JPH11304791A - Method for analyzing impurity of polycrystal silicon - Google Patents

Method for analyzing impurity of polycrystal silicon

Info

Publication number
JPH11304791A
JPH11304791A JP10115152A JP11515298A JPH11304791A JP H11304791 A JPH11304791 A JP H11304791A JP 10115152 A JP10115152 A JP 10115152A JP 11515298 A JP11515298 A JP 11515298A JP H11304791 A JPH11304791 A JP H11304791A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
polycrystalline silicon
impurities
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10115152A
Other languages
Japanese (ja)
Inventor
Makoto Kamata
誠 鎌田
Junya Sakai
純也 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP10115152A priority Critical patent/JPH11304791A/en
Publication of JPH11304791A publication Critical patent/JPH11304791A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine a concentration of impurities of a granular polycrystal silicon that cannot be turned to a single crystal by the FZ method, by forming the granular polycrystal silicon of a small shape to a columnar sintered silicon by a method not contaminating the silicon, turning the columnar body to a single crystal by the FZ method, and measuring a quantity of impurities of a finally solidified part. SOLUTION: A granular polycrystal silicon of an average particle size of 1000 μm is induction heated to be formed into a rod formation body without impurities mixed. The formed columnar silicon 8 of a diameter of 15 mm is induction heated and, a seed crystal 9 is moved from below to dip and melt an upper end in a melt liquid generated at a lower end of the columnar silicon 8. A single crystal is grown at the upper end of the seed crystal 9. After the single crystal 10 is grown to 10-300 mm, the movement is stopped and the melt liquid between the columnar silicon 8 and the single crystal 10 is cut. Immediately before being cut, the melt liquid is held at an upper end of the single crystal and solidified, whereby a final solidified part 11 is obtained. After a weight of the single crystal is measured, impurities of the cut final solidified part are analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、形状が小さい多結晶シ
リコンの不純物濃度を測定する方法に関する。特に形状
の小さい粒状多結晶シリコンの不純物濃度を定量化する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the impurity concentration of polycrystalline silicon having a small shape. In particular, the present invention relates to a method for quantifying the impurity concentration of small-sized granular polycrystalline silicon.

【0002】[0002]

【従来の技術】従来、形状の小さい粒状多結晶シリコン
の不純物濃度を定量化する方法として、化学分析及び放
射化分析等が知られている。しかし、不純物の含有量が
極端に少ない多結晶シリコンの場合、その中の不純物量
を定量することが困難であった。また、不純物の偏析係
数が1より小さいことを利用して、FZ法において多結
晶シリコンを単結晶に成長させた後その最終固化部分に
不純物が濃縮されることに着目して、その最終固化部分
について化学分析を行った例が報告されている(特開平
6−26803)が、粒状シリコンはその形状が極端に
小さいため、直接FZ法による単結晶化させることがで
きないため、この不純物濃縮方法を採用することができ
なかった。
2. Description of the Related Art Conventionally, chemical analysis and activation analysis have been known as methods for quantifying the impurity concentration of granular polycrystalline silicon having a small shape. However, in the case of polycrystalline silicon having an extremely small impurity content, it has been difficult to quantify the impurity content therein. Further, utilizing the fact that the segregation coefficient of impurities is smaller than 1, focusing on the fact that impurities are concentrated in the final solidified portion after growing polycrystalline silicon into a single crystal by the FZ method, (Japanese Patent Application Laid-Open No. 6-26803), it has been reported that granular silicon has an extremely small shape and cannot be directly single-crystallized by the FZ method. Could not be adopted.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上述した従
来技術の問題点を解決し、不純物含有量が極端に少ない
ために直接化学分析及び放射化分析等では定量できず且
つ形状が極端に小さいためにFZ法により単結晶化させ
ることもできない粒状多結晶シリコンの不純物濃度を定
量することができる新規な方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and cannot be quantitatively determined by direct chemical analysis or activation analysis or the like and has an extremely small shape due to an extremely small impurity content. It is an object of the present invention to provide a novel method capable of quantifying the impurity concentration of granular polycrystalline silicon which cannot be single-crystallized by the FZ method because of its small size.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記技術
的課題を解決すべく鋭意研究を行ってきた結果、形状が
小さい粒状多結晶シリコンをまず汚染を受けない方法
で、焼結シリコンの柱状体を形成させ、その形成体をF
Z法により単結晶とし、その最終固化部分の不純物量を
測定することにより、不純物含有量が極端に少ないため
に直接化学分析及び放射化分析等では定量できず且つ形
状が極端に小さいためにFZ法による単結晶化させるこ
とができない粒状多結晶シリコンの不純物濃度を精度良
く定量することができる方法を見出し本発明を完成する
に至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above technical problems, and as a result, have been proposed to reduce the size of granular polycrystalline silicon by a method that does not cause contamination first. Is formed, and the formed body is formed as F
A single crystal is formed by the Z method, and the amount of impurities in the final solidified portion is measured. As a result, the amount of impurities is extremely small, so that it cannot be directly quantified by chemical analysis or activation analysis, and the shape is extremely small. The present inventors have found a method for accurately quantifying the impurity concentration of granular polycrystalline silicon that cannot be single-crystallized by the method, and have completed the present invention.

