JP2007256043A - Preparation method of sample liquid for impurity analysis in silicon compound-containing sample - Google Patents

Preparation method of sample liquid for impurity analysis in silicon compound-containing sample Download PDF

Info

Publication number
JP2007256043A
JP2007256043A JP2006080196A JP2006080196A JP2007256043A JP 2007256043 A JP2007256043 A JP 2007256043A JP 2006080196 A JP2006080196 A JP 2006080196A JP 2006080196 A JP2006080196 A JP 2006080196A JP 2007256043 A JP2007256043 A JP 2007256043A
Authority
JP
Japan
Prior art keywords
silicon compound
sample
silicon
preparation
containing sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006080196A
Other languages
Japanese (ja)
Other versions
JP4800806B2 (en
Inventor
Mitsuyoshi Watanabe
光義 渡辺
Satoko Ueno
聡子 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006080196A priority Critical patent/JP4800806B2/en
Publication of JP2007256043A publication Critical patent/JP2007256043A/en
Application granted granted Critical
Publication of JP4800806B2 publication Critical patent/JP4800806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preparation method of sample liquid for impurity analysis in a silicon compound-containing sample capable of easily preparing stable sample liquid. <P>SOLUTION: This sample liquid for impurity analysis in the silicon compound-containing sample is prepared by subjecting the silicon compound-containing sample to alkali fusion, and by forming alkali aqueous solution from a melt after performing the alkali fusion. Hereby, the sample liquid capable dissolving stably an impurity such as boron can be easily acquired. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ケイ素化合物含有試料中のホウ素など不純物を分析するための試料液の調製方法、ケイ素化合物含有試料中の不純物の分析方法及びこれらの利用に関する。   The present invention relates to a method for preparing a sample solution for analyzing impurities such as boron in a silicon compound-containing sample, a method for analyzing impurities in a silicon compound-containing sample, and use thereof.

炭化ケイ素、窒化ケイ素などケイ素化合物は、電子部品や機械部品の材料として広く用いられている。セラミックス材料は、不純物の濃度でその性能が大きく変ることがあることが知られている。炭化ケイ素などのケイ素系セラミックスを焼結させる場合には、金属、酸化物、炭化物を焼結助剤として添加するが、焼結助剤は少量で大きく焼結性が異なる場合もあり、原料粉末中に含まれる金属元素量を知ることは、優れた品質の焼結体を安定的に得るのに重要である。また、焼結体中の微量元素量は、その製造工程における元素の散逸や混入によって原料組成とは相違することもあるため、最終製品における微量元素量を知ることも重要である。   Silicon compounds such as silicon carbide and silicon nitride are widely used as materials for electronic parts and mechanical parts. It is known that the performance of ceramic materials can vary greatly depending on the concentration of impurities. When sintering silicon-based ceramics such as silicon carbide, metals, oxides, and carbides are added as sintering aids, but the sintering aids may vary greatly in the amount of sinterability. Knowing the amount of the metal element contained therein is important for stably obtaining a sintered body of excellent quality. In addition, since the amount of trace elements in the sintered body may differ from the raw material composition due to element dissipation and contamination in the manufacturing process, it is also important to know the amount of trace elements in the final product.

ケイ素化合物中の不純物の測定は、通常、誘導結合(高周波)プラズマ発光分析(Inductivity Coupled Plasma Atomic Emission Spectrometry;ICP-AES)によって行われるが、ICP-AESは溶液試料を対象とする分析法である。したがって、分析に先立って試料の溶液化が必要である。ケイ素化合物を溶液化する場合、通常、目的成分によって異なる分解方法が用いられ、主として不純物を定量する場合には、試料に酸を添加後、加圧酸分解する方法が用いられる(非特許文献1)。一方、主としてケイ素化合物中の主成分を定量するのにケイ素化合物を溶液化する方法として、試料に融剤である炭酸ナトリウムなどを加えアルカリ融解後、酸に溶解する方法もある(非特許文献2、3)。
ファインセラミックス用炭化ケイ素微粉末の化学分析方法JIS R1616-1994、11.3 ファインセラミックス用炭化ケイ素微粉末の化学分析方法JIS R1616-1994、6.2、6.3 ファインセラミックス用窒化ケイ素微粉末の化学分析方法JIS R1603-1994、6.2、6.3
Impurities in silicon compounds are usually measured by inductively coupled plasma atomic emission spectrometry (ICP-AES), which is an analysis method for solution samples. . Therefore, it is necessary to make the sample into a solution prior to analysis. When a silicon compound is made into a solution, a different decomposition method is usually used depending on the target component, and when an impurity is mainly quantified, a method of pressure acid decomposition after adding an acid to a sample is used (Non-patent Document 1). ). On the other hand, as a method for quantifying the main component in a silicon compound, there is also a method for dissolving a silicon compound in a solution by adding sodium carbonate or the like as a flux to a sample and melting it with an alkali (Non-patent Document 2). 3).
Chemical analysis method of fine silicon carbide powder for fine ceramics JIS R1616-1994, 11.3 Chemical analysis method of fine silicon carbide powder for fine ceramics JIS R1616-1994, 6.2, 6.3 Chemical analysis method of fine silicon nitride powder for fine ceramics JIS R1603-1994, 6.2, 6.3

ケイ素化合物中の不純物の測定のために、加圧酸分解法を用いる場合、フッ化水素酸を用いてケイ素化合物の主成分であるケイ素などをフッ化物として揮発分離することが多い。しかしながら、例えば不純物としてホウ素を測定しようとすると、ケイ素の揮発分離の際、ホウ素もフッ化物として揮発してしまうため、加圧酸分解液からはホウ素を定量できなかった。また、フッ化水素酸を用いて酸分解したフッ化水素酸含有溶液を用いると、ICP-AESの溶液導入系である石英製トーチ及びネブライザーを溶解していまい安定に測定することができないばかりか、フッ化水素酸を含む溶液の取扱いは危険性が高いという問題があった。さらに、アルカリ融解法は、融解後の融成物に塩酸などの酸を添加して酸性溶液として加熱して溶解液とするが、ケイ酸が析出し析出したケイ酸にホウ素が吸着されることがあった。この場合には、ケイ酸を回収して、回収したケイ酸を灰化後、再度アルカリ融解・酸溶解して、ケイ酸に吸着したホウ素を回収する必要があった。このため、操作が極めて煩雑であるとともに、良好な再現性は得られなかった。   In the case of using a pressure acid decomposition method for measuring impurities in silicon compounds, hydrofluoric acid is often used to volatilize and separate silicon, which is the main component of silicon compounds, as fluorides. However, for example, when boron is measured as an impurity, boron is volatilized as a fluoride during volatile separation of silicon, and therefore boron cannot be quantified from the pressurized acid decomposition solution. In addition, when using hydrofluoric acid-containing solutions that have been acid-decomposed using hydrofluoric acid, quartz torches and nebulizers, which are ICP-AES solution introduction systems, can be dissolved and not only stably measured. In addition, the handling of a solution containing hydrofluoric acid has a problem of high risk. Furthermore, in the alkali melting method, an acid such as hydrochloric acid is added to the melt after melting and heated as an acidic solution to form a solution. However, boron is adsorbed on the precipitated silicic acid. was there. In this case, it was necessary to recover the silicic acid, ash the recovered silicic acid, and then melt the alkali again and dissolve the acid to recover the boron adsorbed on the silicic acid. For this reason, the operation is extremely complicated and good reproducibility cannot be obtained.

そこで、本発明は、簡易に安定な試料液を調製することができるケイ素化合物含有試料中の不純物分析用試料液の調製方法、ケイ素化合物含有試料中の不純物の分析方法及びケイ素化合物含有セラミックス焼結体の製造方法を提供することを一つの目的とする。また、本発明は、ケイ素化合物含有試料中の不純物を再現性よく測定可能なケイ素化合物含有試料中の不純物分析用試料液の調製方法、ケイ素化合物含有試料中の不純物の分析方法及びケイ素化合物含有セラミックス焼結体の製造方法を提供することを他の一つの目的とする。さらに、本発明は、ケイ素化合物中のホウ素を簡易にかつ再現性よく測定できるケイ素化合物含有試料中の不純物分析用試料液の調製方法、ケイ素化合物含有試料中の不純物の分析方法及びケイ素化合物含有セラミックス焼結体の製造方法を提供することを他の一つの目的とする。   Therefore, the present invention provides a method for preparing a sample solution for impurity analysis in a silicon compound-containing sample, a method for analyzing impurities in a silicon compound-containing sample, and a silicon compound-containing ceramic sintered material, which can easily prepare a stable sample solution. One object is to provide a method for producing a body. The present invention also provides a method for preparing a sample solution for impurity analysis in a silicon compound-containing sample capable of measuring impurities in the silicon compound-containing sample with good reproducibility, a method for analyzing impurities in a silicon compound-containing sample, and a silicon compound-containing ceramic. Another object is to provide a method for producing a sintered body. Furthermore, the present invention provides a method for preparing a sample solution for impurity analysis in a silicon compound-containing sample that can easily and reproducibly measure boron in a silicon compound, a method for analyzing impurities in a silicon compound-containing sample, and a silicon compound-containing ceramic Another object is to provide a method for producing a sintered body.

本発明者らは、ケイ素化合物中の不純物の分析について検討した結果、アルカリ融解後の融成物を酸性溶液とすることなく水で溶解することで、ケイ酸を析出させることなく安定な溶解液を得て、ホウ素などの不純物を再現性よく測定できることを見出し、本発明を完成した。すなわち、本発明によれば以下の手段が提供される。   As a result of studying the analysis of impurities in the silicon compound, the present inventors have found that the melt after alkali melting is dissolved in water without making it an acidic solution, so that a stable solution without precipitation of silicic acid. And found that impurities such as boron can be measured with good reproducibility, thereby completing the present invention. That is, according to the present invention, the following means are provided.

本発明によれば、ケイ素化合物含有試料の不純物分析用試料液の調製方法であって、前記ケイ素化合物含有試料をアルカリ融解する工程と、アルカリ融解後の融成物をアルカリ性の水性溶液とする工程と、を備える、調製方法が提供される。   According to the present invention, there is provided a method for preparing a sample solution for impurity analysis of a silicon compound-containing sample, the step of alkali-melting the silicon compound-containing sample, and the step of converting the molten product after alkali melting into an alkaline aqueous solution And a preparation method is provided.

この調製方法においては、前記アルカリ融解工程は、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選択される1種又は2種以上を融剤として用いる工程とすることができる。また、前記ケイ素化合物含有試料は、炭化ケイ素、窒化ケイ素、二酸化ケイ素及びサイアロンからなる群から選択される1種又は2種以上を主成分とすることができる。なかでも、炭化ケイ素及び/又は窒化ケイ素とすることができる。さらに、前記ケイ素化合物含有試料は、ケイ素化合物原料粉末、ケイ素化合物含有組成物及びケイ素化合物焼結体のいずれかとすることができる。   In this preparation method, the alkali melting step is a step of using one or more selected from the group consisting of sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and lithium hydroxide as a flux. be able to. In addition, the silicon compound-containing sample can contain as a main component one or more selected from the group consisting of silicon carbide, silicon nitride, silicon dioxide, and sialon. Among these, silicon carbide and / or silicon nitride can be used. Furthermore, the silicon compound-containing sample can be any one of a silicon compound raw material powder, a silicon compound-containing composition, and a silicon compound sintered body.

この調製方法においては、前記不純物は、ホウ素、リン、アルミニウム、ガリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、モリブデン及びタングステンから選択されるいずれかあるいは2種類以上を含むことができるが、好ましくは、ホウ素を含んでいる。   In this preparation method, the impurities may include any one or more selected from boron, phosphorus, aluminum, gallium, beryllium, magnesium, calcium, strontium, barium, molybdenum and tungsten, but preferably Contains boron.

また、本発明によれば、ケイ素化合物含有試料の不純物の分析方法であって、ケイ素化合物含有試料のアルカリ融成物のアルカリ性水性溶液を準備する工程と、前記アルカリ性水性溶液について誘導結合プラズマ発光分析を実施する工程と、を備える、分析方法が提供される。   According to the present invention, there is also provided a method for analyzing impurities in a silicon compound-containing sample, the step of preparing an alkaline aqueous solution of an alkali melt of the silicon compound-containing sample, and inductively coupled plasma emission analysis for the alkaline aqueous solution. An analysis method comprising the steps of:

この分析方法においては、前記ケイ素化合物含有試料は、炭化ケイ素及び/又は窒化ケイ素を主成分とすることができる。また、前記不純物はホウ素を含むことができる。   In this analysis method, the silicon compound-containing sample can contain silicon carbide and / or silicon nitride as a main component. The impurity may include boron.

本発明によれば、ケイ素化合物含有セラミックス焼結体の製造方法であって、ケイ素化合物含有原料粉末、該原料粉末を含有する焼結用組成物及び該焼結用組成物を焼結して得られる焼結体のいずれかを被験試料として、アルカリ融成物のアルカリ性水性溶液を準備する工程と、前記アルカリ性水性溶液について誘導結合プラズマ発光分析を用いて不純物を分析する工程と、を備える、製造方法が提供される。   According to the present invention, there is provided a method for producing a silicon compound-containing ceramic sintered body obtained by sintering a silicon compound-containing raw material powder, a sintering composition containing the raw material powder, and the sintering composition. A step of preparing an alkaline aqueous solution of an alkaline melt using any one of the sintered bodies as a test sample, and a step of analyzing impurities in the alkaline aqueous solution using inductively coupled plasma emission spectrometry A method is provided.

本発明は、ケイ素化合物含有試料のアルカリ融成物のアルカリ性水性溶液の調製及びその利用に関している。ケイ素化合物含有試料中の不純物を分析するために、本発明のアルカリ性水性溶液を用いることで、アルカリ融解後に酸性溶液化して不純物を分析する際のホウ素などの共沈や加圧酸分解法によるホウ素などの不純物の揮散などを抑制して簡易に試料液を調製できる。また、アルカリ性水性溶液においては、ホウ素などの不純物が効果的に抽出されまた安定して溶解されているため、正確性及び再現性のよい分析が可能となる。こうした不純物分析用試料液を用いた不純物分析によれば、例えば、炭化ケイ素や窒化ケイ素を主成分とするケイ素化合物系セラミックス焼結体の製造にあたって、不純物量の管理を容易に実施することができるため、要求する物性を有する焼結体を安定して製造することができる。以下、本発明の実施形態について詳細に説明する。   The present invention relates to the preparation and use of an alkaline aqueous solution of an alkali melt of a silicon compound-containing sample. Boron by coprecipitation of boron or the like when analyzing impurities by analyzing the impurities by using the alkaline aqueous solution of the present invention to analyze impurities in the silicon compound-containing sample or by pressure acid decomposition method The sample solution can be easily prepared by suppressing the volatilization of impurities such as. Further, in an alkaline aqueous solution, impurities such as boron are effectively extracted and dissolved stably, so that an analysis with good accuracy and reproducibility becomes possible. According to impurity analysis using such a sample solution for impurity analysis, for example, in the manufacture of a silicon compound ceramic sintered body mainly composed of silicon carbide or silicon nitride, the amount of impurities can be easily managed. Therefore, a sintered body having the required physical properties can be stably produced. Hereinafter, embodiments of the present invention will be described in detail.

(ケイ素化合物)
本発明におけるケイ素化合物としては、特に限定されないが、ファインセラミックス分野において用いられるケイ素化合物であることが好ましい。ファインセラミックスにおいては、微量の不純物が物性等に大きく影響するからである。こうしたケイ素化合物としては、炭化ケイ素、窒化ケイ素、二酸化ケイ素及びサイアロン等が挙げられる。ケイ素化合物は、1種又は2種以上を組み合わせて用いることができる。なかでも、電子部品や機械部品として用いられる炭化ケイ素及び窒化ケイ素を試料中に含んでいることが好ましい。
(Silicon compound)
Although it does not specifically limit as a silicon compound in this invention, It is preferable that it is a silicon compound used in the fine ceramics field | area. This is because in fine ceramics, a small amount of impurities greatly affects the physical properties and the like. Examples of such silicon compounds include silicon carbide, silicon nitride, silicon dioxide, and sialon. A silicon compound can be used 1 type or in combination of 2 or more types. Especially, it is preferable that the sample contains silicon carbide and silicon nitride used as electronic parts and mechanical parts.

(ケイ素化合物含有試料)
ケイ素化合物含有試料は、ケイ素化合物を含有していればよく、その組成や状態は特に限定されない。好ましくは、本試料中においてはケイ素化合物を主成分(質量比率で50%を超える成分)とすることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上であり、一層好ましくは90%以上である。95%以上であってもよい。ケイ素化合物の含有量が高いと、一層不純物の影響が重要となる。ケイ素化合物含有試料の形態は、特に限定されないが、多くは、セラミックス焼結体製造用あるいはセラミックス粉末合成用の原料粉末、該原料粉末を含む組成物並びに焼結体又は合成セラミックス粉末である。また、セラミックス焼結体やセラミックス粉末の製造時における中間品であってもよい。
(Silicon compound-containing sample)
The silicon compound-containing sample only needs to contain a silicon compound, and its composition and state are not particularly limited. Preferably, in this sample, the silicon compound is preferably a main component (a component exceeding 50% by mass), more preferably 70% or more, still more preferably 80% or more, and still more preferably 90% or more. It may be 95% or more. When the content of the silicon compound is high, the influence of impurities becomes more important. The form of the silicon compound-containing sample is not particularly limited, but most are a raw material powder for producing a ceramic sintered body or a ceramic powder synthesis, a composition containing the raw material powder, and a sintered body or a synthetic ceramic powder. Moreover, the intermediate product at the time of manufacture of a ceramic sintered compact or ceramic powder may be sufficient.

(不純物)
本発明におけるケイ素化合物含有試料中の分析対象である不純物は、ケイ素化合物含有試料をアルカリ融解して得られるアルカリ融成物のアルカリ性水性溶液に溶質として含有できるものであれば、特に限定されない。また、本発明による試料液は、誘導結合プラズマ発光分析法によって分析することが好ましいことから、本分析法によって検出可能な元素であることが好ましい。こうした分析対象となる不純物としての元素(あるいは不純物に含まれる元素)としては、ホウ素、リン、アルミニウム、ガリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、モリブデン及びタングステンが挙げられる。なかでも、ケイ素化合物系セラミックスの焼結性や物性に影響する観点から、ホウ素、アルミニウム、ガリウム、モリブデン及びタングステンを対象とすることが好ましい。特に、ホウ素は、炭化ケイ素セラミックスの焼結性に大きく影響することから測定対象不純物とすることが好ましい。分析対象とする不純物は、こうした元素を1種又は2種以上含んでいてもよい。
(impurities)
The impurity to be analyzed in the silicon compound-containing sample in the present invention is not particularly limited as long as it can be contained as a solute in an alkaline aqueous solution of an alkali melt obtained by alkali-melting a silicon compound-containing sample. In addition, since the sample liquid according to the present invention is preferably analyzed by inductively coupled plasma emission spectrometry, it is preferable that the sample liquid is an element that can be detected by this analysis method. Examples of such an element as an impurity to be analyzed (or an element contained in the impurity) include boron, phosphorus, aluminum, gallium, beryllium, magnesium, calcium, strontium, barium, molybdenum, and tungsten. Of these, boron, aluminum, gallium, molybdenum, and tungsten are preferably targeted from the viewpoint of affecting the sinterability and physical properties of silicon compound ceramics. In particular, boron is preferably an impurity to be measured because it greatly affects the sinterability of silicon carbide ceramics. The impurity to be analyzed may contain one or more of these elements.

(試料液の調製)
次に、ケイ素化合物含有試料からの不純物分析用試料液の調製について説明する。本発明では、試料液の調製にあたり、ケイ素化合物含有試料をアルカリ融解する。アルカリ融解は、ケイ酸塩などのケイ素化合物を可溶性のケイ酸塩として完全に溶解することができるため、ケイ素化合物中の不純物溶液化法として好ましい。また、ケイ素と類似しケイ素と類似した抽出傾向を呈するホウ素を分析対象とする場合、ケイ素化合物を完全に溶解させることでホウ素も同様に溶解させることができる。したがって、ケイ素化合物含有試料中のホウ素などの不純物を再現性よく分析できる。アルカリ融解には、ケイ素化合物アルカリ融解に一般的に用いられる融剤を用いることができるが、分析精度等の観点からは、分析対象となる不純物を含まない融剤を用いることが好ましい。こうした融剤としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムなどを用いることができる。好ましくは、使用する白金器具へのダメージが低く、試薬純度が高く且つケイ素化合物の融解能力が高い観点から炭酸ナトリウムを用いる。なお、アルカリ融解の条件は、JIS R1616-1994やJIS R1603-1994等を参考に適宜必要な条件を設定して行うことができる。また、使用する容器の材質や試薬等級は、分析対象となる不純物への影響ができるだけ小さいものを選択することが好ましい。
(Preparation of sample solution)
Next, preparation of a sample solution for impurity analysis from a silicon compound-containing sample will be described. In the present invention, when preparing the sample solution, the silicon compound-containing sample is alkali-melted. Alkali melting is preferable as an impurity solution method in a silicon compound because a silicon compound such as silicate can be completely dissolved as a soluble silicate. In addition, when boron, which is similar to silicon and exhibits an extraction tendency similar to silicon, is to be analyzed, boron can be dissolved in the same manner by completely dissolving the silicon compound. Therefore, impurities such as boron in the silicon compound-containing sample can be analyzed with good reproducibility. For alkali melting, a flux generally used for silicon compound alkali melting can be used, but from the viewpoint of analysis accuracy and the like, it is preferable to use a flux that does not contain impurities to be analyzed. As such a flux, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used. Preferably, sodium carbonate is used from the viewpoint of low damage to the platinum instrument used, high reagent purity, and high melting ability of the silicon compound. The alkali melting conditions can be performed by appropriately setting necessary conditions with reference to JIS R1616-1994, JIS R1603-1994, and the like. Moreover, it is preferable to select the material and reagent grade of the container to be used that have the least influence on the impurities to be analyzed.

次に、ケイ素化合物含有試料をアルカリ融解して得られるアルカリ融成物をアルカリ性水性溶液とする。これにより、本発明の試料液を得ることができる。アルカリ性水性溶液は、例えば、アルカリ融解後の融成物を放冷後、これに水性媒体を加え、適宜加温することで得ることができる。用いる水性媒体としては、最終的に得られる水性溶液においてアルカリ性を維持できるものであればそのpHや組成(水と混和するような水性有機溶媒などを含んでいてもよい。)は特に限定されない。好ましい水性媒体は、水を主成分とすることが好ましく、より好ましくは水のみを用いる。水性媒体の添加量や最終的なケイ素化合物含有試料の濃度も限定しないが、測定対象の不純物の溶解状態を維持できる範囲であればよい。なお、アルカリ性水性溶液である本発明の試料液は、アルカリ性ではあるが、フッ化水素酸を用いて酸分解したフッ化水素酸含有溶液に比較して製トーチなどの溶解はほとんど無く、フッ化水素酸の取扱うことに比べ格段に安全である。   Next, an alkaline melt obtained by alkali-melting a silicon compound-containing sample is used as an alkaline aqueous solution. Thereby, the sample solution of the present invention can be obtained. The alkaline aqueous solution can be obtained, for example, by allowing the melted product after alkali melting to cool, adding an aqueous medium thereto, and heating appropriately. The aqueous medium to be used is not particularly limited in pH and composition (which may contain an aqueous organic solvent miscible with water) as long as it can maintain alkalinity in the finally obtained aqueous solution. A preferred aqueous medium is preferably composed mainly of water, more preferably water alone. The addition amount of the aqueous medium and the final concentration of the silicon compound-containing sample are not limited, but may be within a range where the dissolved state of the impurity to be measured can be maintained. Note that the sample solution of the present invention, which is an alkaline aqueous solution, is alkaline, but there is almost no dissolution of a torch or the like compared to a hydrofluoric acid-containing solution obtained by acid decomposition using hydrofluoric acid. It is much safer than handling hydroacid.

(分析)
こうして得られた試料液について不純物を分析することができる。分析法は、誘導結合プラズマ発光分析、誘導結合プラズマ質量分析、原子吸光分析を用いることができる。分析対象の種類や濃度範囲の観点から、好ましくは誘導結合プラズマ発光分析であり、具体的には、誘導結合(高周波)プラズマ発光分析で不純物の分析を実施する。ICP-AESで分光し検出した光の波長は元素に特有であり、光強度は試料液の元素濃度に比例するため、定性分析及び定量分析が可能である。
(analysis)
Impurities can be analyzed for the sample solution thus obtained. As the analysis method, inductively coupled plasma emission spectrometry, inductively coupled plasma mass spectrometry, or atomic absorption spectrometry can be used. From the viewpoint of the type and concentration range of the analysis target, the inductively coupled plasma emission analysis is preferable. Specifically, the impurity analysis is performed by inductively coupled (high frequency) plasma emission analysis. Since the wavelength of light detected by spectroscopy with ICP-AES is unique to the element and the light intensity is proportional to the element concentration of the sample solution, qualitative analysis and quantitative analysis are possible.

(ケイ素化合物含有セラミックス焼結体等の製造方法への利用)
こうしたケイ素化合物含有試料の不純物分析用試料液及びその分析方法は、ケイ素化合物含有セラミックス焼結体や原料粉末の製造工程における原料、中間製品及び最終製品の組成の管理に利用できる。例えば、焼結体の製造工程においては、原材料組成と焼結体組成は、製造工程中における揮散や汚染によって変動することがあり、それにより製品の物性が変動する可能性があるため、工程における組成管理が重要となる。例えば、セラミックス焼結体の製造工程におけるケイ素化合物含有試料としては、ケイ素化合物含有原料粉末、該原料粉末を含有する焼結用組成物、焼結前成形体、焼結体などとすることができる。
(Use in manufacturing methods for sintered ceramics containing silicon compounds)
Such a sample solution for impurity analysis of a silicon compound-containing sample and an analysis method thereof can be used for managing the composition of raw materials, intermediate products, and final products in the manufacturing process of a silicon compound-containing ceramic sintered body and raw material powder. For example, in the manufacturing process of a sintered body, the raw material composition and the sintered body composition may fluctuate due to volatilization and contamination during the manufacturing process, which may change the physical properties of the product. Composition management is important. For example, the silicon compound-containing sample in the ceramic sintered body production process may be a silicon compound-containing raw material powder, a sintering composition containing the raw material powder, a pre-sintered compact, a sintered body, and the like. .

以下、本発明を、実施例を挙げて具体的に説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, these Examples do not limit this invention.

(実施例:炭化ケイ素原料粉末のホウ素の定量)
商業的に入手した炭化ケイ素原料粉末0.5gを白金皿に取り、炭酸ナトリウム3g(試薬特級)を加えてアルカリ融解した。放冷後の融成物に水を加えて加温溶解し完全溶解し定容(100ml)とした。この溶液中のホウ素を誘導結合プラズマ発光分析法で定量した。分析波長は、249.77nmで測定した。ホウ素定量結果を表1に示す。

Figure 2007256043
(Example: Determination of boron in silicon carbide raw material powder)
0.5 g of commercially available silicon carbide raw material powder was placed in a platinum dish, and 3 g of sodium carbonate (special grade reagent) was added to carry out alkali melting. Water was added to the melted product after being allowed to cool, and the mixture was heated to dissolve and dissolved completely to obtain a constant volume (100 ml). Boron in the solution was quantified by inductively coupled plasma optical emission spectrometry. The analytical wavelength was measured at 249.77 nm. The results of boron determination are shown in Table 1.
Figure 2007256043

表1に示すように、本実施例によれば、良好な定量結果が得られた。また、この試料液調製法では、炭化ケイ素をアルカリ融解した後の融成物を水で溶解でき、ホウ素のケイ酸への共沈も認められず、安定した溶解液が得られた。表1に示すように、標準偏差が1.1(mass ppm)と小さいことからも、安定な溶液ができていることがわかる。   As shown in Table 1, according to the present example, good quantitative results were obtained. Further, in this sample solution preparation method, the melted product obtained after alkali-melting silicon carbide could be dissolved with water, and no coprecipitation of boron with silicic acid was observed, and a stable solution was obtained. As shown in Table 1, since the standard deviation is as small as 1.1 (mass ppm), it can be seen that a stable solution is formed.

(比較例:炭化ケイ素原料粉末のホウ素の定量)
実施例で用いたのと同じ炭化ケイ素原料粉末0.5gを白金皿に取り、炭酸ナトリウム3g(試薬特級)を加えて融解した。これに塩酸(1+1)20mlを添加して加温し、生成したケイ酸をろ過・洗浄しろ液1を得る。先にろ過したケイ酸を白金皿に移して灰化後、炭酸ナトリウム3gを加えて融解し、塩酸(1+1)20mlを加えて加温し、生成したケイ酸をろ過・洗浄してろ液2を得る。ろ液1及び2の溶液を定容(100ml)とした後、それぞれの溶液中のホウ素を誘導結合プラズマ発光分析法で定量した。ホウ素定量結果を表2に示す。

Figure 2007256043
(Comparative example: Determination of boron in silicon carbide raw material powder)
0.5 g of the same silicon carbide raw material powder as used in the examples was placed in a platinum dish, and 3 g of sodium carbonate (special grade reagent) was added and melted. To this, 20 ml of hydrochloric acid (1 + 1) is added and heated, and the produced silicic acid is filtered and washed to obtain filtrate 1. The silicic acid previously filtered is transferred to a platinum dish and incinerated. Then, 3 g of sodium carbonate is added and melted, 20 ml of hydrochloric acid (1 + 1) is added and heated, the produced silicic acid is filtered and washed, and filtrate 2 is obtained. obtain. After the filtrates 1 and 2 were brought to a constant volume (100 ml), boron in each solution was quantified by inductively coupled plasma emission spectrometry. The results of boron determination are shown in Table 2.
Figure 2007256043

表2に示すように、比較例の試料液調製法によると、ケイ酸へ共沈するホウ素量がばらつき、この結果合計値がばらつく結果となった。   As shown in Table 2, according to the sample solution preparation method of the comparative example, the amount of boron co-precipitated into silicic acid varied, and as a result, the total value varied.

Claims (10)

ケイ素化合物含有試料の不純物分析用試料液の調製方法であって、
前記ケイ素化合物含有試料をアルカリ融解する工程と、
アルカリ融解後の融成物をアルカリ性の水性溶液とする工程と、
を備える、調製方法。
A method for preparing a sample solution for impurity analysis of a silicon compound-containing sample,
A step of alkali-melting the silicon compound-containing sample;
A step of making the melt after alkali melting into an alkaline aqueous solution;
A preparation method comprising:
前記アルカリ融解工程は、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選択される1種又は2種以上を融剤として用いる工程である、請求項1に記載の調製方法。   The alkali melting step is a step of using one or more selected from the group consisting of sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and lithium hydroxide as a flux. Preparation method. 前記ケイ素化合物含有試料は、炭化ケイ素、窒化ケイ素、二酸化ケイ素及びサイアロンからなる群から選択される1種又は2種以上を主成分とする、請求項1又は2に記載の調製方法。   The preparation method according to claim 1 or 2, wherein the silicon compound-containing sample is mainly composed of one or more selected from the group consisting of silicon carbide, silicon nitride, silicon dioxide, and sialon. 前記ケイ素化合物含有試料は、ケイ素化合物原料粉末、ケイ素化合物含有組成物及びケイ素化合物焼結体のいずれかである、請求項1〜3のいずれかに記載の調製方法。   The said silicon compound containing sample is a preparation method in any one of Claims 1-3 which is any of a silicon compound raw material powder, a silicon compound containing composition, and a silicon compound sintered compact. 前記不純物は、ホウ素、リン、アルミニウム、ガリウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、モリブデン及びタングステンからなる群から選択される1種又は2種以上を含む、請求項1〜4のいずれかに記載の調製方法。   5. The impurity according to claim 1, wherein the impurity includes one or more selected from the group consisting of boron, phosphorus, aluminum, gallium, beryllium, magnesium, calcium, strontium, barium, molybdenum, and tungsten. The preparation method described. 前記不純物はホウ素を含む、請求項5に記載の調製方法。   The preparation method according to claim 5, wherein the impurities include boron. ケイ素化合物含有試料の不純物の分析方法であって、
前記ケイ素化合物含有試料のアルカリ融成物のアルカリ性の水性溶液を準備する工程と、
前記アルカリ性水性溶液について誘導結合プラズマ発光分析を実施する工程と、
を備える、分析方法。
A method for analyzing impurities in a silicon compound-containing sample,
Preparing an alkaline aqueous solution of an alkali melt of the silicon compound-containing sample;
Performing inductively coupled plasma emission spectrometry on the alkaline aqueous solution;
An analysis method comprising:
前記ケイ素化合物含有試料は、炭化ケイ素及び/又は窒化ケイ素を主成分とする、請求項7に記載の分析方法。   The analysis method according to claim 7, wherein the silicon compound-containing sample contains silicon carbide and / or silicon nitride as a main component. 前記不純物はホウ素を含む、請求項7又は8に記載の分析方法。   The analysis method according to claim 7 or 8, wherein the impurity includes boron. ケイ素化合物含有セラミックス焼結体の製造方法であって、
ケイ素化合物含有原料粉末、該原料粉末を含有する焼結用組成物及び該焼結用組成物を焼結して得られる焼結体のいずれかを被験試料として、アルカリ融成物のアルカリ性水性溶液を準備する工程と、
前記アルカリ性水性溶液について誘導結合プラズマ発光分析を用いて不純物を分析する工程と、
を備える、製造方法。
A method for producing a silicon compound-containing ceramic sintered body,
An alkaline aqueous solution of an alkali fusion product using any one of a silicon compound-containing raw material powder, a sintering composition containing the raw material powder, and a sintered body obtained by sintering the sintering composition as a test sample The process of preparing
Analyzing the alkaline aqueous solution for impurities using inductively coupled plasma emission spectrometry;
A manufacturing method comprising:
JP2006080196A 2006-03-23 2006-03-23 Method for preparing sample solution for impurity analysis in silicon compound-containing sample Active JP4800806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006080196A JP4800806B2 (en) 2006-03-23 2006-03-23 Method for preparing sample solution for impurity analysis in silicon compound-containing sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006080196A JP4800806B2 (en) 2006-03-23 2006-03-23 Method for preparing sample solution for impurity analysis in silicon compound-containing sample

Publications (2)

Publication Number Publication Date
JP2007256043A true JP2007256043A (en) 2007-10-04
JP4800806B2 JP4800806B2 (en) 2011-10-26

Family

ID=38630445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006080196A Active JP4800806B2 (en) 2006-03-23 2006-03-23 Method for preparing sample solution for impurity analysis in silicon compound-containing sample

Country Status (1)

Country Link
JP (1) JP4800806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915758A (en) * 2010-08-23 2010-12-15 西安航空动力股份有限公司 Analysis method of impurity elements, such as manganese, copper, nickel and iron in rare-earth magnesium casting
CN102998271A (en) * 2012-12-10 2013-03-27 天津大学 Determination method of silicon dioxide, silicon and silicon carbide in waste mortar from silicon wafer cutting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772056A (en) * 1993-06-25 1995-03-17 Shinetsu Quartz Prod Co Ltd Analysis method and decomposition/dry-up device for analysis
JPH0868735A (en) * 1994-08-31 1996-03-12 Kyocera Corp Method of acid decomposition of undecomposable sample using microwave heating
JPH09257669A (en) * 1996-03-18 1997-10-03 Shinetsu Quartz Prod Co Ltd Method for analyzing amount of impurity in silicon dioxide
JPH11304791A (en) * 1998-04-24 1999-11-05 Tokuyama Corp Method for analyzing impurity of polycrystal silicon
JP2001099824A (en) * 1999-09-29 2001-04-13 Ngk Insulators Ltd Method for decomposing and analyzing non-oxide sample
JP2002030357A (en) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd Method for separating iridium, ruthenium and rhodium and their batch quantitative determination method
JP2002040009A (en) * 2000-07-28 2002-02-06 Mitsubishi Materials Silicon Corp Micro impurity analytical method in silicon substrate
JP2002168846A (en) * 2000-11-30 2002-06-14 Matsushita Electric Works Ltd Silicone analyzing method
JP2005181189A (en) * 2003-12-22 2005-07-07 Canon Inc Solution composition, and quantitative determination method for element
JP2005195551A (en) * 2004-01-09 2005-07-21 Tokuyama Corp Method of analyzing impurity in silicon

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772056A (en) * 1993-06-25 1995-03-17 Shinetsu Quartz Prod Co Ltd Analysis method and decomposition/dry-up device for analysis
JPH0868735A (en) * 1994-08-31 1996-03-12 Kyocera Corp Method of acid decomposition of undecomposable sample using microwave heating
JPH09257669A (en) * 1996-03-18 1997-10-03 Shinetsu Quartz Prod Co Ltd Method for analyzing amount of impurity in silicon dioxide
JPH11304791A (en) * 1998-04-24 1999-11-05 Tokuyama Corp Method for analyzing impurity of polycrystal silicon
JP2001099824A (en) * 1999-09-29 2001-04-13 Ngk Insulators Ltd Method for decomposing and analyzing non-oxide sample
JP2002030357A (en) * 2000-07-14 2002-01-31 Sumitomo Metal Mining Co Ltd Method for separating iridium, ruthenium and rhodium and their batch quantitative determination method
JP2002040009A (en) * 2000-07-28 2002-02-06 Mitsubishi Materials Silicon Corp Micro impurity analytical method in silicon substrate
JP2002168846A (en) * 2000-11-30 2002-06-14 Matsushita Electric Works Ltd Silicone analyzing method
JP2005181189A (en) * 2003-12-22 2005-07-07 Canon Inc Solution composition, and quantitative determination method for element
JP2005195551A (en) * 2004-01-09 2005-07-21 Tokuyama Corp Method of analyzing impurity in silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915758A (en) * 2010-08-23 2010-12-15 西安航空动力股份有限公司 Analysis method of impurity elements, such as manganese, copper, nickel and iron in rare-earth magnesium casting
CN101915758B (en) * 2010-08-23 2012-05-23 西安航空动力股份有限公司 Analysis method of impurity elements, such as manganese, copper, nickel and iron in rare-earth magnesium casting
CN102998271A (en) * 2012-12-10 2013-03-27 天津大学 Determination method of silicon dioxide, silicon and silicon carbide in waste mortar from silicon wafer cutting

Also Published As

Publication number Publication date
JP4800806B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples
JP4351224B2 (en) Analytical sample preparation method
JP5005317B2 (en) Translucent yttrium oxide sintered body and method for producing the same
JP2009128315A (en) Method for analyzing trace precious metal with radio-frequency plasma mass spectrometer
JP4800806B2 (en) Method for preparing sample solution for impurity analysis in silicon compound-containing sample
JP3693405B2 (en) Analytical method for the amount of impurities in silicon dioxide
US5344779A (en) Method for production of standard oxide sample for X-ray fluorescence spectrometry
Amberger et al. Direct multielement determination of trace elements in boron carbide powders by slurry sampling ETV-ICP-OES
JP2009031072A (en) Impurity concentration analysis method of siliceous powder
Jain et al. Problems associated with the determination of rare earth elements of a “gem” quality zircon by inductively coupled plasma‐mass spectrometry
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
Hauptkorn et al. Determination of silicon in titanium dioxide and zirconium dioxide by electrothermal atomic absorption spectrometry using the slurry sampling technique
Lafleur et al. Induction heating-electrothermal vaporization for direct mercury analysis of a single human hair strand by inductively coupled plasma mass spectrometry
JP2010197183A (en) Analysis method of trace element in alloy
CN104155267A (en) Method for chemically analyzing content of boron nitride in nickel-based powder material
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
TWI613432B (en) Component analysis apparatus and component analysis method
JP2015040789A (en) Analytical method of zirconium in quartz
Pavón et al. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics
JP4783654B2 (en) Translucent ceramic sintered body and manufacturing method thereof
JP6160205B2 (en) Titanate analysis method
JP6217932B2 (en) Method for quantifying the amount of SiO2 contained in a Cu metal material
Souza et al. Simultaneous determination of chromium and manganese in alumina by slurry sampling graphite furnace atomic absorption spectrometry using NbC and NaF as modifiers
JP2616177B2 (en) Ceramic composition analysis method
JP2018009981A (en) Method for quantifying amount of silicon in metal material, method for dissolving metal material including silicon component, and metal material dissolution liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150