JP2009174902A - Analyzing method of very small amount of element in alloy - Google Patents

Analyzing method of very small amount of element in alloy Download PDF

Info

Publication number
JP2009174902A
JP2009174902A JP2008011460A JP2008011460A JP2009174902A JP 2009174902 A JP2009174902 A JP 2009174902A JP 2008011460 A JP2008011460 A JP 2008011460A JP 2008011460 A JP2008011460 A JP 2008011460A JP 2009174902 A JP2009174902 A JP 2009174902A
Authority
JP
Japan
Prior art keywords
alloy
acid
silicon
metal
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008011460A
Other languages
Japanese (ja)
Inventor
Isao Tanaka
勲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008011460A priority Critical patent/JP2009174902A/en
Publication of JP2009174902A publication Critical patent/JP2009174902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing method of a very small amount of an element in an alloy capable of analyzing a very small amount of the element contained in the alloy much in the content of silicon with high precision. <P>SOLUTION: The analyzing method of a very small amount of the element in the alloy is constituted so as to analyze a very small amount of the element in the alloy which contains a first metal larger than hydrogen in ionization tendency as a main component and also contains a very small amount of the element and silicon that is 0.5 mass% or above per 100 mass% of the whole of the alloy and provided with the acid treatment process for heating the alloy along with an acid treatment liquid to dissolve the first metal, and a hydrofluoric acid treatment process for adding hydrofluoric acid to the treatment liquid after the acid treatment process to dissolve silicon and a very small amount of the element. Alternatively, the acid-hydrofluoric acid treatment process is provided for heating the alloy along with the acid treatment liquid and hydrofluoric acid to dissolve not only the first metal by the acid treatment liquid but also silicon by hydrofluoric acid. By eliminating the filtering process, a very small amount of the element can be analyzed with high precision. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリコンを含む合金中の微量元素を分析する方法に関する。   The present invention relates to a method for analyzing trace elements in an alloy containing silicon.

アルミニウム−シリコン合金などの合金には、微量元素が含まれる。微量元素は、一般に、結晶粒を微細化して合金の強度を向上させる目的でこれらの合金に添加される。例えば、JIS H 1306には、アルミニウム合金に含まれる鉄、銅、マンガン、亜鉛、マグネシウム、クロム、ニッケル、ビスマス、鉛の分析方法が規定されている。この方法では、アルミニウムを塩酸および過酸化水素によって溶解することで、アルミニウム合金に含まれる微量元素を溶出して原子吸光分析する。塩酸および過酸化水素による溶解後に不溶解分があれば、濾紙で濾過し、不溶解分(濾過残渣)と濾紙とを灰化し、灰化後の残留成分を硝酸とフッ化水素酸とで溶解する。その後、この溶解液と濾液とを原子吸光分析する。軽金属協会規格(LIS A03)にもアルミニウム合金に含まれる微量元素の分析方法が規定されているが、この方法も、JIS H 1306と同様の方法である。   An alloy such as an aluminum-silicon alloy contains a trace element. Trace elements are generally added to these alloys for the purpose of refining crystal grains and improving the strength of the alloys. For example, JIS H 1306 defines a method for analyzing iron, copper, manganese, zinc, magnesium, chromium, nickel, bismuth, and lead contained in an aluminum alloy. In this method, atomic absorption analysis is performed by dissolving aluminum with hydrochloric acid and hydrogen peroxide to elute trace elements contained in the aluminum alloy. If there is any insoluble matter after dissolution with hydrochloric acid and hydrogen peroxide, filter with filter paper, ash the insoluble matter (filter residue) and filter paper, and dissolve the residual components after ashing with nitric acid and hydrofluoric acid. To do. Thereafter, the dissolved solution and the filtrate are subjected to atomic absorption analysis. A method for analyzing trace elements contained in an aluminum alloy is also defined in the Light Metal Association Standard (LIS A03). This method is also the same as JIS H 1306.

ところで、シリコン含量が大きいアルミニウム−シリコン合金(例えば、合金全体の質量100質量%中にシリコンが0.5質量%以上含まれているもの)に含まれる微量元素をこの方法で分析する場合には、微量元素を精度高く分析できない問題があった。
JIS H 1306
By the way, when analyzing a trace element contained in an aluminum-silicon alloy having a large silicon content (for example, silicon containing 0.5% by mass or more in 100% by mass of the whole alloy) by this method. There was a problem that trace elements could not be analyzed with high accuracy.
JIS H 1306

本発明は上記事情に鑑みてなされたものであり、シリコン含量の多い合金に含まれる微量元素を精度高く分析できる合金中の微量元素の分析方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the analysis method of the trace element in the alloy which can analyze the trace element contained in an alloy with many silicon contents with high precision.