【0005】本発明は、粒径200〜15000μmの
粒状多結晶シリコンに含まれる不純物濃度を測定する方
法において、該粒状多結晶シリコンを内径10〜50m
mの非電導性筒体に充填し、該粒状多結晶シリコンが充
填された筒体を垂直に立て、その円周方向から帯状に加
熱し筒体内の横断面において、少なくとも一部の粒状多
結晶シリコンを溶融焼結し、一体化させることにより、
筒体内表面から引き離し、筒体内の多結晶シリコンに括
れ部分を形成せしめ、順次加熱帯を上方又は下方に移動
することにより、該括れ部分を連続的に拡大することに
より焼結シリコンの柱状体を形成せしめて得られた、該
柱状体を試料として用い、FZ法により単結晶を形成せ
しめ、その最終固化部分が単結晶全体の5重量%〜10
重量%未満となし、その最終固化部分中の不純物を測定
し、試料中の濃度に換算することを特徴とする粒状多結
晶シリコンの不純物濃度測定方法である。
According to the present invention, there is provided a method for measuring the concentration of impurities contained in granular polycrystalline silicon having a particle size of 200 to 15000 μm.
m in a non-conductive cylinder, and the cylinder filled with the granular polycrystalline silicon is set up vertically, and heated in a belt shape from the circumferential direction. By melting and sintering silicon and integrating it,
By separating from the surface of the cylinder, forming a constricted part in the polycrystalline silicon in the cylinder, and sequentially moving the heating zone upward or downward, the constricted part is continuously expanded to form a columnar body of sintered silicon. Using the columnar body obtained as a sample as a sample, a single crystal is formed by the FZ method, and the final solidified portion is 5% by weight to 10% by weight of the entire single crystal.
This is a method for measuring the impurity concentration of granular polycrystalline silicon, wherein the impurity content is determined to be less than 10% by weight, and the impurity in the final solidified portion is measured and converted into the concentration in the sample.

【0006】本発明において分析の対象となる多結晶シ
リコンは粒径200〜15000μm程度であれば特に
限定されず使用でき、流動床反応器によりモノシラン、
ジクロロシラン、トリクロロシラン等のシラン類の熱分
解や還元反応を利用して種粒子上にシリコンを析出させ
て成長させた粒状の多結晶シリコンに対しても適用し得
るし、ベルジャー型の反応器によりモノシラン、ジクロ
ロシラン、トリクロロシラン等のシラン類の熱分解や還
元反応を利用してシリコン芯線上にシリコンを析出させ
て棒状に成長させ、その後破砕して粒状とした多結晶で
もよい。本発明において測定し得る不純物元素は、偏析
係数が小さいほど好ましく、例えば偏析係数が1より小
さい元素であれば特に好ましい。これらの元素として
は、Li,Cu,Ag,Au,Zn,Cd,Cr、A
l,Ga,In,Th,Sn,As,Bi,Mg,F
e,Co,Ni,Ta等が挙げられる。粒状多結晶シリ
コンを柱状の焼結シリコンとする方法は、本発明におい
て特に重要であり、根幹となすものである。すなわち、
該粒状多結晶シリコンが充填された筒体内で不純物の汚
染を受けることなく、粒状多結晶シリコンを柱状の焼結
シリコンとするために、まず粒状多結晶シリコンを内径
10〜50mm、長さ100〜1000mm、好適には
200〜300mmの底のある非電導性の筒体に充填す
る。筒体の内径が10mmより小さいと得られる柱状の
焼結シリコンの径が小さすぎてそれをFZ法で単結晶化
し難く、50mmより大きいと得られる焼結シリコンの
脆弱性が高すぎて取り扱いが困難となる。また、筒体の
肉厚は、2〜10mm程度で、強度と熱伝導とを勘案し
て3〜8mm程度が好ましい。筒体の材質は非電導性で
あればよいが、通常は、アルミナ、シリカ、窒化珪素等
のセラミックが使用される。特に、内部が透視可能であ
る事の理由から、透明石英ガラスが好適に使用される。
次に粒状多結晶シリコンが充填された筒体は垂直に立て
られて、その円周方向から帯状に加熱し筒体内の横断面
において、少なくとも一部の粒状多結晶シリコンを溶融
焼結により一体化させる。筒体を垂直に立てない場合、
加熱して発生するシリコンの溶融液が筒体の内表面と接
触しやすくなり、接触した場合筒体からの不純物の汚染
を受けるので好ましくない。
The polycrystalline silicon to be analyzed in the present invention can be used without particular limitation as long as it has a particle size of about 200 to 15000 μm.
It can be applied to granular polycrystalline silicon grown by depositing silicon on seed particles by utilizing thermal decomposition or reduction reaction of silanes such as dichlorosilane and trichlorosilane, and a bell jar type reactor Thus, silicon may be deposited on a silicon core wire by utilizing thermal decomposition or reduction reaction of silanes such as monosilane, dichlorosilane, trichlorosilane and the like, grown into a rod shape, and then crushed into a granular polycrystal. In the present invention, the impurity element that can be measured in the present invention is more preferably as the segregation coefficient is smaller, for example, an element having a segregation coefficient smaller than 1 is particularly preferable. These elements include Li, Cu, Ag, Au, Zn, Cd, Cr, A
1, Ga, In, Th, Sn, As, Bi, Mg, F
e, Co, Ni, Ta and the like. The method of converting granular polycrystalline silicon into columnar sintered silicon is particularly important in the present invention and forms the basis. That is,
In order to convert the granular polycrystalline silicon into a columnar sintered silicon without being contaminated by impurities in the cylindrical body filled with the granular polycrystalline silicon, first, the granular polycrystalline silicon has an inner diameter of 10 to 50 mm and a length of 100 to 50 mm. Fill a non-conductive cylinder with a bottom of 1000 mm, preferably 200-300 mm. If the inner diameter of the cylindrical body is smaller than 10 mm, the diameter of the columnar sintered silicon obtained is too small and it is difficult to single crystallize it by the FZ method. It will be difficult. The thickness of the cylindrical body is about 2 to 10 mm, and preferably about 3 to 8 mm in consideration of strength and heat conduction. The material of the cylindrical body may be non-conductive, but usually, ceramics such as alumina, silica and silicon nitride are used. In particular, transparent quartz glass is preferably used because the inside can be seen through.
Next, the cylindrical body filled with granular polycrystalline silicon is set up vertically, heated in a belt shape from the circumferential direction, and at least a part of the granular polycrystalline silicon is integrated by fusion sintering in the cross section inside the cylindrical body. Let it. If the cylinder does not stand upright,
The silicon melt generated by heating is likely to come into contact with the inner surface of the cylindrical body, and if it does, it is not preferable because impurities are contaminated from the cylindrical body.

