JP2020165863A - Tungsten quantitative analysis method - Google Patents

Tungsten quantitative analysis method Download PDF

Info

Publication number
JP2020165863A
JP2020165863A JP2019067878A JP2019067878A JP2020165863A JP 2020165863 A JP2020165863 A JP 2020165863A JP 2019067878 A JP2019067878 A JP 2019067878A JP 2019067878 A JP2019067878 A JP 2019067878A JP 2020165863 A JP2020165863 A JP 2020165863A
Authority
JP
Japan
Prior art keywords
quantitative analysis
tungsten
solution
acid
white smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019067878A
Other languages
Japanese (ja)
Inventor
恭平 山口
Kyohei Yamaguchi
恭平 山口
佐々木 智彦
Tomohiko Sasaki
智彦 佐々木
真理子 徳永
Mariko Tokunaga
真理子 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKO TECHNO RES CO Ltd
SUMIKO TECHNO-RESEARCH CO Ltd
Original Assignee
SUMIKO TECHNO RES CO Ltd
SUMIKO TECHNO-RESEARCH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKO TECHNO RES CO Ltd, SUMIKO TECHNO-RESEARCH CO Ltd filed Critical SUMIKO TECHNO RES CO Ltd
Priority to JP2019067878A priority Critical patent/JP2020165863A/en
Publication of JP2020165863A publication Critical patent/JP2020165863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

To provide a quantitative analysis method with which it is possible to accurately and easily carry out the quantitative analysis of W in a metal compound.SOLUTION: Provided is a tungsten quantitative analysis method comprising: a mixing step for mixing the oxide of a metal element, nitric acid, a hydrogen peroxide solution and perchloric acid and obtaining a mixture; a white smoke treatment step for heating the mixture for white smoke treatment and obtaining a white smoke treated liquid; a dissolving step for adding nitric acid and hydrofluoric acid to the white smoke treated liquid and decomposing these to obtain a dissolved liquid; a masking step for adding boric acid to the dissolved liquid and obtaining a dissolved liquid in which free hydrofluoric acid is masked; and a quantitative measurement step for quantitatively measuring a tungsten amount in the dissolved liquid in which free hydrofluoric acid is masked.SELECTED DRAWING: Figure 1

Description

本発明は、金属化合物中におけるタングステンの定量分析方法に関するものである。 The present invention relates to a method for quantitative analysis of tungsten in a metal compound.

金属化合物には、金属酸化物、金属水酸化物、金属窒化物等の多くの種類があり、いずれも各種の工業用材料として重要である。当該金属化合物に含まれる金属も鉄、銅、ニッケルを初めとして多くの種類がある。
近年、各種の触媒材料、光学材料等の分野において、金属化合物の一成分としてタングステン(本発明において「W」と記載する場合がある。)が用いられる場合が増えてきた。当該各分野で使用される金属化合物の一成分であるWの重要性に鑑み、産業界において、当該金属化合物中におけるWの定量分析を正確かつ容易に実施可能とする定量分析方法が求められている。
ここで、Wの定量分析方法として非特許文献1、2、3が知られており、非特許文献1には、鉄及び鋼−タングステン定量分析方法について記載され、非特許文献2には鉱石中のタングステン定量分析方法について記載され、非特許文献3には鉄−タングステン合金中のタングステン定量分析方法について記載されている。
There are many types of metal compounds such as metal oxides, metal hydroxides, and metal nitrides, all of which are important as various industrial materials. There are many types of metals contained in the metal compound, including iron, copper, and nickel.
In recent years, in the fields of various catalyst materials, optical materials, and the like, tungsten (sometimes referred to as "W" in the present invention) is increasingly used as a component of a metal compound. In view of the importance of W, which is a component of metal compounds used in each of the fields, there is a demand in the industrial world for a quantitative analysis method that enables accurate and easy quantitative analysis of W in the metal compound. There is.
Here, Non-Patent Documents 1, 2 and 3 are known as W quantitative analysis methods, Non-Patent Document 1 describes iron and steel-tungsten quantitative analysis methods, and Non-Patent Document 2 describes in ore. The method for quantitative analysis of tungsten in Tungsten is described, and Non-Patent Document 3 describes the method for quantitative analysis of tungsten in an iron-tungsten alloy.

JIS G 1220JIS G 1220 JIS M 8128JIS M 8128 BUNSEKI KAGAKU Vol.19,pp.207−212(1970)BUNSEKI KAGAKU Vol. 19, pp. 207-212 (1970)

非特許文献1に記載されている鉄及び鋼−タングステン定量分析方法の要旨は、試料を適切な酸で分解し、Wをタングステン酸とし、シンコニンを加えてWを完全に沈殿させる。沈殿をこし分け、強熱した後、硫酸とふっ化水素酸とで処理して二酸化けい素を除去し、再び、強熱して不純酸化タングステン(VI)の質量をはかる。次に、不純酸化タングステンを炭酸ナトリウムで融解し、温水に溶かしてこし分け、不溶解残さを強熱して質量をはかり、不純酸化タングステン(VI)の質量から差し引くというものである。 The gist of the iron and steel-tungsten quantitative analysis method described in Non-Patent Document 1 is that the sample is decomposed with an appropriate acid, W is made into tungstic acid, and cinchonine is added to completely precipitate W. After squeezing the precipitate and igniting it, it is treated with sulfuric acid and hydrofluoric acid to remove silicon dioxide, and ignited again to measure the mass of impure tungsten oxide (VI). Next, the impure tungsten oxide is melted with sodium carbonate, dissolved in warm water and strained, and the insoluble residue is heated to a high mass to measure the mass and subtract it from the mass of the impure tungsten oxide (VI).