上記課題を解決する本発明の合金中の微量元素の分析方法は、水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって合金全体の質量100質量%中にシリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、合金を酸処理液とともに加熱して第1の金属を溶解する酸処理工程と、酸処理工程後の処理液にフッ化水素酸を加えてシリコンと微量元素とを溶解するフッ化水素酸処理工程と、フッ化水素酸処理工程後の処理液を加熱して、フッ化水素酸を揮発させる揮発工程と、揮発工程後の残留成分に酸を加えて、残留成分中の塩を溶解させる塩溶解工程と、含む前処理工程と、前処理工程後の残留成分から分析試料を調製し、分析試料の微量元素を分析する分析工程と、を備えることを特徴とする。   A method for analyzing a trace element in an alloy of the present invention that solves the above problem is an alloy containing a first metal having a higher ionization tendency than hydrogen as a main component, a trace element and silicon, and a mass of the entire alloy of 100. A method for analyzing trace elements in an alloy containing 0.5% by mass or more of silicon in mass%, wherein the alloy is heated with an acid treatment solution to dissolve the first metal, Hydrofluoric acid treatment step in which hydrofluoric acid is added to the treatment solution after the acid treatment step to dissolve silicon and trace elements, and the treatment solution after the hydrofluoric acid treatment step is heated to obtain hydrofluoric acid The sample is prepared from the volatilization process that volatilizes, the salt dissolution process that dissolves the salt in the residual component by adding acid to the residual component after the volatilization process, the pretreatment process that includes the residual component after the pretreatment process Analysis process for analyzing trace elements in analysis samples , Characterized in that it comprises a.

また、上記課題を解決する本発明の合金中の微量元素の分析方法は、水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって合金全体の質量100質量%中にシリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、合金を酸処理液およびフッ化水素酸とともに加熱して、酸処理液によって第1の金属を溶解するとともにフッ化水素酸によってシリコンと微量元素とを溶解する酸・フッ化水素酸処理工程と、酸・フッ化水素酸処理工程後の処理液を加熱して、フッ化水素酸を揮発させる揮発工程と、揮発工程後の残留成分に酸を加えて、残留成分中の塩を溶解させる塩溶解工程と、含む前処理工程と、前処理工程後の残留成分から分析試料を調製し、分析試料の微量元素を分析する分析工程と、を備えることを特徴とする。   In addition, the method for analyzing trace elements in an alloy of the present invention that solves the above problems is an alloy containing a first metal having a higher ionization tendency than hydrogen as a main component and containing trace elements and silicon. A method for analyzing trace elements in an alloy containing silicon in an amount of 0.5% by mass or more in 100% by mass, wherein the alloy is heated together with an acid treatment liquid and hydrofluoric acid, An acid / hydrofluoric acid treatment step of dissolving the first metal and dissolving silicon and trace elements with hydrofluoric acid, and heating the treatment liquid after the acid / hydrofluoric acid treatment step to fluorinate Analysis sample from volatilization process for volatilizing hydrogen acid, salt dissolution process for adding salt to residual component after volatilization process to dissolve salt in residual component, pretreatment process including residual component after pretreatment process Prepare a trace amount of analysis sample Characterized in that it comprises an analysis step of analyzing the element, the.

本発明の合金中の微量元素の分析方法は、下記の(1)〜(4)の何れかを備えるのが好ましい。(1)〜(4)の複数を備えるのがより好ましい。   The method for analyzing trace elements in the alloy of the present invention preferably comprises any of the following (1) to (4). More preferably, a plurality of (1) to (4) are provided.

(1)上記第1の金属は、アルミニウムと鉄との少なくとも一方である。   (1) The first metal is at least one of aluminum and iron.

(2)上記酸処理液は、塩酸、硝酸、硫酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種である。   (2) The acid treatment liquid is one type selected from hydrochloric acid, nitric acid, sulfuric acid, a mixed liquid of hydrochloric acid and nitric acid, and a mixed liquid of hydrochloric acid and hydrogen peroxide.

(3)上記酸処理液は、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液である。   (3) The acid treatment liquid is a mixed liquid of an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen and an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen.

(4)上記微量元素は、ナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種である。   (4) The trace element is at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium.

本発明の発明者は、鋭意研究の結果、シリコン含量の多い合金に含まれる微量元素をJIS H 1306やLIS A03に規定されている分析方法で精度高く分析できない理由が、濾過工程にあることを解明した。例えば、アルミニウム−シリコン合金中のアルミニウムは塩酸および過酸化水素に溶解するが、シリコンは塩酸および過酸化水素に不溶である。このため、シリコン含量の多い合金を塩酸および過酸化水素で溶解すると、多くの不溶解分が生じ、濾過の工程が必須となる。一般的な濾紙には、微量の不純物(例えばカルシウムやナトリウム等)が含まれているため、分析試料は濾紙の不純物によって汚染される。このため分析試料を分析する際に全体の信号強度が高くなって、微量元素を精度高く分析できなくなる。   As a result of intensive studies, the inventors of the present invention have found that the reason why a trace element contained in an alloy having a high silicon content cannot be analyzed with high accuracy by the analysis method defined in JIS H 1306 or LIS A03 is in the filtration process. Elucidated. For example, aluminum in an aluminum-silicon alloy dissolves in hydrochloric acid and hydrogen peroxide, but silicon is insoluble in hydrochloric acid and hydrogen peroxide. For this reason, when an alloy with a high silicon content is dissolved with hydrochloric acid and hydrogen peroxide, a large amount of insoluble matter is generated, and a filtration step becomes essential. Since a general filter paper contains a very small amount of impurities (for example, calcium, sodium, etc.), the analysis sample is contaminated by the filter paper impurities. For this reason, when analyzing an analysis sample, the whole signal intensity becomes high, and it becomes impossible to analyze a trace element with high accuracy.