【0007】加熱方法として、その円周方向から帯状に
加熱をしない場合、筒体内に充填されたシリコン全体が
溶融し、本発明において根幹を成す、粒状多結晶シリコ
ンを柱状の焼結シリコンとすることができなくなるので
好ましくない。従って加熱の手段は、内容物である多結
晶シリコンを1400℃〜1450℃に加熱できれば、
円周方向から帯状に加熱を行えるものであれば、どのよ
うな手段であってもよく、例えば、高周波誘導加熱、赤
外線加熱、マイクロ波加熱等の方法を採用することがで
きる。このような方法で加熱することにより、筒体内の
横断面において、少なくとも一部の粒状多結晶シリコン
の焼結部と溶融部が形成される。この時、加熱が過度で
あると溶融部が大きくなりすぎて、溶融焼結により一体
化させた部分が筒体内表面から引き離されず、しかも筒
体内の多結晶シリコンに括れ部分が形成されずに、溶融
シリコンが流れ出したり、溶融シリコンが筒体内表面と
接触して筒体からの不純物の汚染を受けるので好ましく
ない。したがって、溶融部が大きくなりすぎない様に加
熱の程度を調製する必要がある。一般的には、シリコン
の溶融部の高さ方向の長さは、非電導性筒体の内径に応
じて適当な長さがあり、一般に内径の長さ以下となるよ
うに設定する。例えば、直径30mmの非電導性筒体を
使用する場合には、1mm〜20mmとなるように加熱
の程度を調整することが好ましい。このようにして形成
された多結晶シリコンの括れ部分を順次加熱帯を上方又
は下方に移動させることにより該括れ部分を連続的に拡
大して焼結シリコンの柱状体を形成する。加熱帯の移動
速度は、非電導性筒体の直径に応じて適当な速度がある
が、例えば、内径30mmの非電導性筒体を使用する場
合には、10〜30mm/分の速度を採用することが好
ましい。この成形体をFZ法により単結晶とする方法
は、FZ法の実施時に不純物の汚染を受けない方法で且
つその最終固化部分が単結晶全体の5重量%〜10重量
%未満となるように行う方法であれば特に限定されない
が、最終固化部分が6重量%〜8重量%となるように行
うのが好ましい。最終固化部分を単結晶全体の5重量%
未満とすると、その部分が極端に微小となるためにその
部分の採取ができず、10重量%以上とすると、その部
分への不純物の濃縮率が不十分となるために、不純物の
含有量が極端に少ない多結晶中の不純物量の定量には好
ましくない。該最終固化部分中の不純物量の測定方法は
特に限定されないが、一般的な方法として化学分析や放
射化分析が挙げられ、特に、該最終固化部分を溶液に溶
解させその溶液中の各元素の濃度を原子吸光やICP−
MS等により測定する方法が挙げられる。該最終固化部
分中の不純物量の測定結果から原料の粒状多結晶シリコ
ン中の不純物濃度の算出は、最終固化部分中の不純物量
を全FZ単結晶の重量で除することによりできる。
As a heating method, when heating is not performed in a belt shape from the circumferential direction, the whole silicon filled in the cylinder is melted, and the granular polycrystalline silicon which forms the basis of the present invention is converted into columnar sintered silicon. This is not preferable because it is not possible to do so. Therefore, if the heating means can heat the polycrystalline silicon as a content to 1400 ° C. to 1450 ° C.,
Any means can be used as long as heating can be performed in a belt shape from the circumferential direction. For example, a method such as high-frequency induction heating, infrared heating, or microwave heating can be adopted. By heating in such a manner, at least a part of the sintered portion and the fused portion of the granular polycrystalline silicon are formed in the cross section inside the cylinder. At this time, if the heating is excessive, the melted portion becomes too large, the portion integrated by melt sintering is not separated from the surface of the cylinder, and furthermore, the portion confined to the polycrystalline silicon in the cylinder is not formed, It is not preferable because the molten silicon flows out or the molten silicon comes into contact with the surface of the cylinder and is contaminated with impurities from the cylinder. Therefore, it is necessary to adjust the degree of heating so that the fusion zone does not become too large. Generally, the length of the silicon melted portion in the height direction has an appropriate length according to the inner diameter of the non-conductive cylinder, and is generally set to be equal to or less than the length of the inner diameter. For example, when using a non-conductive cylinder having a diameter of 30 mm, it is preferable to adjust the degree of heating so as to be 1 mm to 20 mm. The constricted portion of the polycrystalline silicon formed in this manner is sequentially moved upward or downward in the heating zone, so that the constricted portion is continuously enlarged to form a columnar body of sintered silicon. The moving speed of the heating zone has an appropriate speed according to the diameter of the non-conductive cylinder. For example, when a non-conductive cylinder having an inner diameter of 30 mm is used, a speed of 10 to 30 mm / min is employed. Is preferred. The method of converting the compact into a single crystal by the FZ method is a method that does not cause contamination of impurities when the FZ method is performed, and that the final solidified portion is less than 5% by weight to 10% by weight of the entire single crystal. The method is not particularly limited as long as it is a method, but it is preferable to carry out the method so that the final solidified portion is 6% by weight to 8% by weight. 5% by weight of the final solidified part of the whole single crystal
If the content is less than 10% by weight, the concentration of the impurities in the portion becomes insufficient. It is not preferable to determine the amount of impurities in an extremely small amount of polycrystal. The method for measuring the amount of impurities in the final solidified portion is not particularly limited, but general methods include chemical analysis and activation analysis, and in particular, dissolving the final solidified portion in a solution to measure each element in the solution. The concentration is determined by atomic absorption or ICP-
A method of measuring by MS or the like may be used. The calculation of the impurity concentration in the granular polycrystalline silicon as the raw material from the measurement result of the impurity amount in the final solidified portion can be performed by dividing the impurity amount in the final solidified portion by the weight of the entire FZ single crystal.