非特許文献2に記載されている鉱石中のW定量分析方法の要旨は、試料を塩酸と硝酸とで分解し、シンコニンを加え、生成するタングステン酸の沈殿をこし分け、アンモニア水で溶解した後、未分解物をろ別する。そして、得られたろ液に、塩化マグネシウム及び塩化アンモニウムを加えてりん又はニオブを沈殿させてろ別する。そして、得られたろ液に再び塩酸、硝酸及びシンコニンを加え、タングステン酸の沈殿を再度生成させ、こし分ける。得られた沈殿を強熱して酸化タングステン(VI)とし、硫酸とふっ化水素酸とで処理して二酸化けい素を除去し、再び強熱した後、酸化タングステン(VI)の質量をはかる。次にこの酸化タングステン(VI)並びに先にろ別した未分解物、及びりん又はニオブの沈殿を炭酸ナトリウムとホウ酸とで融解し、過酸化水素水、塩酸及び酒石酸を加えて溶解した後、ICP発光分光法によって、酸化タングステン(VI)に含まれているモリブデン並びに未分解物、及びりん又はニオブの沈殿に含まれているWを定量分析するというものである。 The gist of the W quantitative analysis method in ore described in Non-Patent Document 2 is that the sample is decomposed with hydrochloric acid and nitric acid, synconin is added, the precipitate of the generated tungstic acid is squeezed out, and then dissolved in aqueous ammonia. , Separate undecomposed products. Then, magnesium chloride and ammonium chloride are added to the obtained filtrate to precipitate phosphorus or niobium, and the mixture is separated by filtration. Then, hydrochloric acid, nitric acid and cinchonine are added to the obtained filtrate again to regenerate a precipitate of tungstic acid and strain it. The obtained precipitate is ignited to obtain tungsten oxide (VI), treated with sulfuric acid and hydrofluoric acid to remove silicon dioxide, and ignited again, and then the mass of tungsten oxide (VI) is measured. Next, this tungsten oxide (VI), the previously filtered undecomposed product, and the precipitate of phosphorus or niobium are melted with sodium carbonate and boric acid, and hydrogen peroxide solution, hydrochloric acid, and tartrate acid are added to dissolve the precipitate. The ICP emission spectroscopy is used to quantitatively analyze molybdenum and undecomposed products contained in tungsten oxide (VI) and W contained in the precipitate of phosphorus or niobium.

非特許文献3に記載されている鉄−タングステン合金中のW定量方法の要旨は、試料をリン酸と塩酸と硝酸とで分解し、分解物をろ紙を用いてろ別し、溶解液と不溶解成分とを得る。不溶解成分はアンモニア類および温水で洗浄する。溶解液および不溶解成分の洗浄液を合わせて、定容する。得られた定容された溶液へICP発光分光法を適用してWを定量する。ろ紙上の不溶解成分は炭酸ナトリウムで融解後、得られた溶融塩を水に溶解し定容する。得られた定容された溶液へICP発光分光法を適用してWを定量する。以上2つのW定量結果から試料中のW濃度を求める、というものである。 The gist of the W quantification method in an iron-tungsten alloy described in Non-Patent Document 3 is that a sample is decomposed with phosphoric acid, hydrochloric acid and nitric acid, and the decomposed product is filtered using a filter paper, and is insoluble in a solution. Get the ingredients. Insoluble components are washed with ammonia and warm water. Combine the dissolved solution and the cleaning solution of the insoluble component, and set the volume. ICP emission spectroscopy is applied to the obtained volumetric solution to quantify W. The insoluble component on the filter paper is melted with sodium carbonate, and then the obtained molten salt is dissolved in water and the volume is adjusted. ICP emission spectroscopy is applied to the obtained volumetric solution to quantify W. The W concentration in the sample is obtained from the above two W quantification results.

以上の説明から明らかなように、従来の技術に係る非特許文献1〜3に記載された定量分析方法は、操作の工程が長く、容易に実施可能な定量分析方法ではないと考えられる。
本発明は、上述の状況の下で為されたものであり、その解決しようとする課題は、金属化合物中におけるWの定量分析を正確かつ容易に実施可能とする、Wの定量分析方法を提供することである。
As is clear from the above description, it is considered that the quantitative analysis methods described in Non-Patent Documents 1 to 3 according to the prior art are not easily feasible quantitative analysis methods because the operation steps are long.
The present invention has been made under the above circumstances, and the problem to be solved thereof is to provide a method for quantitative analysis of W, which enables accurate and easy quantitative analysis of W in a metal compound. It is to be.