本発明の合金中の微量元素の分析方法によると、酸処理液によって合金中の第1の金属(例えばアルミニウムなど)を溶解し、その後、酸処理工程後の処理液にフッ化水素酸を加えてシリコンを溶解する。あるいは、酸処理液によって合金中の第1の金属を溶解するとともにフッ化水素酸によってシリコンを溶解する。このため、濾過の工程を省略しつつ合金中のシリコンを溶解でき、濾紙による分析試料の汚染を抑止しつつ全てまたはほぼ全ての微量元素を溶解できる。よって、本発明の合金中の微量元素の分析方法によると、微量元素を精度高く分析できる。   According to the method for analyzing trace elements in an alloy of the present invention, the first metal (for example, aluminum) in the alloy is dissolved by the acid treatment solution, and then hydrofluoric acid is added to the treatment solution after the acid treatment step. To dissolve the silicon. Alternatively, the first metal in the alloy is dissolved by the acid treatment liquid and silicon is dissolved by hydrofluoric acid. Therefore, silicon in the alloy can be dissolved while omitting the filtration step, and all or almost all trace elements can be dissolved while preventing the analysis sample from being contaminated by the filter paper. Therefore, according to the analysis method of trace elements in the alloy of the present invention, trace elements can be analyzed with high accuracy.

本発明の合金中の微量元素の分析方法によると、第1の金属としてアルミニウムと鉄との少なくとも一方を含む合金中の微量元素を特に精度高く分析できる。また、本発明の合金中の微量元素の分析方法によると、合金中のナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種からなる微量元素を特に精度高く分析できる。   According to the method for analyzing trace elements in an alloy of the present invention, trace elements in an alloy containing at least one of aluminum and iron as the first metal can be analyzed particularly accurately. Further, according to the method for analyzing trace elements in an alloy of the present invention, a trace element composed of at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium in the alloy can be analyzed particularly accurately.

本発明の合金中の微量元素の分析方法において、酸処理液として、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種を用いる場合には、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素をより精度高く分析できる。   In the method for analyzing trace elements in the alloy of the present invention, one kind selected from hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid, and a mixed liquid of hydrochloric acid and hydrogen peroxide is used as the acid treatment liquid. In this case, the trace element in the alloy can be dissolved with high reliability, and the trace element in the alloy can be analyzed with higher accuracy.

本発明の合金中の微量元素の分析方法において、酸処理液として、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液を用いる場合には、水素よりもイオン化傾向の小さい金属に対する酸化力のない酸によって第1の金属を溶解するとともに、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸によって合金に含まれる第1の金属以外の金属を溶解できる。このため、この場合には、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素をより精度高く分析できる。   In the method for analyzing trace elements in an alloy of the present invention, as an acid treatment solution, a mixture of an acid having an oxidizing power for a metal having a lower ionization tendency than hydrogen and an acid having no oxidizing power for a metal having a lower ionization tendency than hydrogen. In the case of using a liquid, the first metal is dissolved by an acid that does not oxidize a metal that has a lower ionization tendency than hydrogen, and is included in the alloy by an acid that has an oxidative power for a metal that has a lower ionization tendency than hydrogen. Metals other than the first metal can be dissolved. For this reason, in this case, the trace element in the alloy can be dissolved with high reliability, and the trace element in the alloy can be analyzed with higher accuracy.

本発明の合金中の微量元素の分析方法(以下、単に本発明の分析方法と略する)は、水素よりもイオン化傾向の大きい第1の金属を主成分とする合金中の微量元素を分析する方法である。水素よりもイオン化傾向の大きい第1の金属としては、アルミニウム、鉄等が挙げられる。従って、本発明の分析方法はアルミニウム−シリコン合金や、鋳鉄に含まれる微量元素を分析する方法として好ましく用いられる。   The trace element analysis method in the alloy of the present invention (hereinafter simply referred to as the analysis method of the present invention) analyzes trace elements in an alloy mainly composed of a first metal having a higher ionization tendency than hydrogen. Is the method. Examples of the first metal having a higher ionization tendency than hydrogen include aluminum and iron. Therefore, the analysis method of the present invention is preferably used as a method for analyzing trace elements contained in an aluminum-silicon alloy or cast iron.

なお、本発明の分析方法で分析する合金は、合金全体の質量100質量%中に第1の金属が70質量%〜95質量%含まれているものであるのがよい。また、合金全体の質量100質量%中にシリコンが0.5質量%〜20質量%含まれているものであるのがよい。本発明の分析方法によると、これらの合金中の微量元素を精度高く分析できる。   The alloy to be analyzed by the analysis method of the present invention is preferably one in which 70% by mass to 95% by mass of the first metal is contained in 100% by mass of the total mass of the alloy. Moreover, it is good that 0.5 mass%-20 mass% of silicon is contained in 100 mass% of the whole alloy. According to the analysis method of the present invention, trace elements in these alloys can be analyzed with high accuracy.