【0008】次に、本発明の詳細を図面に基づいて説明
する。図1は、流動床法により成長させた粒状多結晶シ
リコンを、不純物成分の汚染を受けずに棒状形成体とす
る方法の一実施態様を示す模式図である。粒径が500
〜1200μmの範囲で平均粒子径が1000μmの粒
状多結晶シリコン1を内径20mm、長さ500mm、
肉厚5mmの透明石英製円筒2に充填し、出力5〜50
キロワット程度の高周波誘導加熱装置によりコイル6に
高周波をかけて予熱のために設けたカーボン板7を誘導
加熱し、カーボン板7からの放射熱により粒状シリコン
1を誘導加熱を行うのに十分な温度になるまで加熱す
る。カーボン板は円筒体の外径より3〜10mm程度大
きい環状又は分割された環状のものを用いる。高周波が
粒状シリコン1にかかると高周波誘導加熱コイル6の近
傍の粒状シリコンの一部が溶融し多結晶シリコンの焼結
部と溶融部が形成される。この時、溶融部の高さ方向の
長さが5mm〜10mmとなるように高周波の出力を調
整する。図2に示すように、この状態を形成せしめた
後、円筒全体を10mm/分の速度で下方に移動させ
て、溶融シリコン3の表面張力により筒体の内壁5に溶
融シリコン3を接触させることなく柱状シリコン4を形
成させ、筒体の内壁5からの不純物の混入の無い棒状形
成体4を作成する。図3は、前記作成した柱状シリコン
をFZ法により単結晶とする一実施態様を示す模式図で
ある。図1の方法により作成した直径15mmの柱状シ
リコン8をその下端が高周波誘導加熱コイル6の近傍と
なるようにセットする。高周波誘導加熱コイル6に高周
波をかけてカーボン板7を誘導加熱し、カーボン板7か
らの放射熱により柱状シリコン8の下端を誘導加熱を行
うのに十分な温度になるまで加熱する。高周波が柱状シ
リコン8の下端にかかると溶融する。この状態を形成せ
しめた後、下方より種結晶9を移動させて柱状シリコン
8の下端に形成された溶融液に種結晶9の上端を漬けて
溶融させる。種結晶9の上端が溶融した後、柱状シリコ
ン8と種結晶9を同時に下方に所定の速度、一般に1〜
5mm/分で移動させることにより、柱状シリコン8は
下端から順次溶融し、種結晶9の上端には順次単結晶が
成長する。図4で示すように、所定の長さ、例えば10
0〜300mmに単結晶10が成長した後、柱状シリコ
ン8の下方への移動を止めることにより、柱状シリコン
8と単結晶10との間に形成されている溶融液を切り、
切れる直前に柱状シリコンと単結晶との間に形成されて
いた溶融液は単結晶上端に保持され、その後固化させ
て、いわゆる最終固化部分11が得られる。切れる直前
に柱状シリコンと単結晶との間に形成されている溶融液
量が所定の量、一般に直径とほぼ同じ高さの三角錐形と
なるように、柱状シリコン8と単結晶10との間に形成
されている溶融液を切る前に高周波の出力を予め調整す
る。このように作成されたFZ法による単結晶の重量を
計測した後、前記最終固化部分を単結晶からカッター等
で切離し、切離した最終固化部分中の不純物量を化学分
析により測定する。その測定量を全FZ単結晶重量で除
することにより原料の粒状多結晶シリコン中の不純物濃
度を算出する。
Next, details of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a method of forming granular polycrystalline silicon grown by a fluidized bed method into a rod-shaped formed body without being contaminated by an impurity component. Particle size 500
Granular polycrystalline silicon 1 having an average particle diameter of 1000 μm in the range of ~ 1200 μm has an inner diameter of 20 mm, a length of 500 mm,
Fill a transparent quartz cylinder 2 with a thickness of 5 mm and output 5 to 50
A high frequency induction heating device of about kilowatts applies high frequency to the coil 6 to inductively heat the carbon plate 7 provided for preheating, and a temperature sufficient to perform induction heating of the granular silicon 1 by radiant heat from the carbon plate 7. Heat until As the carbon plate, an annular or divided annular having a diameter approximately 3 to 10 mm larger than the outer diameter of the cylindrical body is used. When the high frequency is applied to the granular silicon 1, a part of the granular silicon near the high frequency induction heating coil 6 is melted to form a sintered portion and a fused portion of polycrystalline silicon. At this time, the output of the high frequency is adjusted so that the length of the fusion zone in the height direction is 5 mm to 10 mm. As shown in FIG. 2, after this state is formed, the entire cylinder is moved downward at a speed of 10 mm / min to bring the molten silicon 3 into contact with the inner wall 5 of the cylindrical body by the surface tension of the molten silicon 3. In this way, the columnar silicon 4 is formed without any impurities, and the rod-shaped formed body 4 free of impurities from the inner wall 5 of the cylindrical body is formed. FIG. 3 is a schematic view showing an embodiment in which the columnar silicon thus produced is made into a single crystal by the FZ method. The columnar silicon 8 having a diameter of 15 mm prepared by the method of FIG. 1 is set so that its lower end is near the high-frequency induction heating coil 6. A high frequency is applied to the high frequency induction heating coil 6 to inductively heat the carbon plate 7, and the lower end of the columnar silicon 8 is heated by the radiant heat from the carbon plate 7 to a temperature sufficient to perform induction heating. When high frequency is applied to the lower end of the columnar silicon 8, it melts. After this state is formed, the seed crystal 9 is moved from below, and the upper end of the seed crystal 9 is immersed and melted in the molten liquid formed at the lower end of the columnar silicon 8. After the upper end of the seed crystal 9 is melted, the columnar silicon 8 and the seed crystal 9 are simultaneously moved downward at a predetermined speed, generally 1 to
By moving the columnar silicon 8 at a rate of 5 mm / min, the columnar silicon 8 melts sequentially from the lower end, and a single crystal grows sequentially on the upper end of the seed crystal 9. As shown in FIG. 4, a predetermined length, for example, 10
After the single crystal 10 has grown to 0 to 300 mm, the downward movement of the columnar silicon 8 is stopped to cut off the melt formed between the columnar silicon 8 and the single crystal 10,
The melt formed between the columnar silicon and the single crystal immediately before cutting is held at the upper end of the single crystal and then solidified to obtain a so-called final solidified portion 11. Immediately before the cutting, the amount of the melt formed between the columnar silicon and the single crystal is set to a predetermined amount, generally a triangular pyramid having a height substantially the same as the diameter. The output of the high frequency is adjusted before cutting the melt formed in the above. After measuring the weight of the thus prepared single crystal by the FZ method, the final solidified portion is separated from the single crystal with a cutter or the like, and the amount of impurities in the separated final solidified portion is measured by chemical analysis. By dividing the measured amount by the weight of the entire FZ single crystal, the impurity concentration in the raw material granular polycrystalline silicon is calculated.