上述の課題を解決する為、本発明者らは研究を行った。そして、定量分析の対象である金属化合物が金属元素の酸化物であり、さらに、W金属、W酸化物から選択される1種以上を含むものである場合、当該金属化合物中におけるWの定量分析を、正確かつ容易に実施可能とする定量分析方法に想到し、上述の課題を解決することが出来た。 In order to solve the above-mentioned problems, the present inventors conducted research. Then, when the metal compound to be the target of the quantitative analysis is an oxide of a metal element and further contains one or more selected from W metal and W oxide, the quantitative analysis of W in the metal compound is performed. We came up with a quantitative analysis method that can be carried out accurately and easily, and were able to solve the above-mentioned problems.

即ち、上述の課題を解決する為の第1の発明は、
金属元素の酸化物中における、タングステンの定量分析方法であって、
前記金属元素の酸化物と、硝酸と、過酸化水素水と、過塩素酸とを混合して、混合物を得る分解工程と、
前記混合物を加熱して白煙処理し、白煙処理後液を得る白煙処理工程と、
前記白煙処理後液へ、硝酸とフッ化水素酸とを加えて分解し、溶解液を得る溶解工程と、
前記溶解液へホウ酸を加えて、遊離のフッ化物イオンがマスキングされた溶解液を得るマスキング工程と、
前記遊離のフッ化物イオンがマスキングされた溶解液中におけるタングステン量を定量測定するタングステンの定量工程とを、有することを特徴とするタングステンの定量分析方法である。
第2の発明は、
前記金属元素の酸化物が2種以上の金属元素を含み、前記タングステンがタングステン金属、タングステン酸化物から選択される1種以上であることを特徴とする第1の発明に記載のタングステンの定量分析方法である。
第3の発明は、
前記溶解工程において、前記白煙処理後液を溶液化することを特徴とする第1または第2の発明に記載のタングステンの定量分析方法である。
第4の発明は、
前記マスキング工程において、前記溶解工程にて加えられたフッ化水素酸の当量以上のホウ酸を加えることを特徴とする第1から第3の発明のいずれかに記載のタングステンの定量分析方法である。
である。
That is, the first invention for solving the above-mentioned problems is
A method for quantitative analysis of tungsten in oxides of metal elements.
A decomposition step of mixing the oxide of the metal element, nitric acid, hydrogen peroxide solution, and perchloric acid to obtain a mixture.
A white smoke treatment step of heating the mixture to treat white smoke to obtain a liquid after the white smoke treatment,
A dissolution step of adding nitric acid and hydrofluoric acid to the solution after white smoke treatment and decomposing it to obtain a solution.
A masking step of adding boric acid to the solution to obtain a solution in which free fluoride ions are masked.
A method for quantitative analysis of tungsten, which comprises a tungsten quantification step of quantitatively measuring the amount of tungsten in a solution in which free fluoride ions are masked.
The second invention is
Quantitative analysis of tungsten according to the first invention, wherein the oxide of the metal element contains two or more kinds of metal elements, and the tungsten is one or more kinds selected from tungsten metal and tungsten oxide. The method.
The third invention is
The method for quantitative analysis of tungsten according to the first or second invention, which comprises solubilizing the liquid after white smoke treatment in the dissolution step.
The fourth invention is
The method for quantitative analysis of tungsten according to any one of the first to third inventions, which comprises adding boric acid equal to or more than the equivalent of hydrofluoric acid added in the dissolution step in the masking step. ..
Is.

本発明によれば、金属化合物中におけるWの定量分析を、正確かつ容易に実施することが出来る。 According to the present invention, quantitative analysis of W in a metal compound can be carried out accurately and easily.

Wの定量分析操作を示すフロー図である。It is a flow chart which shows the quantitative analysis operation of W.

各種の触媒材料、光学材料等の分野において、金属化合物の一成分としてWが用いられる場合が増えてきた。当該各分野で使用される金属化合物の一成分であるWの重要性に鑑み、産業界において、当該金属化合物中におけるWの定量分析を正確かつ容易に実施可能とする定量分析方法が求められている。 In the fields of various catalyst materials, optical materials, and the like, W is increasingly used as a component of metal compounds. In view of the importance of W, which is a component of the metal compound used in each of the fields, there is a demand in the industrial world for a quantitative analysis method that enables accurate and easy quantitative analysis of W in the metal compound. There is.