本発明の分析方法において、フッ化水素酸処理工程は、酸処理工程の後に行っても良いし、酸処理工程と同時に行っても良い(すなわち酸・フッ化水素酸処理工程)。何れの場合にも、酸処理液によって第1の金属を溶解し、フッ化水素酸によってシリコンを溶解することで、合金中の微量元素を信頼性高く溶解させることができ、合金中の微量元素を精度高く分析できる。なお、フッ化水素酸処理工程と酸処理工程とを同時に行う場合には(酸・フッ化水素酸処理工程)、フッ化水素酸処理工程を酸処理工程の後に行う場合に比べて、反応系中のフッ化水素酸濃度を高くすれば良い。   In the analysis method of the present invention, the hydrofluoric acid treatment step may be performed after the acid treatment step or may be performed simultaneously with the acid treatment step (that is, the acid / hydrofluoric acid treatment step). In any case, the trace element in the alloy can be dissolved with high reliability by dissolving the first metal with the acid treatment liquid and dissolving the silicon with hydrofluoric acid. Can be analyzed with high accuracy. In the case where the hydrofluoric acid treatment step and the acid treatment step are performed simultaneously (acid / hydrofluoric acid treatment step), the reaction system is compared with the case where the hydrofluoric acid treatment step is performed after the acid treatment step. What is necessary is just to make the hydrofluoric acid density | concentration inside high.

本発明の分析方法における酸処理液としては、第1の金属を溶解させ得るものを用いればよい。第1の金属を溶解させ得る酸処理液としては、例えば、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液等が挙げられる。このうち塩酸や硫酸は、水素よりもイオン化傾向の小さい金属に対する酸化力のない酸(すなわち、酸化力のない酸)であるが、水素よりもイオン化傾向の大きい金属を溶解する。このため、これらの酸は第1の金属を溶解させ得る。また、合金が第1の金属に加えて水素よりもイオン化傾向の小さい金属(例えば銅など)を含む場合には、酸処理液として水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液を用いればよい。この種の混合液としては、塩酸と硝酸との混合液(王水を含む)、塩酸と過酸化水素水との混合液等が挙げられる。   As the acid treatment solution in the analysis method of the present invention, a solution capable of dissolving the first metal may be used. Examples of the acid treatment liquid that can dissolve the first metal include hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid, a mixed liquid of hydrochloric acid and hydrogen peroxide, and the like. Of these, hydrochloric acid and sulfuric acid are acids that have less oxidizing power than metals that are less ionizable than hydrogen (that is, acids that do not have oxidizing power), but dissolve metals that have a higher ionization tendency than hydrogen. For this reason, these acids can dissolve the first metal. Further, when the alloy contains a metal (eg, copper) having a smaller ionization tendency than hydrogen in addition to the first metal, an acid and hydrogen having an oxidizing power for a metal having a smaller ionization tendency than hydrogen as the acid treatment liquid. What is necessary is just to use the liquid mixture with the acid without the oxidizing power with respect to the metal with a smaller ionization tendency than. Examples of this type of mixed solution include a mixed solution of hydrochloric acid and nitric acid (including aqua regia), a mixed solution of hydrochloric acid and hydrogen peroxide, and the like.

参考までに、鋳鉄およびアルミニウム−シリコン合金の上記した各種酸処理液に対する溶解性を表す表を表1に示す。なお、塩酸としては濃塩酸と水とを体積比1:1で混合したものを用いた。硝酸としては濃硝酸と水とを体積比1:1で混合したものを用いた。硫酸としては、濃硫酸と水とを体積比1:9で混合したものを用いた。王水としては王水(濃塩酸と濃硝酸とを体積比3:1で混合したもの)と水とを体積比1:1で混合したものを用いた。塩酸と硝酸との混合液としては、濃塩酸と水とを体積比1:1で混合したものと、濃硝酸と、を体積比1:1で混合したものを用いた。塩酸と過酸化水素との混合液としては、濃塩酸と水とを体積比1:1で混合したものと、過酸化水素水と、を体積比1:1で混合したものを用いた。また各酸処理液で各合金を溶解させる作業は、酸処理液および合金をヒータで加熱しつつおこなった。このときのヒータ温度は約400℃であった。   For reference, Table 1 shows the solubility of cast iron and aluminum-silicon alloy in the various acid treatment solutions described above. As hydrochloric acid, concentrated hydrochloric acid and water mixed at a volume ratio of 1: 1 were used. Nitric acid used was a mixture of concentrated nitric acid and water at a volume ratio of 1: 1. As sulfuric acid, concentrated sulfuric acid and water mixed at a volume ratio of 1: 9 were used. As aqua regia, aqua regia (concentrated hydrochloric acid and concentrated nitric acid mixed at a volume ratio of 3: 1) and water mixed at a volume ratio of 1: 1 was used. As a mixed solution of hydrochloric acid and nitric acid, a mixture of concentrated hydrochloric acid and water in a volume ratio of 1: 1 and a mixture of concentrated nitric acid in a volume ratio of 1: 1 were used. As a mixed solution of hydrochloric acid and hydrogen peroxide, a mixture of concentrated hydrochloric acid and water in a volume ratio of 1: 1 and a mixture of hydrogen peroxide water in a volume ratio of 1: 1 were used. Moreover, the operation | work which melt | dissolves each alloy with each acid treatment liquid was performed, heating an acid treatment liquid and an alloy with a heater. The heater temperature at this time was about 400 ° C.