【0009】[0009]

【発明の効果】本発明の方法によれば、不純物含有量が
極端に少ないために直接化学分析及び放射化分析等では
定量できず且つ形状が極端に小さいために直接FZ法に
よる単結晶化させることができない粒状多結晶シリコン
の不純物濃度を定量することが容易にできる。
According to the method of the present invention, since the impurity content is extremely small, it cannot be quantified by direct chemical analysis or activation analysis or the like, and since the shape is extremely small, it is directly crystallized by the FZ method. It is easy to quantify the impurity concentration of the granular polycrystalline silicon that cannot be performed.

【0010】[0010]

【実施例】本発明を更に具体的に説明するため以下の実
施例を挙げて説明するが本発明はこれらの実施例に限定
されるものではない。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.

【0011】実施例1 粒状多結晶シリコンとして流動床反応器によりモノシラ
ンの熱分解反応を利用して種粒子上にシリコンを析出さ
せて成長させた平均粒径1200μmのものを用いた。
長さが20cm、内径が20mm、肉厚5mmの透明石
英ガラス製の底のある円筒を垂直に設置し、その中に粒
状多結晶シリコンを80g充填した。図1に示すような
装置を用い加熱の初期においては、高周波誘導加熱コイ
ルでカーボン板を7KWの出力(周波数は2MHz)で
加熱し、カーボン板からの放射熱により粒状多結晶シリ
コンが誘導加熱を行うのに充分な温度になるまで円筒を
放射加熱した。高周波が粒状多結晶シリコンにかかった
ことを確認した後、カーボン板を取り去り、同時に高周
波出力を7KWから5KWに下げ、高周波誘導加熱コイ
ルの近傍の粒状多結晶シリコンの一部が溶融し、また、
溶融シリコンの上方が焼結状態になるようにした。この
時、溶融部の高さ方向の長さが12mmとなるように高
周波の出力を調整した。上記の状態を作った後、円筒全
体を移動速度10mm/分で下方に下げ、加熱域を相対
的に上昇させた。加熱域の移動中は、焼結、溶融、固化
の状態が変化しないように高周波出力を3KWに維持し
た。こうして直径15mm、長さ170mmの棒状シリ
コンを製造した。得られた棒状シリコンをその下端が高
周波誘導加熱コイルの面内に入る様にセットした。加熱
の初期においては、高周波誘導加熱コイルでカーボン板
を7KWの出力(周波数は2MHz)で加熱し、カーボ
ン板からの放射熱により棒状シリコンが誘導加熱を行う
のに充分な温度になるまで棒状シリコンを放射加熱し
た。高周波が棒状シリコンにかかったことを確認した
後、カーボン板を取り去り、同時に高周波出力を7KW
から4KWに下げ、棒状シリコンの下端10mmが溶融
状態になるようにした。下方より長さ80mm、一辺が
5mm角の種単結晶を移動させて、その上端を棒状シリ
コンの下端に形成された溶融液に漬けて溶融させ、棒状
シリコンと種単結晶が溶融液を介して結合状態になるよ
うにした。上記の状態を作った後、棒状シリコンと種結
晶をそれぞれ2mm/分、2mm/分の速度で同時に下
方に移動させ、加熱域を相対的に上昇させた。加熱域の
移動中は、溶融液量が変化しないように高周波出力を4
KWに維持した。こうして種結晶の上方に長さが100
mmの単結晶を成長された後、高周波出力を4KWから
2.5KWに下げ、溶融液量を減少させた後、棒状シリ
コンの下方への移動を止め、柱状シリコンと単結晶との
間に形成されている溶融液を切り、切れる直前に棒状シ
リコンと単結晶との間に形成されていた溶融液を単結晶
上端に保持させ、その後固化させて、いわゆる最終固化
部分を作成した。このように40gの単結晶を作成し
た。上記最終固化部分を単結晶からダイアモンドカッタ
ーで切離して、2.8gの最終固化部分得た。この最終
固化部分は単結晶全体の7重量%であった。これを硝酸
で表面を洗浄した後、硝酸フッ酸混合溶液に全量溶解さ
せ、溶液中の元素をICP−MSにより含有量を測定し
た。その測定量を単結晶重量40gで除して、原料の粒
状多結晶シリコン中の不純物濃度を得た。その結果を表
1に示した。比較のために、粒状多結晶シリコンを硝酸
で表面を洗浄した後、硝酸フッ酸混合溶液に全量溶解さ
せ、溶液中の元素をICP−MSにより含有量を測定し
た結果を表1に併記した。表1に示すように、粒状多結
晶シリコンを直接溶解させる方法では、粒状多結晶シリ
コン中の各元素の含有量が、ICP−MSでの各元素の
検出限界以下であるために定量できなかった。他方、最
終固化部分の分析結果より原料の粒状多結晶シリコン中
の不純物濃度を得る方法では、不純物が最終固化部分に
14倍に濃縮されたためにICP−MSでの各元素の検
出限界以上となり定量できた。
Example 1 Granular polycrystalline silicon having a mean particle size of 1200 μm, which was grown by depositing silicon on seed particles using a thermal decomposition reaction of monosilane in a fluidized bed reactor.
A cylinder with a bottom made of transparent quartz glass having a length of 20 cm, an inner diameter of 20 mm, and a thickness of 5 mm was installed vertically, and 80 g of granular polycrystalline silicon was filled therein. In the initial stage of heating using an apparatus as shown in FIG. 1, a carbon plate is heated by a high-frequency induction heating coil at an output of 7 KW (frequency is 2 MHz), and granular polycrystalline silicon is subjected to induction heating by radiant heat from the carbon plate. The cylinder was radiantly heated to a temperature sufficient to perform. After confirming that the high frequency was applied to the granular polycrystalline silicon, the carbon plate was removed, and at the same time, the high frequency output was reduced from 7 KW to 5 KW, and a portion of the granular polycrystalline silicon near the high frequency induction heating coil was melted,