本発明者らが、非特許文献1、2および3等の従来の技術に係るWの定量分析方法を検討したころ、いずれの方法も分析工程が長く、分析操作も複雑なものであった。ここで本発明者らは研究の結果、これら従来の技術に係るWの定量分析方法は、W含有鉱石のように金属化合物と非金属化合物との両方を含む化合物中におけるWの定量分析方法であることに想到した。一方、各種の触媒材料、光学材料等の分野において用いられる化合物の多くは、非金属化合物を含まない金属化合物であることにも想到した。
そして、Wを含む化合物が各種の触媒材料、光学材料等の分野において用いられる金属化合物のように、金属元素の酸化物であり、さらに、W金属、W酸化物から選択される1種以上を含むものである場合、従来の技術に係るWの定量分析方法よりも簡便な定量分析方法を用いて、当該金属化合物中におけるWの定量分析を、正確かつ容易に実施出来ることに想到して本発明を完成した。
When the present inventors examined the quantitative analysis methods of W according to the conventional techniques such as Non-Patent Documents 1, 2 and 3, the analysis steps were long and the analysis operations were complicated in each method. Here, as a result of research by the present inventors, the quantitative analysis method of W according to these conventional techniques is a quantitative analysis method of W in a compound containing both a metal compound and a non-metal compound such as a W-containing ore. I came up with something. On the other hand, it was also conceived that most of the compounds used in the fields of various catalyst materials, optical materials and the like are metal compounds containing no non-metal compounds.
The compound containing W is an oxide of a metal element, such as a metal compound used in various fields such as catalyst materials and optical materials, and one or more selected from W metal and W oxide. In the case of including, the present invention has been conceived to be able to carry out the quantitative analysis of W in the metal compound accurately and easily by using a quantitative analysis method simpler than the quantitative analysis method of W according to the conventional technique. completed.

以下、本発明に係るWの定量分析操作について図面を参照しながら詳細に説明する。
図1は、本発明に係るWの定量分析に係る分析操作を示すフロー図であり、(a)分解工程、(b)白煙処理工程、(c)溶解工程、(d)マスキング工程、(e)定容工程、(f)Wの定量工程、の各工程を有している。以下、各工程ごとに説明する。
Hereinafter, the quantitative analysis operation of W according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a flow chart showing an analysis operation according to a quantitative analysis of W according to the present invention, in which (a) decomposition step, (b) white smoke treatment step, (c) dissolution step, (d) masking step, ( It has each step of e) constant volume step and (f) W quantification step. Hereinafter, each step will be described.

(a)分解工程
本発明に係る被定量分析試料(1)は、金属元素の酸化物であり、さらに、W金属、W酸化物から選択される1種以上を含む金属化合物である。また、当該金属元素の酸化物は、2種以上の金属元素を含む場合がある。
本発明においては、当該被定量分析試料(1)に含まれるWの定量分析を、正確かつ容易に実施するものである。
(A) Decomposition Step The quantitative analysis sample (1) according to the present invention is an oxide of a metal element, and is a metal compound containing at least one selected from W metal and W oxide. In addition, the oxide of the metal element may contain two or more kinds of metal elements.
In the present invention, the quantitative analysis of W contained in the quantitative analysis sample (1) is carried out accurately and easily.

まず、当該被定量分析試料(1)を、適宜な容器へ入れて精密に秤量する。ここで、後工程である「(b)白煙処理工程」において加熱を行うこと、「(c)溶解工程」においてフッ化水素酸(6)を添加することを考慮すると、容器としてテフロン(登録商標)製ビーカーを用いることが好ましい。 First, the quantitative analysis sample (1) is placed in an appropriate container and weighed precisely. Here, considering that heating is performed in the subsequent step "(b) white smoke treatment step" and that hydrofluoric acid (6) is added in "(c) dissolution step", Teflon (registered) is used as a container. It is preferable to use a beaker made of (trademark).

次いで、少量の水を添加した後、硝酸(2)、過酸化水素水(3)、過塩素酸(4)を添加し、得られた混合液を緩やかに加熱して、被定量分析試料(1)を分解する(a)分解工程を実施する。
ここで、硝酸(2)としては、濃度50〜70質量%のものを用いることが好ましい。
また、過酸化水素水(3)としては、濃度25〜35質量%のものを用いることが好ましい。
また、過塩素酸(4)としては、濃度50〜70質量%のものを用いることが好ましい。
Next, after adding a small amount of water, nitric acid (2), hydrogen peroxide solution (3), and perchloric acid (4) are added, and the obtained mixed solution is gently heated to obtain a quantitative analysis sample (quantitative analysis sample). 1) Disassembling (a) Perform the disassembling step.
Here, it is preferable to use nitric acid (2) having a concentration of 50 to 70% by mass.
Further, as the hydrogen peroxide solution (3), it is preferable to use one having a concentration of 25 to 35% by mass.
Further, as the perchloric acid (4), it is preferable to use one having a concentration of 50 to 70% by mass.

(b)白煙処理工程
所定時間加熱した後、前記混合液から過塩素酸の白煙が生じるまで温度を上げる。その状態を維持しながら、係る混合液の内容物が完全に溶解するまで加熱する白煙処理および濃縮を実施して、白煙処理後液を得る「(b)白煙処理工程」を実施する。
(B) White smoke treatment step After heating for a predetermined time, the temperature is raised until white smoke of perchloric acid is generated from the mixed solution. While maintaining that state, perform white smoke treatment and concentration by heating until the contents of the mixed solution are completely dissolved, and carry out "(b) white smoke treatment step" to obtain a liquid after white smoke treatment. ..