Figure 2009174902
Figure 2009174902

表1に示すように、各酸処理液は、鋳鉄中の鉄(第1の金属)および他の金属を十分に溶解するとともに、アルミニウム−シリコン合金中のアルミニウム(第1の金属)および他の金属を十分に溶解する。なお、各合金を各酸処理液で溶解した処理液にフッ化水素酸を加えると、シリコンが溶解し、ニオブ、チタン、カルシウム、リン、ストロンチウムなどの微量元素が溶解した。この結果から、塩酸、硫酸、硝酸、塩酸と硝酸との混合液(王水を含む)、塩酸と過酸化水素水との混合液は、第1の金属を溶解させ得る酸処理液として好ましく用いられることがわかる。   As shown in Table 1, each acid treatment solution sufficiently dissolves iron (first metal) and other metals in cast iron, and aluminum (first metal) and other metals in an aluminum-silicon alloy. Thoroughly dissolve the metal. When hydrofluoric acid was added to a treatment solution obtained by dissolving each alloy with each acid treatment solution, silicon was dissolved, and trace elements such as niobium, titanium, calcium, phosphorus, and strontium were dissolved. From this result, hydrochloric acid, sulfuric acid, nitric acid, a mixed liquid of hydrochloric acid and nitric acid (including aqua regia), and a mixed liquid of hydrochloric acid and hydrogen peroxide are preferably used as an acid treatment liquid capable of dissolving the first metal. I understand that

本発明の分析方法における分析工程において微量元素を分析する方法としては、原子吸光分析、ICP(Inductively Coupled Plasma)質量分析等の一般的な元素分析方法を用いればよい。上述したように、本発明の分析方法における前処理工程は濾紙で濾過する工程を含まないため、これらの分析方法によって微量元素を高精度に分析できる。   As a method for analyzing trace elements in the analysis step of the analysis method of the present invention, a general elemental analysis method such as atomic absorption analysis or ICP (Inductively Coupled Plasma) mass spectrometry may be used. As described above, since the pretreatment process in the analysis method of the present invention does not include the process of filtering with filter paper, trace elements can be analyzed with high accuracy by these analysis methods.

以下、具体例を挙げて本発明の合金中の微量元素の分析方法を説明する。   Hereinafter, a method for analyzing trace elements in the alloy of the present invention will be described with specific examples.

(実施例)
実施例の分析方法では、合金として4種のアルミニウム−シリコン合金(BRAMMER社 認証標準物質V3204−2、BRAMMER社 認証標準物質V3200−2、BRAMMER社 認証標準物質V3046−3、BRAMMER社認証標準物質AL413/03)を用いた。各アルミニウム−シリコン合金は、合金全体の質量100質量%に対して約12質量%のシリコンを含む。また、各アルミニウム−シリコン合金は、合金全体の質量100質量%に対して約85質量%のアルミニウムを含む。さらに、このうちV3204−2は、23ppmのカルシウムを含む。V3200−2は、28ppmのカルシウムを含む。V3046−3は、13ppmのリンを含む。AL413/03は、11ppmのリンを含む。
(Example)
In the analysis methods of the examples, four types of aluminum-silicon alloys (BRAMMER certified standard substance V3204-2, BRAMMER certified standard substance V3200-2, BRAMMER certified standard substance V3046-3, BRAMMER certified standard substance AL413 are used as the alloys. / 03) was used. Each aluminum-silicon alloy contains about 12% silicon by weight with respect to 100% by weight of the total alloy. Each aluminum-silicon alloy contains about 85% by mass of aluminum with respect to 100% by mass of the entire alloy. Furthermore, among these, V3204-2 contains 23 ppm of calcium. V3200-2 contains 28 ppm of calcium. V3046-3 contains 13 ppm phosphorus. AL413 / 03 contains 11 ppm phosphorus.

以下、実施例の分析方法を詳しく説明する。   Hereinafter, the analysis method of an Example is demonstrated in detail.

(前処理工程 1.酸処理工程)
先ず、各アルミニウム−シリコン合金の切削片1gをフッ素樹脂製のビーカーにとった。このビーカーに、濃塩酸と水とを体積比1:1で混合してなる酸処理液40mlを加え、さらに、濃硝酸10mlを徐々に加えた。
(Pretreatment process 1. Acid treatment process)
First, 1 g of each aluminum-silicon alloy cutting piece was taken in a beaker made of fluororesin. To this beaker, 40 ml of an acid treatment solution obtained by mixing concentrated hydrochloric acid and water at a volume ratio of 1: 1 was added, and 10 ml of concentrated nitric acid was gradually added.

この処理液を、ヒータにて400〜500℃に加熱した。この工程で合金中のアルミニウムが溶解した。   This treatment liquid was heated to 400 to 500 ° C. with a heater. In this step, the aluminum in the alloy was dissolved.