The upper part of the molten silicon was in a sintered state. At this time, the high-frequency output was adjusted so that the length of the fusion zone in the height direction was 12 mm. After the above state was made, the entire cylinder was lowered at a moving speed of 10 mm / min, and the heating area was relatively raised. During the movement of the heating zone, the high frequency output was maintained at 3 KW so that the state of sintering, melting and solidification did not change. Thus, a rod-shaped silicon having a diameter of 15 mm and a length of 170 mm was produced. The obtained bar-shaped silicon was set so that its lower end was in the plane of the high-frequency induction heating coil. In the initial stage of heating, the carbon plate is heated by a high-frequency induction heating coil at an output of 7 KW (frequency is 2 MHz), and the radiant heat from the carbon plate causes the bar-shaped silicon to reach a temperature sufficient for induction heating. Was radiatively heated. After confirming that high frequency was applied to the bar-shaped silicon, the carbon plate was removed, and at the same time, the high frequency output was reduced to 7 KW.
To 4 KW, so that the lower end of the bar-shaped silicon 10 mm was in a molten state. A seed single crystal having a length of 80 mm and a side of 5 mm square is moved from below, and its upper end is immersed and melted in a molten liquid formed at the lower end of the rod-shaped silicon. It was connected. After the above-mentioned state was formed, the rod-shaped silicon and the seed crystal were simultaneously moved downward at a speed of 2 mm / min and 2 mm / min, respectively, and the heating area was relatively raised. During the movement of the heating zone, the high-frequency output is set to 4 so that the amount of melt does not change.
KW was maintained. Thus, a length of 100 above the seed crystal
After growing a single crystal of 1 mm, the high-frequency output was lowered from 4 KW to 2.5 KW, the amount of the melt was reduced, and the downward movement of the rod-shaped silicon was stopped to form between the columnar silicon and the single crystal. The melt was cut off, and the melt formed between the rod-shaped silicon and the single crystal was held at the upper end of the single crystal immediately before cutting, and then solidified to form a so-called final solidified portion. Thus, a single crystal of 40 g was prepared. The final solidified portion was separated from the single crystal with a diamond cutter to obtain 2.8 g of the final solidified portion. This final solidified portion was 7% by weight of the entire single crystal. After cleaning the surface with nitric acid, the whole was dissolved in a mixed solution of hydrofluoric acid and nitric acid, and the contents of the elements in the solution were measured by ICP-MS. The measured amount was divided by the single crystal weight of 40 g to obtain the impurity concentration in the raw material granular polycrystalline silicon. The results are shown in Table 1. For comparison, after the surface of the granular polycrystalline silicon was washed with nitric acid, the whole was dissolved in a mixed solution of hydrofluoric acid and nitric acid, and the contents of the elements in the solution were measured by ICP-MS. As shown in Table 1, the method of directly dissolving granular polycrystalline silicon could not be quantified because the content of each element in the granular polycrystalline silicon was below the detection limit of each element in ICP-MS. . On the other hand, in the method of obtaining the impurity concentration in the raw material granular polycrystalline silicon based on the analysis result of the final solidified portion, the impurity is concentrated 14 times in the final solidified portion, so that the concentration exceeds the detection limit of each element in ICP-MS, and the amount is determined. did it.

【0012】[0012]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の代表的な粒状多結晶シリコン
を不純物成分の汚染を受けずに棒状形成体とする方法の
斜視図である。
FIG. 1 is a perspective view of a typical method of forming granular polycrystalline silicon into a rod-shaped body without being contaminated by an impurity component according to the present invention.

【図2】図2は、本発明の代表的な粒状多結晶シリコン
を不純物成分の汚染を受けずに棒状形成体とする方法の
模式図である。
FIG. 2 is a schematic view of a method of forming a representative granular polycrystalline silicon into a rod-shaped body without being contaminated by an impurity component according to the present invention.

【図3】図3は、本発明の代表的な柱状シリコンをFZ
法により単結晶とする方法の斜視図である。
FIG. 3 shows a typical columnar silicon of the present invention in FZ.
FIG. 3 is a perspective view of a method of forming a single crystal by a method.

【図4】図4は、本発明の代表的な単結晶の最終固化部
分の作成方法の模式図である。
FIG. 4 is a schematic diagram of a method for forming a final solidified portion of a typical single crystal of the present invention.

【符号の説明】 1、粒状多結晶シリコン 2、非電導性筒体 3、シリコンの溶融部 4、固化した柱状シリコン 5、非電導性筒体の内壁 6、高周波誘導加熱コイル 7、カーボン板 8、焼結柱状シリコン 9、種結晶 10、シリコンの単結晶 11、単結晶の最終固化部分[Description of Signs] 1, granular polycrystalline silicon 2, non-conductive cylinder 3, molten silicon 4, solidified columnar silicon 5, non-conductive cylindrical inner wall 6, high-frequency induction heating coil 7, carbon plate 8 , Sintered columnar silicon 9, seed crystal 10, silicon single crystal 11, final solidification of single crystal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径200〜15000μmの粒状多結
晶シリコンに含まれる不純物濃度を測定する方法におい
て、該粒状多結晶シリコンを内径10〜50mmの非電
導性筒体に充填し、該粒状多結晶シリコンが充填された
筒体を垂直に立て、その円周方向から帯状に加熱し筒体
内の横断面において、少なくとも一部の粒状多結晶シリ
コンを溶融焼結により一体化させることにより、筒体内
表面から引き離し、筒体内の多結晶シリコンに括れ部分
を形成せしめ、順次加熱帯を上方又は下方に移動するこ
とにより、該括れ部分を連続的に拡大することにより焼
結シリコンの柱状体を形成せしめて得られた、該柱状体
を試料として用い、FZ法により単結晶を形成せしめ、
その最終固化部分が単結晶全体の5重量%〜10重量%
未満となし、その最終固化部分中の不純物を測定し、試
料中の濃度に換算することを特徴とする粒状多結晶シリ
コンの不純物濃度測定方法。
1. A method for measuring the concentration of impurities contained in granular polycrystalline silicon having a particle size of 200 to 15000 μm, wherein said granular polycrystalline silicon is filled in a non-conductive cylinder having an inner diameter of 10 to 50 mm, and The cylinder filled with silicon is set up vertically, heated in a belt shape from the circumferential direction, and at least a part of the granular polycrystalline silicon is integrated by fusion sintering in the cross section of the cylinder, thereby obtaining the surface of the cylinder. To form a constricted portion in the polycrystalline silicon in the cylindrical body, and by sequentially moving the heating zone upward or downward, the constricted portion is continuously expanded to form a columnar body of sintered silicon. Using the obtained columnar body as a sample, a single crystal was formed by the FZ method,
The final solidified portion is 5% to 10% by weight of the entire single crystal
A method of measuring impurities in a granular polycrystalline silicon, wherein impurities in a final solidified portion are measured and converted into a concentration in a sample.
JP10115152A 1998-04-24 1998-04-24 Method for analyzing impurity of polycrystal silicon Pending JPH11304791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10115152A JPH11304791A (en) 1998-04-24 1998-04-24 Method for analyzing impurity of polycrystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10115152A JPH11304791A (en) 1998-04-24 1998-04-24 Method for analyzing impurity of polycrystal silicon