(c)溶解工程
白煙の発生が終了したら、前記白煙処理後液の温度が室温になるまで、静置放冷する。
放冷後、Wは固形物を生成し易いことから、係る白煙処理後液へ少量の純水を加えた後、硝酸(5)とフッ化水素酸(6)とを添加して分解し、係る白煙処理後液中の内容物を、再度溶解させて「(c)溶解工程」を実施することが好ましい。
ここで、硝酸(5)としては、濃度50〜70質量%のものを用いることが好ましい。
また、フッ化水素酸(6)としては、濃度45〜50質量%のものを用いることが好ましい。
(C) Dissolution Step When the generation of white smoke is completed, the solution is allowed to stand to cool until the temperature of the liquid after the white smoke treatment reaches room temperature.
Since W easily forms a solid substance after allowing to cool, a small amount of pure water is added to the liquid after the white smoke treatment, and then nitric acid (5) and hydrofluoric acid (6) are added to decompose the white smoke. It is preferable that the contents in the liquid after the white smoke treatment are dissolved again to carry out the "(c) dissolution step".
Here, it is preferable to use nitric acid (5) having a concentration of 50 to 70% by mass.
Further, it is preferable to use hydrofluoric acid (6) having a concentration of 45 to 50% by mass.

(d)マスキング工程
次いで、「(c)溶解工程」で得られた溶液へホウ酸(7)を添加し、遊離のフッ化物イオンをマスキングする「(d)マスキング工程」を実施する。
これは、「(c)溶解工程」で添加されたフッ化水素酸(6)に起因する過剰のフッ化物イオンが、係る溶液中に遊離し、後述する「(f)Wの定量工程」にて分析装置へ悪影響を与えることを回避する為である。
ここで、ホウ酸(7)としては、飽和ホウ酸(例えば、60gのホウ酸を1Lの水で溶かした上澄み溶液)を用いることが好ましい。
(D) Masking Step Next, "(d) Masking Step" is carried out by adding boric acid (7) to the solution obtained in "(c) Dissolving Step" to mask free fluoride ions.
This is because the excess fluoride ion caused by the hydrofluoric acid (6) added in the "(c) dissolution step" is liberated in the solution, and the "(f) W quantification step" described later is performed. This is to avoid adversely affecting the analyzer.
Here, as the boric acid (7), it is preferable to use saturated boric acid (for example, a supernatant solution in which 60 g of boric acid is dissolved in 1 L of water).

そして当該観点から「(d)マスキング工程」において、「(c)溶解工程」にて加えられたフッ化水素酸(6)の当量以上のホウ酸(7)を加えることが好ましい。 From this point of view, it is preferable to add boric acid (7) equal to or more than the equivalent amount of hydrofluoric acid (6) added in "(c) dissolution step" in "(d) masking step".

(e)定容工程
次いで、「(d)マスキング工程」を経た溶液を静置放冷した後、「(e)定容工程」において、当該溶液の全量を例えば100mLに定容し、定容化溶液を得る。
(E) Volume-setting step Next, after allowing the solution that has undergone the "(d) masking step" to stand to cool, in the "(e) volume-setting step", the total volume of the solution is set to 100 mL, for example. Obtain a chemical solution.

(f)Wの定量工程
次いで、前記定容化した溶液中における「(f)Wの定量工程」を実施する。当該定量には、例えばICP発光分光分析装置が便宜である。
上述したように、当該定容化した定容化溶液中のW濃度から、被定量分析試料(1)に含まれるWの定量分析を実施することは容易に高精度の定量分析が実施出来、好ましい構成である。
(F) W quantification step Next, the “(f) W quantification step” in the defined solution is carried out. For the quantification, for example, an ICP emission spectroscopic analyzer is convenient.
As described above, it is easy to carry out a quantitative analysis of W contained in the quantitative analysis sample (1) from the W concentration in the volumetricized solution, and a highly accurate quantitative analysis can be carried out. This is a preferable configuration.

以下、実施例を参照しながら本発明を具体的に説明する。
(実施例1)
実施例1に係る被定量分析試料として、金属の酸化物が、炭素(有機物)と0.9質量%のWとを含んでいる化合物を準備した。
Hereinafter, the present invention will be specifically described with reference to Examples.
(Example 1)
As a quantitative analysis sample according to Example 1, a compound in which a metal oxide contains carbon (organic substance) and 0.9% by mass of W was prepared.

実施例1に係る被定量分析試料0.4gをテフロン製ビーカーに入れ、次いで、このビーカー内に少量の水を添加した後、濃度60質量%硝酸10mL、濃度30質量%過酸化水素水2mL、濃度60質量%過塩素酸10mLを添加した。そして、当該ビーカーを緩やかに加熱し、分解工程を実施した。
当該ビーカーを、2時間程度加熱した後、当該液から過塩素酸に起因する白煙が生じるまで温度を上げ、上述した金属の酸化物および炭素化合物を分解させた。そして、当該加熱状態を維持しながら、当該液中の内容物を完全に溶解させ溶液を得た。
0.4 g of the quantitative analysis sample according to Example 1 was placed in a Teflon beaker, and then a small amount of water was added to the beaker, followed by a concentration of 60% by mass nitric acid (10 mL) and a concentration of 30% by mass of hydrogen peroxide solution (2 mL). 10 mL of 60% by mass perchloric acid was added. Then, the beaker was gently heated to carry out a decomposition step.
After heating the beaker for about 2 hours, the temperature was raised until white smoke due to perchloric acid was generated from the liquid, and the above-mentioned metal oxides and carbon compounds were decomposed. Then, while maintaining the heated state, the contents in the solution were completely dissolved to obtain a solution.

得られた溶液を、溶温が室温になるまで静置放冷した。放冷後、当該溶液へ少量の純水を加えた後、濃度60質量%硝酸10mLと濃度47質量%フッ化水素酸1mLとを添加して分解し、当該溶液の内容物を再度溶解させた。 The obtained solution was allowed to stand to cool until the melting temperature reached room temperature. After allowing to cool, a small amount of pure water was added to the solution, and then 10 mL of 60% by mass nitric acid and 1 mL of 47% by mass hydrofluoric acid were added to decompose the solution, and the contents of the solution were dissolved again. ..

当該内容物を再度溶解させた溶液を静置放冷した後、飽和ホウ酸(60gのホウ酸を1Lの水で溶かした上澄み溶液を使用)1mLを添加した。そして、当該溶液の全量をフラスコに移し入れて100mLに定容した。 After allowing the solution in which the contents were dissolved again to stand to cool, 1 mL of saturated boric acid (using a supernatant solution in which 60 g of boric acid was dissolved in 1 L of water) was added. Then, the whole amount of the solution was transferred to a flask and the volume was adjusted to 100 mL.

当該100mLに定容された溶液を、ICP発光分光分析装置を用いて分析した。そして、別途調製した検量線系列を用いて、実施例1に係る被定量分析試料の被分析元素であるW濃度を定量分析した。 The solution contained in 100 mL was analyzed using an ICP emission spectrophotometer. Then, the W concentration, which is the element to be analyzed, of the sample to be analyzed according to Example 1 was quantitatively analyzed using the calibration curve sequence prepared separately.

実施例1において、上述した被定量分析試料の秤量からICP発光分光分析までの操作を4回繰り返し(n1〜n4)、それぞれの操作で得られた被分析元素であるW濃度の定量分析結果を表1に示す。
そして、n1〜n4に係るW濃度の定量分析結果の平均値、および、相対標準偏差(RSD)の値を表1に示す。
In Example 1, the above-mentioned operations from weighing the quantitative analysis sample to ICP emission spectroscopic analysis were repeated four times (n1 to n4), and the quantitative analysis results of the W concentration of the element to be analyzed obtained by each operation were obtained. It is shown in Table 1.
Table 1 shows the average value of the quantitative analysis results of the W concentration related to n1 to n4 and the value of the relative standard deviation (RSD).

Figure 2020165863
Figure 2020165863

表1に示すW濃度の定量分析結果より、本発明によれば、金属化合物中におけるWの定量分析を、正確かつ容易に実施することが出来ることが判明した。実施例1において、表1に示すW濃度定量分析結果を得るために要した時間は300分間であった。 From the results of the quantitative analysis of the W concentration shown in Table 1, it was found that according to the present invention, the quantitative analysis of W in the metal compound can be carried out accurately and easily. In Example 1, the time required to obtain the W concentration quantitative analysis result shown in Table 1 was 300 minutes.

尚、検量線系列に用いるW標準溶液は、以下のように調製した。
3個の容器を準備し、ホールピペットを用いて濃度1g/LのW標準溶液を0mL、10mLおよび20mL分取し、それぞれの容器へ入れた。当該3個の容器へ実施例1にて添加した酸類と同様の酸類(硝酸、過塩素酸、フッ化水素酸、ホウ酸、但し、過酸化水素は前処理で揮散する酸である為、添加しなかった。)を、実施例1と同量にて添加した。これらを、それぞれ500mLフラスコに移入し純水を用いて定容して、検量線系列に用いるW濃度が0mg/L、20mg/L、40mg/LであるW標準溶液を調製した。
The W standard solution used for the calibration curve series was prepared as follows.
Three containers were prepared, and 0 mL, 10 mL, and 20 mL of W standard solution having a concentration of 1 g / L were taken using a whole pipette and placed in each container. Acids similar to the acids added in Example 1 (nitric acid, perchloric acid, hydrofluoric acid, boric acid, but hydrogen peroxide is an acid that volatilizes in the pretreatment, so it is added to the three containers. Was not added) in the same amount as in Example 1. These were each transferred to a 500 mL flask and the volume was adjusted using pure water to prepare W standard solutions having W concentrations of 0 mg / L, 20 mg / L, and 40 mg / L used in the calibration curve series.

(比較例1)
実施例1で用いたのと同じ被定量分析試料0.5gをビーカーに入れ、ここへ濃度10体積%リン酸10mL、濃度37質量%塩酸25mLおよび濃度60質量%硝酸3mLの混酸を加え、加熱溶解した。当該ビーカーを3時間程度加熱した後、溶液の溶温が室温になるまで静置放冷した。放冷後、当該溶液に純水を20mL加えて希釈後、ろ紙(No.5C)でろ別した。
前記ろ紙上に2%アンモニア水を3回滴下して洗浄した後、前記ろ紙上に温水10mLを2回滴下して洗浄した。ろ液と洗浄液とをともに100mLメスフラスコに移し入れて100mLに定容した。当該100mLに定容された溶液を、ICP発光分光分析装置を用いて分析した。以上をA工程とする。
(Comparative Example 1)
0.5 g of the same quantitative analysis sample used in Example 1 was placed in a beaker, and a mixed acid of 10 mL of 10% by volume phosphoric acid, 25 mL of 37% by volume hydrochloric acid and 3 mL of 60% by mass nitric acid was added and heated. Dissolved. After heating the beaker for about 3 hours, the beaker was allowed to stand to cool until the solution temperature reached room temperature. After allowing to cool, 20 mL of pure water was added to the solution to dilute the solution, and the solution was filtered with a filter paper (No. 5C).
After washing by dropping 2% ammonia water on the filter paper three times, 10 mL of warm water was dropped on the filter paper twice and washed. Both the filtrate and the washing solution were transferred to a 100 mL volumetric flask and the volume was adjusted to 100 mL. The solution contained in 100 mL was analyzed using an ICP emission spectrophotometer. The above is referred to as step A.

前記ろ紙上を白金ルツボに入れ、乾燥機内において105℃で2時間加熱し乾燥した。乾燥したろ紙が入った白金ルツボを電気炉内において800℃で30分加熱してろ紙を灰化した。電気炉から白金ルツボを取り出し、室温まで放冷後、濃度96質量%硫酸2mL、濃度47質量%フッ化水素酸5mLを加え、250℃で2時間加熱した。ついで室温まで放冷した後、炭酸ナトリウム2gを白金ルツボに加え、これを電気炉内において1000℃で30分間加熱したのち、白金ルツボを電気炉から出して室温まで放冷して炭酸ナトリウム溶融塩を得た。
白金ルツボごと炭酸ナトリウム溶融塩を100mLビーカーに入れ、濃度10体積%リン酸10mL、濃度37質量%塩酸25mLを加え、60℃に加温して溶融塩を溶解した。溶解液を100mLメスフラスコに移し入れ、100mLに定容した。当該100mLに定容された溶液を、ICP発光分光分析装置を用いて分析した。以上をB工程とする。
The filter paper was placed in a platinum crucible and heated in a dryer at 105 ° C. for 2 hours to dry. The platinum crucible containing the dried filter paper was heated in an electric furnace at 800 ° C. for 30 minutes to incinerate the filter paper. The platinum crucible was taken out from the electric furnace, allowed to cool to room temperature, 2 mL of 96% by mass sulfuric acid and 5 mL of 47% by mass hydrofluoric acid were added, and the mixture was heated at 250 ° C. for 2 hours. Then, after allowing to cool to room temperature, 2 g of sodium carbonate was added to the platinum crucible, which was heated at 1000 ° C. for 30 minutes in an electric furnace, and then the platinum crucible was taken out of the electric furnace and allowed to cool to room temperature to allow sodium carbonate molten salt. Got
A 100 mL beaker of sodium carbonate molten salt was placed together with the platinum crucible, 10 mL of 10% by volume phosphoric acid and 25 mL of 37% by mass hydrochloric acid were added, and the mixture was heated to 60 ° C. to dissolve the molten salt. The lysate was transferred to a 100 mL volumetric flask and the volume was adjusted to 100 mL. The solution contained in 100 mL was analyzed using an ICP emission spectrophotometer. The above is referred to as step B.

上述したA工程とB工程とから、被定量分析試料中のW濃度を求めた。定量結果を表2に示す。
また比較例の方法で表2のW濃度の定量分析結果を得るために要する時間は900分間であった。
The W concentration in the quantitative analysis sample was determined from the above-mentioned steps A and B. The quantitative results are shown in Table 2.
The time required to obtain the quantitative analysis result of the W concentration in Table 2 by the method of the comparative example was 900 minutes.

Figure 2020165863
Figure 2020165863

(まとめ)
表1、表2の結果から明らかなように、実施例の方法によるW濃度測定結果は、比較例と比較してばらつきが小さいことがわかる。また、実施例の方法は、比較例と比較してW濃度の定量分析結果を得るための時間が短いことがわかる。
(Summary)
As is clear from the results in Tables 1 and 2, it can be seen that the W concentration measurement results by the method of the examples have less variation as compared with the comparative examples. Further, it can be seen that the method of the example has a shorter time for obtaining the quantitative analysis result of the W concentration as compared with the comparative example.

Claims (4)

金属元素の酸化物中における、タングステンの定量分析方法であって、
前記金属元素の酸化物と、硝酸と、過酸化水素水と、過塩素酸とを混合して、混合物を得る分解工程と、
前記混合物を加熱して白煙処理し、白煙処理後液を得る白煙処理工程と、
前記白煙処理後液へ、硝酸とフッ化水素酸とを加えて分解し、溶解液を得る溶解工程と、
前記溶解液へホウ酸を加えて、遊離のフッ化物イオンがマスキングされた溶解液を得るマスキング工程と、
前記遊離のフッ化物イオンがマスキングされた溶解液中におけるタングステン量を定量測定するタングステンの定量工程とを、有することを特徴とするタングステンの定量分析方法。
A method for quantitative analysis of tungsten in oxides of metal elements.
A decomposition step of mixing the oxide of the metal element, nitric acid, hydrogen peroxide solution, and perchloric acid to obtain a mixture.
A white smoke treatment step of heating the mixture to treat white smoke to obtain a liquid after white smoke treatment,
A dissolution step of adding nitric acid and hydrofluoric acid to the solution after white smoke treatment and decomposing it to obtain a solution.
A masking step of adding boric acid to the solution to obtain a solution in which free fluoride ions are masked.
A method for quantitative analysis of tungsten, which comprises a tungsten quantification step of quantitatively measuring the amount of tungsten in a solution in which free fluoride ions are masked.
前記金属元素の酸化物が2種以上の金属元素を含み、前記タングステンがタングステン金属、タングステン酸化物から選択される1種以上であることを特徴とする請求項1に記載のタングステンの定量分析方法。 The method for quantitative analysis of tungsten according to claim 1, wherein the oxide of the metal element contains two or more kinds of metal elements, and the tungsten is one or more kinds selected from tungsten metal and tungsten oxide. .. 前記溶解工程において、前記白煙処理後液を溶液化することを特徴とする請求項1または2に記載のタングステンの定量分析方法。 The method for quantitative analysis of tungsten according to claim 1 or 2, wherein in the dissolution step, the liquid after the white smoke treatment is solubilized. 前記マスキング工程において、前記溶解工程にて加えられたフッ化水素酸の当量以上のホウ酸を加えることを特徴とする請求項1から3のいずれかに記載のタングステンの定量分析方法。
The method for quantitative analysis of tungsten according to any one of claims 1 to 3, wherein in the masking step, boric acid equal to or more than the equivalent of hydrofluoric acid added in the dissolution step is added.
JP2019067878A 2019-03-29 2019-03-29 Tungsten quantitative analysis method Pending JP2020165863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067878A JP2020165863A (en) 2019-03-29 2019-03-29 Tungsten quantitative analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067878A JP2020165863A (en) 2019-03-29 2019-03-29 Tungsten quantitative analysis method

Publications (1)

Publication Number Publication Date
JP2020165863A true JP2020165863A (en) 2020-10-08

Family

ID=72716287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067878A Pending JP2020165863A (en) 2019-03-29 2019-03-29 Tungsten quantitative analysis method

Country Status (1)

Country Link
JP (1) JP2020165863A (en)

Similar Documents

Publication Publication Date Title
Cruz et al. Microwave-induced combustion method for the determination of trace and ultratrace element impurities in graphite samples by ICP-OES and ICP-MS
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
Resano et al. Direct determination of sulfur in solid samples by means of high-resolution continuum source graphite furnace molecular absorption spectrometry using palladium nanoparticles as chemical modifier
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
JP2004198324A (en) Analytical method for heavy metal contained in soil
Krata et al. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination
JP2020165863A (en) Tungsten quantitative analysis method
JP2011214977A (en) Method of analyzing metal element in resin material
JP2020165864A (en) Tungsten quantitative analysis method
JP2020165865A (en) Tungsten quantitative analysis method
Leppänen et al. Development of an efficient acid digestion procedure utilizing high-pressure asher technique for the determination of iodine and metallic elements in milk powder
Acar et al. Determination of bismuth and lead in geological samples by electrothermal AAS Part 1. Comparative study of tungsten containing chemical modifiers: Part 1. Comparative study of tungsten containing chemical modifiers
CN108120711A (en) A kind of method that Holo-Al content in steel is measured using inductively coupled plasma atomic emission spectrometer
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
Swearingen et al. Analysis of organic and high dissolved salt content solutions using inductively coupled plasma optical emission spectrometry
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
JP6834467B2 (en) Deterioration analysis method for organic solvents
JP6919360B2 (en) How to quantify the amount of silicon in metallic materials
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
JP7164792B2 (en) Method for measuring chelating agents
JP2009174902A (en) Analyzing method of very small amount of element in alloy
JP2012118032A (en) Quantitative analysis method of higher fatty acid contained in inorganic powder
JP6160205B2 (en) Titanate analysis method
JP4729780B2 (en) Method for solution of inorganic glass sample and method for quantitative analysis of inorganic glass sample