(前処理工程 2.フッ化水素酸処理工程)
酸処理工程後の処理液をヒータからおろし、この処理液にフッ化水素酸を1〜10ml加えた。この工程で、合金中(処理液中)のシリコンおよび微量元素が溶解した。
(Pretreatment process 2. Hydrofluoric acid treatment process)
The treatment liquid after the acid treatment step was removed from the heater, and 1 to 10 ml of hydrofluoric acid was added to the treatment liquid. In this step, silicon and trace elements in the alloy (in the treatment liquid) were dissolved.

(前処理工程 3.揮発工程)
フッ化水素酸処理工程後の処理液を再度ヒータにかけ、200℃に加熱し、乾固させた。この工程で、フッ化水素酸が揮発した。
(Pretreatment process 3. Volatilization process)
The treatment liquid after the hydrofluoric acid treatment step was again applied to a heater, heated to 200 ° C., and dried. In this step, hydrofluoric acid was volatilized.

(前処理工程 4.塩溶解工程)
揮発工程後の残留成分を放冷した。その後に濃塩酸と水とを体積比1:1で混合してなる酸溶液20mlを残留成分に加え、残留成分が溶解するまで200℃で加熱した。この工程で、残留成分中の塩が溶解した。
(Pretreatment process 4. Salt dissolution process)
The remaining components after the volatilization step were allowed to cool. Thereafter, 20 ml of an acid solution obtained by mixing concentrated hydrochloric acid and water at a volume ratio of 1: 1 was added to the remaining components, and heated at 200 ° C. until the remaining components were dissolved. In this step, the salt in the residual components was dissolved.

(分析工程)
塩溶解工程後の処理液を放冷して100mlに定容し、分析試料を調製した。この分析試料中の微量元素(カルシウム、リン)をICPによって分析(定量)した。ICP用の装置としては、島津製作所製ICPV8100を用いた。分析時の高周波出力は1.2kWであった。プラズマ観測高さは15mmであった。アルゴンガス量は、プラズマ:14L/分、クーラント:1.5L/分、キャリア:0.7L/分であった。分析波長は、カルシウム:393.7nm、リン:178.29nmであった。なお、分析工程は、各アルミニウム−シリコン合金の分析試料について5回ずつおこなった。分析工程で得られた分析結果を後述する表2〜表5に示す。
(Analysis process)
The treatment solution after the salt dissolution step was allowed to cool and the volume was adjusted to 100 ml to prepare an analytical sample. Trace elements (calcium, phosphorus) in this analysis sample were analyzed (quantified) by ICP. As an ICP device, ICPV8100 manufactured by Shimadzu Corporation was used. The high-frequency output during analysis was 1.2 kW. The plasma observation height was 15 mm. The amounts of argon gas were plasma: 14 L / min, coolant: 1.5 L / min, and carrier: 0.7 L / min. The analysis wavelengths were calcium: 393.7 nm and phosphorus: 178.29 nm. The analysis step was performed five times for each aluminum-silicon alloy analysis sample. The analysis results obtained in the analysis step are shown in Tables 2 to 5 described later.

(比較例)
比較例の分析方法では、合金として実施例の分析方法と同じ4種の合金を用いた。比較例の分析方法は、軽金属協会分析法(LIS A03)に基づく方法である。
(Comparative example)
In the analysis method of the comparative example, the same four types of alloys as the analysis method of the example were used as the alloys. The analysis method of the comparative example is a method based on the Light Metal Association analysis method (LIS A03).

以下、比較例の分析方法を詳しく説明する。   Hereinafter, the analysis method of the comparative example will be described in detail.

(前処理工程 1.酸処理工程)
先ず、各アルミニウム−シリコン合金の切削片1gをフッ素樹脂製のビーカーにとった。このビーカーに、濃塩酸と水とを体積比1:1で混合してなる酸処理液50mlを加えた。この処理液を、ヒータにて400〜500℃に加熱した。
(Pretreatment process 1. Acid treatment process)
First, 1 g of each aluminum-silicon alloy cutting piece was taken in a beaker made of fluororesin. To this beaker, 50 ml of an acid treatment solution obtained by mixing concentrated hydrochloric acid and water at a volume ratio of 1: 1 was added. This treatment liquid was heated to 400 to 500 ° C. with a heater.

(前処理工程 2.フッ化水素酸処理工程)
処理液をヒータからおろし、放冷後に、濾紙(5B)で濾過し、濾液と不溶解分(濾過残渣)とに濾別した。不溶解分と濾紙とを灰化し、灰化後の残留成分をフッ化水素酸で溶解した。
(Pretreatment process 2. Hydrofluoric acid treatment process)
The treatment liquid was removed from the heater, allowed to cool, then filtered through a filter paper (5B), and separated into a filtrate and an insoluble matter (filter residue). The insoluble matter and filter paper were incinerated, and the residual components after incineration were dissolved with hydrofluoric acid.

(前処理工程 3.揮発工程)
フッ化水素酸処理工程後の処理液を白金器具にとり、400〜500℃に加熱し、乾固させてフッ化水素酸を揮発させた。なお、比較例の揮発工程および後述する塩溶解工程における加熱温度は、実施例の揮発工程および塩溶解工程における加熱温度よりも高い。これは、処理液をフッ素樹脂製のビーカーではなく白金器具にとっているためである。
(Pretreatment process 3. Volatilization process)
The treatment liquid after the hydrofluoric acid treatment step was taken in a platinum instrument, heated to 400 to 500 ° C., and dried to evaporate hydrofluoric acid. In addition, the heating temperature in the volatilization process of a comparative example and the salt dissolution process mentioned later is higher than the heating temperature in the volatilization process and salt dissolution process of an Example. This is because the processing liquid is not in the fluororesin beaker but in the platinum instrument.