Publications (1)

Publication Number Publication Date
JPH11304791A true JPH11304791A (en) 1999-11-05

Family

ID=14655617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10115152A Pending JPH11304791A (en) 1998-04-24 1998-04-24 Method for analyzing impurity of polycrystal silicon

Country Status (1)

Country Link
JP (1) JPH11304791A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398303B1 (en) * 2000-06-26 2003-09-19 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 Evalution method for polycrystalline silicon
JP2007256043A (en) * 2006-03-23 2007-10-04 Ngk Insulators Ltd Preparation method of sample liquid for impurity analysis in silicon compound-containing sample
JP2007279042A (en) * 2006-04-05 2007-10-25 Dow Corning Corp Analytical method for carbon concentration in crystalline silicon
JP2009173530A (en) * 2007-12-25 2009-08-06 Mitsubishi Materials Corp Apparatus for producing single crystal silicon
JP2010070404A (en) * 2008-09-17 2010-04-02 Sumco Corp Apparatus for forming silicon melt
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal
JP2011179840A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for measuring impurities of polycrystalline silicon
DE102010039755A1 (en) 2010-08-25 2012-03-01 Wacker Chemie Ag Method for determining impurities in e.g. polycrystalline silicon in solar industry for manufacturing solar cells, involves cooling sample till silicon-drop is freezed and determining impurities contained in drop by tracing analytic method
JP2018021852A (en) * 2016-08-04 2018-02-08 株式会社トクヤマ Method for measuring concentration of metal impurity in polycrystalline silicon
CN114599972A (en) * 2020-07-21 2022-06-07 瓦克化学股份公司 Method for determining trace metals in silicon

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398303B1 (en) * 2000-06-26 2003-09-19 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 Evalution method for polycrystalline silicon
JP2007256043A (en) * 2006-03-23 2007-10-04 Ngk Insulators Ltd Preparation method of sample liquid for impurity analysis in silicon compound-containing sample
JP2007279042A (en) * 2006-04-05 2007-10-25 Dow Corning Corp Analytical method for carbon concentration in crystalline silicon
JP2009173530A (en) * 2007-12-25 2009-08-06 Mitsubishi Materials Corp Apparatus for producing single crystal silicon
JP2013010691A (en) * 2007-12-25 2013-01-17 Mitsubishi Materials Corp Apparatus for producing single crystal silicon
JP2010070404A (en) * 2008-09-17 2010-04-02 Sumco Corp Apparatus for forming silicon melt
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal
JP2011179840A (en) * 2010-02-26 2011-09-15 Mitsubishi Materials Corp Method for measuring impurities of polycrystalline silicon
DE102010039755A1 (en) 2010-08-25 2012-03-01 Wacker Chemie Ag Method for determining impurities in e.g. polycrystalline silicon in solar industry for manufacturing solar cells, involves cooling sample till silicon-drop is freezed and determining impurities contained in drop by tracing analytic method
JP2018021852A (en) * 2016-08-04 2018-02-08 株式会社トクヤマ Method for measuring concentration of metal impurity in polycrystalline silicon
CN114599972A (en) * 2020-07-21 2022-06-07 瓦克化学股份公司 Method for determining trace metals in silicon
CN114599972B (en) * 2020-07-21 2024-03-08 瓦克化学股份公司 Method for determining trace metals in silicon

Similar Documents

Publication Publication Date Title
US5108720A (en) Float zone processing of particulate silicon
JPH11304791A (en) Method for analyzing impurity of polycrystal silicon
JP2650064B2 (en) Polycrystalline silicon capable of producing long-lived single-crystal silicon
US3012865A (en) Silicon purification process
US5499598A (en) Method for producing a silicon rod
US2793103A (en) Method for producing rod-shaped bodies of crystalline material
JP6732595B2 (en) Method for measuring metal impurity concentration in polycrystalline silicon
JPH02180789A (en) Production of si single crystal
US5067551A (en) Method for manufacturing alloy rod having giant magnetostriction
US5306388A (en) Quartz glass crucible for pulling a semiconductor single crystal
JP4436363B2 (en) Single crystal growth method and fiber molded body
JP5489614B2 (en) Manufacturing method of optical member
TWI781693B (en) Method for determining trace metals in silicon
JP4804348B2 (en) Cooled lump of molten silicon and method for producing the same
JPH0848512A (en) Polycrystalline silicon particle
JP2531415B2 (en) Crystal growth method
JPH05139886A (en) Production of arsenic compound single crystal
JP6951936B2 (en) Manufacturing method for polycrystalline silicon rods and single crystal silicon
JP6459903B2 (en) Impurity analysis method and silicon single crystal manufacturing method
JPH05232104A (en) Method for determining impurity concentration in single-crystal silicon rod
JP2006266813A (en) Melt collection tool, and ingot manufacturing device using melt collection tool
JP6472768B2 (en) Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon
CN216746915U (en) Detection sampling device of granular polycrystalline silicon impurity elements
JP3109451B2 (en) Quartz crucible and method for evaluating the quartz crucible
JP2000234108A (en) Spherical metal titanium, and manufacture of titanium compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080324