceramic composition
JP3890779B2 (en) Glass ceramic composition
JP4407199B2 (en) Crystallized lead-free glass, glass ceramic composition, green sheet and electronic circuit board
JP3419474B2 (en) Conductive composition and multilayer circuit board
JPH0517211A (en) Substrate material and circuit substrate
EP1509479B1 (en) Ltcc tape composition
JPS62191441A (en) Nitrogen and air burnt dielectric composition
JP2872273B2 (en) Ceramic substrate material
JP4643778B2 (en) Circuit board using glass ceramic composition and manufacturing method thereof
JP3315233B2 (en) Composition for ceramic substrate
JP3494184B2 (en) Glass ceramic composition
JPH068189B2 (en) Oxide dielectric material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees