JP2010197183A - Analysis method of trace element in alloy - Google Patents

Analysis method of trace element in alloy Download PDF

Info

Publication number
JP2010197183A
JP2010197183A JP2009041708A JP2009041708A JP2010197183A JP 2010197183 A JP2010197183 A JP 2010197183A JP 2009041708 A JP2009041708 A JP 2009041708A JP 2009041708 A JP2009041708 A JP 2009041708A JP 2010197183 A JP2010197183 A JP 2010197183A
Authority
JP
Japan
Prior art keywords
acid
alloy
hydrofluoric acid
silicon
trace elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009041708A
Other languages
Japanese (ja)
Inventor
Kengo Kayano
健吾 茅野
Isao Tanaka
勲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009041708A priority Critical patent/JP2010197183A/en
Publication of JP2010197183A publication Critical patent/JP2010197183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method of trace elements in an alloy capable of speedily and highly accurately analyzing trace elements contained in an alloy having a large silicon content. <P>SOLUTION: The analysis method of trace elements in an alloy for analyzing trace elements in an alloy having a first metal having ionization tendency greater than that of hydrogen as a principle component, containing trace elements and silicon, and containing silicon of 0.5 mass% or more in the mass of the whole alloy of 100 mass% is provided with an acid treatment process for dissolving the first metal by heating the alloy with an acid treatment liquid; a hydrofluoric acid treatment process for dissolving silicon and trace elements by adding hydrofluoric acid to the treatment liquid after the acid treatment process; and a masking process for bringing hydrofluoric acid remaining in the treatment liquid into reaction with boric acid by adding boric acid to the treatment liquid after the hydrofluoric acid treatment process. The analysis method of trace elements in an alloy is alternatively provided with an acid/hydrofluoric acid treatment process for dissolving the first metal by an acid treatment liquid by heating the alloy with the acid treatment liquid and hydrofluoric acid and dissolving silicon by hydrofluoric acid and a masking process for bringing hydrofluoric acid remaining in the treatment liquid into reaction with boric acid by adding boric acid to the treatment liquid after the acid/hydrofluoric acid treatment process. It is possible to highly accurately analyze trace elements in the alloy by eliminating a filtration process and to speedily analyze trace elements in the alloy by eliminating a volatilization process of hydrofluoric acid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリコンを含む合金中の微量元素を分析する方法に関する。   The present invention relates to a method for analyzing trace elements in an alloy containing silicon.

アルミニウム−シリコン合金などの合金には、微量元素が含まれる。微量元素は、一般に、結晶粒を微細化して合金の強度を向上させる目的でこれらの合金に添加される。例えば、JIS H 1306には、アルミニウム合金に含まれる鉄、銅、マンガン、亜鉛、マグネシウム、クロム、ニッケル、ビスマス、鉛の分析方法が規定されている。この方法では、アルミニウムを塩酸および過酸化水素水によって溶解することで、アルミニウム合金に含まれる微量元素を溶出して原子吸光分析する。塩酸および過酸化水素水による溶解後に不溶解分があれば、濾紙で濾過し、不溶解分(濾過残渣)と濾紙とを灰化し、灰化後の残留成分を硝酸とフッ化水素酸とで溶解する。その後、この溶解液と濾液とを原子吸光分析する。軽金属協会規格(LIS A03)にもアルミニウム合金に含まれる微量元素の分析方法が規定されているが、この方法も、JIS H 1306と同様の方法である。   An alloy such as an aluminum-silicon alloy contains a trace element. Trace elements are generally added to these alloys for the purpose of refining crystal grains and improving the strength of the alloys. For example, JIS H 1306 defines a method for analyzing iron, copper, manganese, zinc, magnesium, chromium, nickel, bismuth, and lead contained in an aluminum alloy. In this method, atomic absorption analysis is performed by eluting trace elements contained in an aluminum alloy by dissolving aluminum with hydrochloric acid and a hydrogen peroxide solution. If there is any insoluble matter after dissolution with hydrochloric acid and hydrogen peroxide, filter with filter paper, ash the insoluble matter (filter residue) and filter paper, and remove the residual components after ashing with nitric acid and hydrofluoric acid. Dissolve. Thereafter, the dissolved solution and the filtrate are subjected to atomic absorption analysis. A method for analyzing trace elements contained in an aluminum alloy is also defined in the Light Metal Association Standard (LIS A03). This method is also the same as JIS H 1306.

ところで、シリコン含量が大きいアルミニウム−シリコン合金(例えば、合金全体の質量100質量%中にシリコンが0.5質量%以上含まれているもの)に含まれる微量元素をこの方法で分析する場合には、微量元素を精度高く分析できない問題があった。これは、以下の理由による。   By the way, when analyzing a trace element contained in an aluminum-silicon alloy having a large silicon content (for example, silicon containing 0.5% by mass or more in 100% by mass of the whole alloy) by this method. There was a problem that trace elements could not be analyzed with high accuracy. This is due to the following reason.

シリコン含量の多い合金に含まれる微量元素をJIS H 1306やLIS A03に規定されている分析方法で分析する際には、濾過工程が必要になる。例えば、アルミニウム−シリコン合金中のアルミニウムは塩酸および過酸化水素水に溶解するが、シリコンは塩酸および過酸化水素水に不溶である。シリコン含量の多い合金を塩酸および過酸化水素水によって溶解させると、多くの不溶解分が生じる。濾過工程は、この不溶解分を除去するために必要である。しかし、一般的な濾紙には、カルシウムやナトリウム等の微量の不純物が含まれているため、分析試料は濾紙の不純物によって汚染される。このため分析試料を分析する際に全体の信号強度が高くなって、微量元素を精度高く分析できなくなる。   When analyzing a trace element contained in an alloy having a high silicon content by an analysis method defined in JIS H 1306 or LIS A03, a filtration step is required. For example, aluminum in an aluminum-silicon alloy dissolves in hydrochloric acid and hydrogen peroxide solution, but silicon is insoluble in hydrochloric acid and hydrogen peroxide solution. When an alloy having a high silicon content is dissolved by hydrochloric acid and hydrogen peroxide, a large amount of insoluble matter is generated. A filtration step is necessary to remove this insoluble matter. However, since a general filter paper contains a small amount of impurities such as calcium and sodium, the analysis sample is contaminated by the filter paper impurities. For this reason, when analyzing an analysis sample, the whole signal intensity | strength becomes high and it becomes impossible to analyze a trace element with high precision.

合金中のアルミニウム等を酸処理液によって溶解し、さらに、合金中のシリコンをフッ化水素酸によって溶解すれば、濾過の工程を省略しつつ合金中のシリコンを溶解できると考えられる。したがって、これの方法を用いれば、濾紙による分析試料の汚染を抑止しつつ全てまたはほぼ全ての微量元素を溶出でき、合金中の微量元素を精度高く分析できると考えられる。   If aluminum or the like in the alloy is dissolved with an acid treatment solution and silicon in the alloy is dissolved with hydrofluoric acid, the silicon in the alloy can be dissolved while omitting the filtration step. Therefore, if this method is used, it is considered that all or almost all trace elements can be eluted while suppressing the contamination of the analysis sample by the filter paper, and the trace elements in the alloy can be analyzed with high accuracy.

ところで、フッ化水素酸によって合金中のシリコンを完全またはほぼ完全に溶解させるためには、シリコンに対して過剰な量のフッ化水素酸を加える必要がある。このため分析試料には、フッ化水素酸が残存する。分析試料に残存するフッ化水素酸は、ガラスや石英等のSiOを含む材料(以下、単にガラスと呼ぶ)を腐食する。このため、分析試料用の容器やICPや原子吸光などの分析装置には、ガラス以外の材料(フッ素樹脂等)を用いる必要がある。しかし、成形時の精度確保、耐熱性、耐圧性等の理由により、分析試料用の容器や分析装置には、一般に、ガラス製の容器等が用いられている。このため、容器や分析装置の腐食を防止するためには、分析試料からフッ化水素酸を除去する必要がある。 By the way, in order to completely or almost completely dissolve silicon in the alloy by hydrofluoric acid, it is necessary to add an excessive amount of hydrofluoric acid to silicon. For this reason, hydrofluoric acid remains in the analysis sample. The hydrofluoric acid remaining in the analysis sample corrodes a material containing SiO 2 such as glass or quartz (hereinafter simply referred to as glass). For this reason, it is necessary to use materials (fluorine resin etc.) other than glass for the container for analysis samples, and analyzers, such as ICP and atomic absorption. However, for reasons such as ensuring accuracy during molding, heat resistance, and pressure resistance, glass containers and the like are generally used for analysis sample containers and analyzers. For this reason, it is necessary to remove hydrofluoric acid from the analysis sample in order to prevent corrosion of the container and the analyzer.

分析試料からフッ化水素酸を除去する方法として、フッ化水素酸を揮発させる方法が考えられる。しかし、フッ化水素酸を完全に揮発させるのには長い時間を要するため、この方法によると合金中の微量元素を効率良く測定し難い問題がある。このため、合金中の微量元素を高精度かつ迅速に測定できる分析方法が望まれている。   As a method of removing hydrofluoric acid from the analysis sample, a method of volatilizing hydrofluoric acid can be considered. However, since it takes a long time to completely volatilize hydrofluoric acid, this method has a problem that it is difficult to efficiently measure trace elements in the alloy. For this reason, an analysis method capable of measuring trace elements in an alloy with high accuracy and speed is desired.

JIS H 1306(アルミニウム及びアルミニウム合金の原子吸光分析
方法)
JIS H 1306 (Atom absorption analysis method for aluminum and aluminum alloys)

本発明は上記事情に鑑みてなされたものであり、シリコン含量の多い合金に含まれる微量元素を高精度かつ迅速に分析できる合金中の微量元素の分析方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the analysis method of the trace element in the alloy which can analyze the trace element contained in an alloy with many silicon contents with high precision and rapidly.

上記課題を解決する本発明の合金中の微量元素の分析方法は、水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、該合金を酸処理液とともに加熱して該第1の金属を溶解する酸処理工程と、該酸処理工程後の処理液にフッ化水素酸を加えて該シリコンと該微量元素とを溶解するフッ化水素酸処理工程と、該フッ化水素酸処理工程後の処理液にホウ酸を加えて、該処理液に残存するフッ化水素酸とホウ酸とを反応させるマスキング工程と、を含む前処理工程と、該前処理工程後の処理液から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする。   A method for analyzing trace elements in an alloy of the present invention that solves the above problems is an alloy containing a first metal having a higher ionization tendency than hydrogen as a main component and containing trace elements and silicon, and the mass of the entire alloy. A method for analyzing a trace element in an alloy containing 0.5 mass% or more of silicon in 100 mass%, wherein the alloy is heated with an acid treatment solution to dissolve the first metal. A treatment step, a hydrofluoric acid treatment step of adding hydrofluoric acid to the treatment solution after the acid treatment step to dissolve the silicon and the trace elements, and a treatment solution after the hydrofluoric acid treatment step. A pretreatment step comprising adding boric acid and reacting hydrofluoric acid remaining in the treatment liquid with boric acid, and preparing an analysis sample from the treatment liquid after the pretreatment step, An analysis step for analyzing the trace element of the analysis sample. And wherein the door.

また、上記課題を解決する本発明の合金中の微量元素の分析方法は、水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、該合金を酸処理液およびフッ化水素酸とともに加熱して、該酸処理液によって該第1の金属を溶解するとともに該フッ化水素酸によって該シリコンと該微量元素とを溶解する酸・フッ化水素酸処理工程と、該酸・フッ化水素酸処理工程後の処理液にホウ酸を加えて、該処理液に残存するフッ化水素酸とホウ酸とを反応させるマスキング工程と、を含む前処理工程と、該前処理工程後の残留成分から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする。   In addition, the method for analyzing trace elements in an alloy of the present invention that solves the above-described problem is an alloy containing a first metal having a higher ionization tendency than hydrogen as a main component and containing trace elements and silicon. In which the silicon is contained in an amount of 0.5% by mass or more in 100% by mass, the alloy being heated together with an acid treatment solution and hydrofluoric acid, An acid / hydrofluoric acid treatment step of dissolving the first metal with an acid treatment solution and dissolving the silicon and the trace element with the hydrofluoric acid; and after the acid / hydrofluoric acid treatment step An analytical sample is prepared from a pretreatment step including adding a boric acid to the treatment liquid and reacting hydrofluoric acid and boric acid remaining in the treatment liquid, and a residual component after the pretreatment step The trace element of the analysis sample is analyzed. Characterized in that it comprises an analysis step of, a.

本発明の合金中の微量元素の分析方法は、下記の(1)〜(4)の何れかを備えるのが好ましい。(1)〜(4)の複数を備えるのがより好ましい。   The method for analyzing trace elements in the alloy of the present invention preferably comprises any of the following (1) to (4). More preferably, a plurality of (1) to (4) are provided.

(1)上記第1の金属は、アルミニウムと鉄との少なくとも一方である。   (1) The first metal is at least one of aluminum and iron.

(2)上記酸処理液は、塩酸、硝酸、硫酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種である。   (2) The acid treatment liquid is one type selected from hydrochloric acid, nitric acid, sulfuric acid, a mixed liquid of hydrochloric acid and nitric acid, and a mixed liquid of hydrochloric acid and hydrogen peroxide.

(3)上記酸処理液は、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液である。   (3) The acid treatment liquid is a mixed liquid of an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen and an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen.

(4)上記微量元素は、ナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種である。   (4) The trace element is at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium.

本発明の合金中の微量元素の分析方法(以下、単に本発明の分析方法と略する)によると、フッ化水素酸処理工程または酸・フッ化水素酸処理工程後の処理液に残存するフッ化水素酸は、ホウ酸と反応してマスキングされる。このとき処理液とホウ酸との混合液中では下式(1)の反応が生じる。   According to the analysis method of trace elements in the alloy of the present invention (hereinafter simply referred to as the analysis method of the present invention), the fluorine remaining in the treatment liquid after the hydrofluoric acid treatment step or the acid / hydrofluoric acid treatment step. Hydrochloric acid is masked by reacting with boric acid. At this time, the reaction of the following formula (1) occurs in the mixed liquid of the treatment liquid and boric acid.

Figure 2010197183
Figure 2010197183

式(1)で生じたBF (テトラフルオロホウ酸アニオン)は、電気陰性度の高いフッ素によって安定化されているため、ガラスを腐食しない。よって、本発明の分析方法によると、フッ化水素酸を揮発させることなくガラス製の容器や分析装置の腐食を防止できる。よって、本発明の分析方法によると、合金中の微量元素を高精度かつ迅速に測定できる。 Since BF 4 (tetrafluoroborate anion) produced in the formula (1) is stabilized by fluorine having a high electronegativity, it does not corrode the glass. Therefore, according to the analysis method of the present invention, it is possible to prevent corrosion of the glass container or the analysis apparatus without volatilizing hydrofluoric acid. Therefore, according to the analysis method of the present invention, trace elements in the alloy can be measured with high accuracy and speed.

また、本発明の分析方法によると、酸処理液によって合金中の第1の金属(例えばアルミニウムなど)を溶解し、フッ化水素酸によって合金中のシリコンを溶解する。このため、濾過の工程を省略しつつ合金中のシリコンを溶解でき、濾紙による分析試料の汚染を抑止しつつ全てまたはほぼ全ての微量元素を溶解できる。よって、本発明の分析方法によると、微量元素を精度高く分析できる。   Further, according to the analysis method of the present invention, the first metal (for example, aluminum) in the alloy is dissolved by the acid treatment liquid, and the silicon in the alloy is dissolved by hydrofluoric acid. For this reason, the silicon in the alloy can be dissolved while omitting the filtration step, and all or almost all trace elements can be dissolved while suppressing the contamination of the analysis sample by the filter paper. Therefore, according to the analysis method of the present invention, trace elements can be analyzed with high accuracy.

また、本発明の分析方法によると、第1の金属としてアルミニウムと鉄との少なくとも一方を含む合金中の微量元素を特に精度高く分析できる。また、本発明の分析方法によると、合金中のナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種からなる微量元素を特に精度高く分析できる。   Moreover, according to the analysis method of the present invention, a trace element in an alloy containing at least one of aluminum and iron as the first metal can be analyzed particularly accurately. Further, according to the analysis method of the present invention, a trace element consisting of at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium in the alloy can be analyzed particularly accurately.

本発明の分析方法において、酸処理液として、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種を用いる場合には、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素をより精度高く分析できる。   In the analysis method of the present invention, when one kind selected from hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid, and a mixed liquid of hydrochloric acid and hydrogen peroxide is used as the acid treatment liquid, The trace elements in the alloy can be dissolved with high reliability, and the trace elements in the alloy can be analyzed with higher accuracy.

本発明の分析方法において、酸処理液として、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液を用いる場合には、水素よりもイオン化傾向の小さい金属に対する酸化力のない酸によって第1の金属を溶解するとともに、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸によって合金に含まれる第1の金属以外の金属を溶解できる。このため、この場合には、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素をより精度高く分析できる。   In the analysis method of the present invention, when a mixed solution of an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen and an acid having no oxidizing power for a metal having a smaller ionization tendency than hydrogen is used as the acid treatment liquid. The first metal is dissolved by an acid having no oxidizing power for a metal having a lower ionization tendency than hydrogen, and the acid other than the first metal contained in the alloy by an acid having an oxidizing power for a metal having a lower ionization tendency than hydrogen. Can dissolve metal. For this reason, in this case, the trace element in the alloy can be dissolved with high reliability, and the trace element in the alloy can be analyzed with higher accuracy.

本発明の分析方法は、水素よりもイオン化傾向の大きい第1の金属を主成分とする合金中の微量元素を分析する方法である。水素よりもイオン化傾向の大きい第1の金属としては、アルミニウム、鉄等が挙げられる。従って、本発明の分析方法はアルミニウム−シリコン合金や、鋳鉄に含まれる微量元素を分析する方法として好ましく用いられる。   The analysis method of the present invention is a method for analyzing trace elements in an alloy mainly composed of a first metal having a larger ionization tendency than hydrogen. Examples of the first metal having a higher ionization tendency than hydrogen include aluminum and iron. Therefore, the analysis method of the present invention is preferably used as a method for analyzing trace elements contained in an aluminum-silicon alloy or cast iron.

なお、本発明の分析方法で分析する合金は、合金全体の質量100質量%中に第1の金属が70質量%〜95質量%含まれているものであるのがよい。また、合金全体の質量100質量%中にシリコンが0.5質量%〜20質量%含まれているものであるのがよい。本発明の分析方法によると、これらの合金中の微量元素を精度高く分析できる。   The alloy to be analyzed by the analysis method of the present invention is preferably one in which 70% by mass to 95% by mass of the first metal is contained in 100% by mass of the total mass of the alloy. Moreover, it is good that 0.5 mass%-20 mass% of silicon is contained in 100 mass% of the whole alloy. According to the analysis method of the present invention, trace elements in these alloys can be analyzed with high accuracy.

本発明の分析方法において、フッ化水素酸処理工程は、酸処理工程の後に行っても良いし、酸処理工程と同時に行っても良い(すなわち酸・フッ化水素酸処理工程)。何れの場合にも、酸処理液によって第1の金属を溶解し、フッ化水素酸によってシリコンを溶解することで、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素を精度高く分析できる。なお、フッ化水素酸処理工程と酸処理工程とを同時に行う場合には(酸・フッ化水素酸処理工程)、フッ化水素酸処理工程を酸処理工程の後に行う場合に比べて、反応系中のフッ化水素酸濃度を高くすれば良い。   In the analysis method of the present invention, the hydrofluoric acid treatment step may be performed after the acid treatment step or may be performed simultaneously with the acid treatment step (that is, the acid / hydrofluoric acid treatment step). In any case, the trace element in the alloy can be dissolved with high reliability by dissolving the first metal with the acid treatment liquid and dissolving the silicon with hydrofluoric acid. Can be analyzed with high accuracy. In the case where the hydrofluoric acid treatment step and the acid treatment step are performed simultaneously (acid / hydrofluoric acid treatment step), the reaction system is compared with the case where the hydrofluoric acid treatment step is performed after the acid treatment step. What is necessary is just to make the hydrofluoric acid density | concentration inside high.

本発明の分析方法における酸処理液としては、第1の金属を溶解させ得るものを用いればよい。第1の金属を溶解させ得る酸処理液としては、例えば、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液等が挙げられる。このうち塩酸や硫酸は、水素よりもイオン化傾向の小さい金属に対する酸化力のない酸(すなわち、酸化力のない酸)であるが、水素よりもイオン化傾向の大きい金属を溶解する。このため、これらの酸は第1の金属を溶解させ得る。また、合金が第1の金属に加えて水素よりもイオン化傾向の小さい金属(例えば銅など)を含む場合には、酸処理液として水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液を用いればよい。この種の混合液としては、塩酸と硝酸との混合液(王水を含む)、塩酸と過酸化水素水との混合液等が挙げられる。   As the acid treatment solution in the analysis method of the present invention, a solution capable of dissolving the first metal may be used. Examples of the acid treatment liquid that can dissolve the first metal include hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid, a mixed liquid of hydrochloric acid and hydrogen peroxide, and the like. Of these, hydrochloric acid and sulfuric acid are acids that have less oxidizing power than metals that are less ionizable than hydrogen (that is, acids that do not have oxidizing power), but dissolve metals that have a higher ionization tendency than hydrogen. For this reason, these acids can dissolve the first metal. Further, when the alloy contains a metal (eg, copper) having a smaller ionization tendency than hydrogen in addition to the first metal, an acid and hydrogen having an oxidizing power for a metal having a smaller ionization tendency than hydrogen as the acid treatment liquid. What is necessary is just to use the liquid mixture with the acid which does not have the oxidizing power with respect to the metal with a smaller ionization tendency than. Examples of this type of mixed solution include a mixed solution of hydrochloric acid and nitric acid (including aqua regia), a mixed solution of hydrochloric acid and hydrogen peroxide, and the like.

参考までに、鋳鉄およびアルミニウム−シリコン合金の上記した各種酸処理液に対する溶解性を表す表を表1に示す。なお、塩酸としては濃塩酸と水とを体積比1:1で混合したものを用いた。硝酸としては濃硝酸と水とを体積比1:1で混合したものを用いた。硫酸としては、濃硫酸と水とを体積比1:9で混合したものを用いた。王水としては王水(濃塩酸と濃硝酸とを体積比3:1で混合したもの)と水とを体積比1:1で混合したものを用いた。塩酸と硝酸との混合液としては、濃塩酸と水とを体積比1:1で混合したものと、濃硝酸と、を体積比1:1で混合したものを用いた。塩酸と過酸化水素との混合液としては、濃塩酸と水とを体積比1:1で混合したものと、過酸化水素水と、を体積比1:1で混合したものを用いた。また各酸処理液で各合金を溶解させる作業は、酸処理液および合金をヒータで加熱しつつおこなった。このときのヒータ温度は約400℃であった。   For reference, Table 1 shows the solubility of cast iron and aluminum-silicon alloy in the various acid treatment solutions described above. As hydrochloric acid, concentrated hydrochloric acid and water mixed at a volume ratio of 1: 1 were used. Nitric acid used was a mixture of concentrated nitric acid and water at a volume ratio of 1: 1. As sulfuric acid, concentrated sulfuric acid and water mixed at a volume ratio of 1: 9 were used. As aqua regia, aqua regia (concentrated hydrochloric acid and concentrated nitric acid mixed at a volume ratio of 3: 1) and water mixed at a volume ratio of 1: 1 was used. As a mixed solution of hydrochloric acid and nitric acid, a mixture of concentrated hydrochloric acid and water in a volume ratio of 1: 1 and a mixture of concentrated nitric acid in a volume ratio of 1: 1 were used. As a mixed solution of hydrochloric acid and hydrogen peroxide, a mixture of concentrated hydrochloric acid and water in a volume ratio of 1: 1 and a mixture of hydrogen peroxide water in a volume ratio of 1: 1 were used. Moreover, the operation | work which melt | dissolves each alloy with each acid treatment liquid was performed, heating an acid treatment liquid and an alloy with a heater. The heater temperature at this time was about 400 ° C.

Figure 2010197183
Figure 2010197183

表1に示すように、各酸処理液は、鋳鉄中の鉄(第1の金属)および他の金属を十分に溶解するとともに、アルミニウム−シリコン合金中のアルミニウム(第1の金属)および他の金属を十分に溶解する。なお、アルミニウム−シリコン合金中のカルシウム、リン、ストロンチウムについては、表1に示す各種酸処理液で溶解するが、シリコンが高濃度の場合には、これらの元素が不溶解シリコンの中に取り込まれ、不溶解分となる場合がある。各合金を各酸処理液で溶解した処理液にフッ化水素酸を加えると、シリコンが溶解し、ニオブ、チタン、カルシウム、リン、ストロンチウムなどの微量元素(不溶解分)が溶解した。この結果から、塩酸、硫酸、硝酸、塩酸と硝酸との混合液(王水を含む)、塩酸と過酸化水素水との混合液は、第1の金属を溶解させ得る酸処理液として好ましく用いられることがわかる。   As shown in Table 1, each acid treatment solution sufficiently dissolves iron (first metal) and other metals in cast iron, and aluminum (first metal) and other metals in an aluminum-silicon alloy. Thoroughly dissolve the metal. Note that calcium, phosphorus, and strontium in the aluminum-silicon alloy are dissolved in various acid treatment solutions shown in Table 1, but when silicon is high in concentration, these elements are taken into the insoluble silicon. , May become insoluble matter. When hydrofluoric acid was added to a treatment solution obtained by dissolving each alloy with each acid treatment solution, silicon was dissolved, and trace elements (insoluble matter) such as niobium, titanium, calcium, phosphorus, and strontium were dissolved. From this result, hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid (including aqua regia), and a mixed liquid of hydrochloric acid and hydrogen peroxide are preferably used as an acid treatment liquid capable of dissolving the first metal. I understand that

本発明の分析方法における分析工程において微量元素を分析する方法としては、原子吸光分析、ICP(Inductively Coupled Plasma)質量分析等の一般的な元素分析方法を用いればよい。上述したように、本発明の分析方法における前処理工程は濾紙で濾過する工程を含まないため、これらの分析方法によって微量元素を高精度に分析できる。   As a method for analyzing trace elements in the analysis step of the analysis method of the present invention, a general elemental analysis method such as atomic absorption analysis or ICP (Inductively Coupled Plasma) mass spectrometry may be used. As described above, since the pretreatment process in the analysis method of the present invention does not include the process of filtering with filter paper, trace elements can be analyzed with high accuracy by these analysis methods.

なお、本発明の分析方法の分析工程においては、ガラス製の容器やガラスを用いた分析装置を用いることができるが、ガラス以外の材料(フッ素樹脂製等)を用いた容器や分析装置を用いても良い。   In the analysis step of the analysis method of the present invention, a glass container or an analyzer using glass can be used, but a container or analyzer using a material other than glass (such as a fluororesin) is used. May be.

以下、具体例を挙げて本発明の分析方法を説明する。   Hereinafter, the analysis method of the present invention will be described with specific examples.

実施例の分析方法では、合金としてアルミニウム−シリコン合金(Hydro Aluminium製 V3046−4)を用いた。この合金は、合金全体の質量100質量%に対して約6.98質量%のシリコンを含む。また、この合金は、合金全体の質量100質量%に対して約88質量%のアルミニウムを含む。さらに、微量元素として、合金全体の質量100質量%に対して約0.0015質量%のカルシウム、0.00177質量%のナトリウム、0.039質量%のストロンチウム、0.0016質量%のリン等を含む。   In the analysis method of the example, an aluminum-silicon alloy (V3046-4 manufactured by Hydro Aluminium) was used as the alloy. This alloy contains about 6.98% silicon by mass with respect to 100% by mass of the total alloy. Moreover, this alloy contains about 88 mass% aluminum with respect to 100 mass% of the whole alloy. Furthermore, as a trace element, about 0.0015 mass% calcium, 0.00177 mass% sodium, 0.039 mass% strontium, 0.0016 mass% phosphorus, etc. with respect to 100 mass% of the whole alloy. Including.

以下、実施例の分析方法を詳しく説明する。   Hereinafter, the analysis method of an Example is demonstrated in detail.

(前処理工程 1.酸処理工程)
先ず、合金の切削片0.5gをフッ素樹脂製のビーカーにとった。このビーカーに、濃塩酸と水とを体積比1:1で混合してなる酸処理液20mlを加え、さらに、濃硝酸5mlを徐々に加えた。
(Pretreatment process 1. Acid treatment process)
First, 0.5 g of an alloy cut piece was taken in a beaker made of fluororesin. To this beaker, 20 ml of an acid treatment solution obtained by mixing concentrated hydrochloric acid and water at a volume ratio of 1: 1 was added, and further 5 ml of concentrated nitric acid was gradually added.

この処理液を、ヒータにて400〜500℃に加熱した。この工程で合金中のアルミニウムが溶解した。   This treatment liquid was heated to 400 to 500 ° C. with a heater. In this step, the aluminum in the alloy was dissolved.

(前処理工程 2.フッ化水素酸処理工程)
酸処理工程後の処理液をヒータからおろし、約50℃にまで放冷した後にフッ化水素酸を1.5ml加えた。その後、処理液を再度ヒータにて400℃に加熱した。この工程で、合金中(処理液中)のシリコンおよび微量元素が溶解した。
(Pretreatment process 2. Hydrofluoric acid treatment process)
The treatment solution after the acid treatment step was removed from the heater, allowed to cool to about 50 ° C., and 1.5 ml of hydrofluoric acid was added. Thereafter, the treatment liquid was again heated to 400 ° C. with a heater. In this step, silicon and trace elements in the alloy (in the treatment liquid) were dissolved.

(前処理工程 3.マスキング工程)
フッ化水素酸処理工程後の処理液をヒータからおろし、約50℃にまで放冷した。その後、処理液に飽和ホウ酸(HBO)溶液を9ml加えた。この工程で、ホウ酸と処理液に残存するフッ化水素酸とが反応し、フッ化水素酸がマスキングされた。
(Pretreatment process 3. Masking process)
The treatment liquid after the hydrofluoric acid treatment step was removed from the heater and allowed to cool to about 50 ° C. Thereafter, 9 ml of a saturated boric acid (H 3 BO 3 ) solution was added to the treatment liquid. In this step, boric acid and hydrofluoric acid remaining in the treatment liquid reacted to mask the hydrofluoric acid.

(分析工程)
塩溶解工程後の処理液を放冷して100mlに定容し、分析試料を調製した。この分析試料中の微量元素(カルシウム)をICPによって分析(定量)した。ICP用の装置としては、島津製作所製ICPV8100を用いた。分析時の高周波出力は1.2kWであった。プラズマ観測高さは15mmであった。アルゴンガス量は、プラズマ:14L/分、クーラント:1.5L/分、キャリア:0.7L/分であった。分析波長は393.7nmであった。このICPによる分析を10回繰り返した(分析番号1〜10)。分析工程で得られた10回分の分析値(カルシウムの濃度、ppm)を基に、分析値の平均(ppm)、標準偏差、変動係数(標準偏差/相加平均×100、%)を算出した。なお、実施例で用いた合金は、カルシウム濃度(標準値)が15.0ppmになるように製造されたものである。分析工程で得られた分析結果を表2に示す。
(Analysis process)
The treatment solution after the salt dissolution step was allowed to cool and the volume was adjusted to 100 ml to prepare an analytical sample. The trace element (calcium) in the analysis sample was analyzed (quantified) by ICP. As an ICP device, ICPV8100 manufactured by Shimadzu Corporation was used. The high-frequency output during analysis was 1.2 kW. The plasma observation height was 15 mm. The amounts of argon gas were plasma: 14 L / min, coolant: 1.5 L / min, and carrier: 0.7 L / min. The analytical wavelength was 393.7 nm. This analysis by ICP was repeated 10 times (analysis numbers 1 to 10). Based on the analysis values (calcium concentration, ppm) for 10 times obtained in the analysis step, the average (ppm), standard deviation, and coefficient of variation (standard deviation / arithmetic mean × 100,%) of the analysis values were calculated. . The alloys used in the examples were manufactured so that the calcium concentration (standard value) was 15.0 ppm. Table 2 shows the analysis results obtained in the analysis step.

Figure 2010197183
Figure 2010197183

表2に示すように、実施例の分析方法で得られた分析値は、15.0〜16.5ppmであり、分析値の平均は15.8ppmであった。この値は、標準値である15.0ppmとほぼ一致した。また、実施例の分析方法で得られた分析値の変動係数は3.7%と非常に小さい値であった。さらに、実施例の分析方法で得られた分析値を基に、カルシウムの定量下限を算出した。詳しくは、ブランク試料を繰り返し分析した際の標準偏差(σBL)を基に、10×σBLを定量下限とした。算出された定量下限は1ppmと非常に小さい値であった。参考までに、軽金属協会のLIS A04に記載されている共同実験の変動係数は51.9%であり、定量下限は10ppmである。上述したように、実施例の分析方法によると変動係数3.7%、定量下限1ppmで合金中のカルシウムを分析できる。この結果から、実施例の分析方法(すなわち、本発明の合金中の微量元素の分析方法)によると、合金中の微量元素を精度高く分析できることがわかる。 As shown in Table 2, the analytical value obtained by the analytical method of the example was 15.0 to 16.5 ppm, and the average analytical value was 15.8 ppm. This value almost coincided with the standard value of 15.0 ppm. The coefficient of variation of the analytical value obtained by the analytical method of the example was a very small value of 3.7%. Furthermore, the lower limit of quantification of calcium was calculated based on the analysis value obtained by the analysis method of the example. Specifically, 10 × σ BL was defined as the lower limit of quantification based on the standard deviation (σ BL ) when the blank sample was repeatedly analyzed. The calculated lower limit of quantification was a very small value of 1 ppm. For reference, the coefficient of variation of the joint experiment described in LIS A04 of the Light Metal Association is 51.9%, and the lower limit of quantification is 10 ppm. As described above, according to the analysis method of the example, calcium in the alloy can be analyzed with a variation coefficient of 3.7% and a lower limit of quantification of 1 ppm. From this result, it can be seen that the trace element in the alloy can be analyzed with high accuracy according to the analysis method of the example (that is, the trace element analysis method in the alloy of the present invention).

なお、実施例の分析方法では、フッ化水素酸処理工程後の処理液に残存するフッ化水素酸をホウ酸によってマスキングしたことで、フッ化水素酸を揮発させる工程を省略できる。このため、実施例の分析方法によると、合金中の微量元素を迅速に分析できる。   In addition, in the analysis method of an Example, the process which volatilizes hydrofluoric acid can be skipped by masking the hydrofluoric acid which remains in the process liquid after a hydrofluoric acid treatment process with boric acid. For this reason, according to the analysis method of an Example, the trace element in an alloy can be analyzed rapidly.

Claims (6)

水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、
該合金を酸処理液とともに加熱して該第1の金属を溶解する酸処理工程と、
該酸処理工程後の処理液にフッ化水素酸を加えて該シリコンと該微量元素とを溶解するフッ化水素酸処理工程と、
該フッ化水素酸処理工程後の処理液にホウ酸を加えて、該処理液に残存するフッ化水素酸とホウ酸とを反応させるマスキング工程と、
を含む前処理工程と、
該前処理工程後の処理液から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする合金中の微量元素の分析方法。
An alloy containing, as a main component, a first metal that has a higher ionization tendency than hydrogen and containing a trace element and silicon, the silicon is contained in an amount of 0.5% by mass or more in 100% by mass of the entire alloy. A method for analyzing trace elements in an alloy,
An acid treatment step of heating the alloy together with an acid treatment solution to dissolve the first metal;
Hydrofluoric acid treatment step of adding hydrofluoric acid to the treatment liquid after the acid treatment step to dissolve the silicon and the trace elements;
A masking step of adding boric acid to the treatment liquid after the hydrofluoric acid treatment step and reacting hydrofluoric acid and boric acid remaining in the treatment liquid;
A pretreatment process including:
An analysis step of preparing an analysis sample from the treatment solution after the pretreatment step and analyzing the trace element of the analysis sample, and a method for analyzing the trace element in the alloy.
水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、
該合金を酸処理液およびフッ化水素酸とともに加熱して、該酸処理液によって該第1の金属を溶解するとともに該フッ化水素酸によって該シリコンと該微量元素とを溶解する酸・フッ化水素酸処理工程と、
該酸・フッ化水素酸処理工程後の処理液にホウ酸を加えて、該処理液に残存するフッ化水素酸とホウ酸とを反応させるマスキング工程と、
を含む前処理工程と、
該前処理工程後の残留成分から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする合金中の微量元素の分析方法。
An alloy containing, as a main component, a first metal that has a higher ionization tendency than hydrogen and containing a trace element and silicon, the silicon is contained in an amount of 0.5% by mass or more in 100% by mass of the entire alloy. A method for analyzing trace elements in an alloy,
The alloy is heated with an acid treatment solution and hydrofluoric acid to dissolve the first metal with the acid treatment solution and to dissolve the silicon and the trace element with the hydrofluoric acid. Hydroacid treatment process;
A masking step of adding boric acid to the treatment liquid after the acid / hydrofluoric acid treatment step and reacting hydrofluoric acid remaining in the treatment liquid with boric acid;
A pretreatment process including:
An analysis step of preparing an analysis sample from the residual components after the pretreatment step and analyzing the trace element of the analysis sample, and a method for analyzing the trace element in the alloy.
前記第1の金属は、アルミニウムと鉄との少なくとも一方である請求項1または請求項2に記載の合金中の微量元素の分析方法。   The method for analyzing trace elements in an alloy according to claim 1 or 2, wherein the first metal is at least one of aluminum and iron. 前記酸処理液は、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種である請求項1〜請求項3の何れかに記載の合金中の微量元素の分析方法。   The acid treatment solution is one selected from hydrochloric acid, sulfuric acid, nitric acid, a mixed solution of hydrochloric acid and nitric acid, and a mixed solution of hydrochloric acid and hydrogen peroxide solution. Of trace elements in alloys. 前記酸処理液は、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液である請求項1〜請求項4の何れか一つに記載の合金中の微量元素の分析方法。   The acid treatment solution is a mixed solution of an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen and an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen. The analysis method of the trace element in the alloy as described in any one. 前記微量元素は、ナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種である請求項1〜請求項5の何れか一つに記載の合金中の微量元素の分析方法。   The method for analyzing a trace element in an alloy according to any one of claims 1 to 5, wherein the trace element is at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium.
JP2009041708A 2009-02-25 2009-02-25 Analysis method of trace element in alloy Pending JP2010197183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041708A JP2010197183A (en) 2009-02-25 2009-02-25 Analysis method of trace element in alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041708A JP2010197183A (en) 2009-02-25 2009-02-25 Analysis method of trace element in alloy

Publications (1)

Publication Number Publication Date
JP2010197183A true JP2010197183A (en) 2010-09-09

Family

ID=42822060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041708A Pending JP2010197183A (en) 2009-02-25 2009-02-25 Analysis method of trace element in alloy

Country Status (1)

Country Link
JP (1) JP2010197183A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466582A (en) * 2010-11-10 2012-05-23 内蒙古蒙牛乳业(集团)股份有限公司 Pretreatment method of sweetened bean paste for detection of sodium element therein and method for detecting sodium element in sweetened bean paste
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method
CN112378722A (en) * 2020-11-16 2021-02-19 昆明理工恒达科技股份有限公司 Aluminum/transition layer/lead alloy/PbO2Method for quickly preparing metallographic sample of composite rod
CN114689569A (en) * 2022-04-02 2022-07-01 北京科技大学 Method for testing silicon-aluminum ratio of molecular sieve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310586A (en) * 1999-04-27 2000-11-07 Nisshin Steel Co Ltd Method for quantitative analysis to submaterial for steelmaking
JP2003121320A (en) * 2001-10-09 2003-04-23 National Institute For Materials Science Method for analyzing iridium alloy
CN101131340A (en) * 2006-08-21 2008-02-27 中国南车集团戚墅堰机车车辆厂 Method for preparing aluminum alloy solution example when detecting aluminum alloy constituent by plasma spectroscopic method
JP2008128992A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Apparatus and method for analyzing silicon containing solid metallic material
JP2008309767A (en) * 2007-05-11 2008-12-25 Horiba Ltd Method for decomposing solid sample and method for determining quantity of chrome using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310586A (en) * 1999-04-27 2000-11-07 Nisshin Steel Co Ltd Method for quantitative analysis to submaterial for steelmaking
JP2003121320A (en) * 2001-10-09 2003-04-23 National Institute For Materials Science Method for analyzing iridium alloy
CN101131340A (en) * 2006-08-21 2008-02-27 中国南车集团戚墅堰机车车辆厂 Method for preparing aluminum alloy solution example when detecting aluminum alloy constituent by plasma spectroscopic method
JP2008128992A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Apparatus and method for analyzing silicon containing solid metallic material
JP2008309767A (en) * 2007-05-11 2008-12-25 Horiba Ltd Method for decomposing solid sample and method for determining quantity of chrome using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6012042367; Anal Chim Acta Vol.109, No.1, Page.165-169, 1979 *
JPN6012042371; 山形県工業技術センター報告 No.24(1992), Page.30-35, 1993 *
JPN6012042373; Appl Spectrosc Vol.37, No.4, Page.389-395, 1983 *
JPN6012042376; Indian J Chem Sect A Vol.30, No.3, Page.296-298, 1991 *
JPN6012042377; Anal Chim Acta Vol.135, No.2, Page.369-372, 1982 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466582A (en) * 2010-11-10 2012-05-23 内蒙古蒙牛乳业(集团)股份有限公司 Pretreatment method of sweetened bean paste for detection of sodium element therein and method for detecting sodium element in sweetened bean paste
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method
CN112378722A (en) * 2020-11-16 2021-02-19 昆明理工恒达科技股份有限公司 Aluminum/transition layer/lead alloy/PbO2Method for quickly preparing metallographic sample of composite rod
CN112378722B (en) * 2020-11-16 2024-04-12 昆明理工恒达科技股份有限公司 Aluminum/transition layer/lead alloy/PbO 2 Rapid preparation method of metallographic sample of composite rod
CN114689569A (en) * 2022-04-02 2022-07-01 北京科技大学 Method for testing silicon-aluminum ratio of molecular sieve

Similar Documents

Publication Publication Date Title
JP2010197183A (en) Analysis method of trace element in alloy
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
JP4656508B2 (en) Determination of selenium by chemical form
JP2001324427A (en) Method for high accuracy boron analysis in iron and steel
JP3768442B2 (en) Analytical sample preparation method and element quantification method
JP5122635B2 (en) Nickel crucible for melting analytical sample, analytical sample preparation method and analytical method
JP2011214977A (en) Method of analyzing metal element in resin material
KR101839249B1 (en) Pre-processing method for analysis of Boron and method for analysis of Boron using the same
JP2010271197A (en) Method for analyzing metal impurity in silicon powder
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
JP2019191012A (en) Element analysis method of inorganic sample
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP2009174902A (en) Analyzing method of very small amount of element in alloy
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
JP4552645B2 (en) Determination of heavy metal elements
JP4559932B2 (en) Method for analyzing metal impurities
JP4889608B2 (en) Method for analyzing impurities in aluminum-based ceramics
JP5690244B2 (en) Solder composition analysis method
Nete et al. Alternative dissolution methods for analysis of niobium containing samples
JP2020193939A (en) Method for preparing sample for quantification and method for manufacturing silver chloride
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
JP6160205B2 (en) Titanate analysis method
JP2020165865A (en) Tungsten quantitative analysis method
JP2020165863A (en) Tungsten quantitative analysis method
JPS622259B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205