(前処理工程 4.塩溶解工程)
揮発工程後の残留成分に濃塩酸と水とを体積比1:1で混合してなる酸溶液を加え、残留成分が溶解するまで400〜500℃で加熱した。
(Pretreatment process 4. Salt dissolution process)
An acid solution obtained by mixing concentrated hydrochloric acid and water at a volume ratio of 1: 1 was added to the residual component after the volatilization step, and heated at 400 to 500 ° C. until the residual component was dissolved.

(分析工程)
塩溶解工程後の処理液と濾液とをあわせて、200mlに定容し、分析試料を調製した。この分析試料中の微量元素(カルシウム、リン)を、実施例の分析工程と同様に、ICPによって分析(定量)した。分析工程で得られた分析結果を表2〜表5に示す。
(Analysis process)
The treatment liquid after the salt dissolution step and the filtrate were combined and the volume was adjusted to 200 ml to prepare an analytical sample. Trace elements (calcium, phosphorus) in this analysis sample were analyzed (quantified) by ICP in the same manner as in the analysis step of the example. Tables 2 to 5 show the analysis results obtained in the analysis step.

Figure 2009174902
Figure 2009174902

Figure 2009174902
Figure 2009174902

Figure 2009174902
Figure 2009174902

Figure 2009174902
Figure 2009174902

表2〜表5に示すように、実施例の分析方法によると、比較例の分析方法に比べて、標準値に近い分析値が得られた。また、実施例の分析方法による分析値にはばらつきが少なかった。この結果から、実施例の分析方法(すなわち、本発明の合金中の微量元素の分析方法)によると、合金中の微量元素を精度高く分析できることがわかる。   As shown in Tables 2 to 5, according to the analysis method of the example, an analysis value close to the standard value was obtained as compared with the analysis method of the comparative example. Moreover, there was little dispersion | variation in the analysis value by the analysis method of an Example. From this result, it can be seen that the trace element in the alloy can be analyzed with high accuracy according to the analysis method of the example (that is, the trace element analysis method in the alloy of the present invention).

Claims (6)

水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、
該合金を酸処理液とともに加熱して該第1の金属を溶解する酸処理工程と、
該酸処理工程後の処理液にフッ化水素酸を加えて該シリコンと該微量元素とを溶解するフッ化水素酸処理工程と、
該フッ化水素酸処理工程後の処理液を加熱して、該フッ化水素酸を揮発させる揮発工程と、
該揮発工程後の残留成分に酸を加えて、該残留成分中の塩を溶解させる塩溶解工程と、
を含む前処理工程と、
該前処理工程後の残留成分から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする合金中の微量元素の分析方法。
An alloy containing, as a main component, a first metal that has a higher ionization tendency than hydrogen and containing a trace element and silicon, the silicon is contained in an amount of 0.5% by mass or more in 100% by mass of the entire alloy. A method for analyzing trace elements in an alloy,
An acid treatment step of heating the alloy together with an acid treatment solution to dissolve the first metal;
Hydrofluoric acid treatment step of adding hydrofluoric acid to the treatment liquid after the acid treatment step to dissolve the silicon and the trace elements;
A volatilizing step of heating the treatment liquid after the hydrofluoric acid treatment step to volatilize the hydrofluoric acid;
A salt dissolution step of adding an acid to the residual component after the volatilization step to dissolve the salt in the residual component;
A pretreatment process including:
An analysis step of preparing an analysis sample from the residual components after the pretreatment step and analyzing the trace element of the analysis sample, and a method for analyzing the trace element in the alloy.
水素よりもイオン化傾向の大きい第1の金属を主成分とし、微量元素とシリコンとを含む合金であって該合金全体の質量100質量%中に該シリコンが0.5質量%以上含まれている合金中の微量元素を分析する方法であって、
該合金を酸処理液およびフッ化水素酸とともに加熱して、該酸処理液によって該第1の金属を溶解するとともに該フッ化水素酸によって該シリコンと該微量元素とを溶解する酸・フッ化水素酸処理工程と、
該酸・フッ化水素酸処理工程後の処理液を加熱して、該フッ化水素酸を揮発させる揮発工程と、
該揮発工程後の残留成分に酸を加えて、該残留成分中の塩を溶解させる塩溶解工程と、
を含む前処理工程と、
該前処理工程後の残留成分から分析試料を調製し、該分析試料の該微量元素を分析する分析工程と、を備えることを特徴とする合金中の微量元素の分析方法。
An alloy containing, as a main component, a first metal that has a higher ionization tendency than hydrogen and containing a trace element and silicon, the silicon is contained in an amount of 0.5% by mass or more in 100% by mass of the entire alloy. A method for analyzing trace elements in an alloy,
The alloy is heated with an acid treatment solution and hydrofluoric acid to dissolve the first metal with the acid treatment solution and to dissolve the silicon and the trace element with the hydrofluoric acid. Hydroacid treatment process;
A volatilization step of heating the treatment liquid after the acid / hydrofluoric acid treatment step to volatilize the hydrofluoric acid;
A salt dissolution step of adding an acid to the residual component after the volatilization step to dissolve the salt in the residual component;
A pretreatment process including:
An analysis step of preparing an analysis sample from the residual components after the pretreatment step and analyzing the trace element of the analysis sample, and a method for analyzing the trace element in the alloy.
前記第1の金属は、アルミニウムと鉄との少なくとも一方である請求項1または請求項2に記載の合金中の微量元素の分析方法。   The method for analyzing trace elements in an alloy according to claim 1 or 2, wherein the first metal is at least one of aluminum and iron. 前記酸処理液は、塩酸、硫酸、硝酸、塩酸と硝酸との混合液、塩酸と過酸化水素水との混合液、から選ばれる1種である請求項1〜請求項3の何れかに記載の合金中の微量元素の分析方法。   The acid treatment solution is one selected from hydrochloric acid, sulfuric acid, nitric acid, a mixed solution of hydrochloric acid and nitric acid, and a mixed solution of hydrochloric acid and hydrogen peroxide solution. Of trace elements in alloys. 前記酸処理液は、水素よりもイオン化傾向の小さい金属に対する酸化力のある酸と水素よりもイオン化傾向の小さい金属に対する酸化力のない酸との混合液である請求項1〜請求項4の何れか一つに記載の合金中の微量元素の分析方法。   The acid treatment solution is a mixed solution of an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen and an acid having an oxidizing power for a metal having a smaller ionization tendency than hydrogen. The analysis method of the trace element in the alloy as described in any one. 前記微量元素は、ナトリウム、カルシウム、リン、ストロンチウム、ニオブ、チタンから選ばれる少なくとも1種である請求項1〜請求項5の何れか一つに記載の合金中の微量元素の分析方法。   The method for analyzing a trace element in an alloy according to any one of claims 1 to 5, wherein the trace element is at least one selected from sodium, calcium, phosphorus, strontium, niobium, and titanium.
JP2008011460A 2008-01-22 2008-01-22 Analyzing method of very small amount of element in alloy Pending JP2009174902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011460A JP2009174902A (en) 2008-01-22 2008-01-22 Analyzing method of very small amount of element in alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011460A JP2009174902A (en) 2008-01-22 2008-01-22 Analyzing method of very small amount of element in alloy

Publications (1)

Publication Number Publication Date
JP2009174902A true JP2009174902A (en) 2009-08-06

Family

ID=41030160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011460A Pending JP2009174902A (en) 2008-01-22 2008-01-22 Analyzing method of very small amount of element in alloy

Country Status (1)

Country Link
JP (1) JP2009174902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147536A (en) * 2015-06-15 2016-12-23 주식회사 엘지화학 Method for analyzing phosphorus content in cathode materials and composition used in the same
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147536A (en) * 2015-06-15 2016-12-23 주식회사 엘지화학 Method for analyzing phosphorus content in cathode materials and composition used in the same
KR102054465B1 (en) * 2015-06-15 2019-12-11 주식회사 엘지화학 Method for analyzing phosphorus content in cathode materials and composition used in the same
CN111272737A (en) * 2018-12-05 2020-06-12 核工业理化工程研究院 Method for determining percentage content of multiple elements in high-silicon aluminum alloy through microwave digestion-ICP-OES and application of method
CN111272737B (en) * 2018-12-05 2023-05-30 核工业理化工程研究院 Method for measuring percentage content of multiple elements in high-silicon aluminum alloy by microwave digestion-ICP-OES and application thereof

Similar Documents

Publication Publication Date Title
Cruz et al. Microwave-induced combustion method for the determination of trace and ultratrace element impurities in graphite samples by ICP-OES and ICP-MS
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
JP6325358B2 (en) Method for separating and analyzing trace noble metals
JP4656508B2 (en) Determination of selenium by chemical form
JP2009174902A (en) Analyzing method of very small amount of element in alloy
JP5504531B2 (en) Metal element separation method and separation apparatus
JP2010197183A (en) Analysis method of trace element in alloy
JP2011214977A (en) Method of analyzing metal element in resin material
JP5131245B2 (en) Method for analyzing metal impurities in silicon powder
KR101745408B1 (en) Precious metal recovery method from waste solutions using a pulsed laser
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP2009102722A (en) Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal
JP2015132498A (en) Liquid analysis method, metal recovery method, and scale recurrence control method
JP6141668B2 (en) Determination of selenium by chemical form
JP4552645B2 (en) Determination of heavy metal elements
JP2005291968A (en) Quantitative analyzing method of selenium
JP5987239B2 (en) Rhenium recovery method
JP2005114505A (en) Method for determinating very small amount of selenium in glass
JP2020165863A (en) Tungsten quantitative analysis method
JP2020193939A (en) Method for preparing sample for quantification and method for manufacturing silver chloride
JP2020165865A (en) Tungsten quantitative analysis method
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy
RU2521035C2 (en) Method of recovery of secondary platinum with radioactive plutonium contamination
JP6160205B2 (en) Titanate analysis method
JP2020165864A (en) Tungsten quantitative analysis method