JP6472768B2 - Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon - Google Patents

Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon Download PDF

Info

Publication number
JP6472768B2
JP6472768B2 JP2016078059A JP2016078059A JP6472768B2 JP 6472768 B2 JP6472768 B2 JP 6472768B2 JP 2016078059 A JP2016078059 A JP 2016078059A JP 2016078059 A JP2016078059 A JP 2016078059A JP 6472768 B2 JP6472768 B2 JP 6472768B2
Authority
JP
Japan
Prior art keywords
silicon
polycrystalline silicon
sample
impurities
photoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016078059A
Other languages
Japanese (ja)
Other versions
JP2017186216A (en
Inventor
秀一 宮尾
秀一 宮尾
岡田 淳一
淳一 岡田
祢津 茂義
茂義 祢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016078059A priority Critical patent/JP6472768B2/en
Publication of JP2017186216A publication Critical patent/JP2017186216A/en
Application granted granted Critical
Publication of JP6472768B2 publication Critical patent/JP6472768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶の製造用原料として用いられる多結晶シリコン中の不純物を、簡便な方法で定量する技術に関する。   The present invention relates to a technique for quantifying impurities in polycrystalline silicon used as a raw material for producing a silicon single crystal by a simple method.

多結晶シリコンは半導体デバイス等の製造に用いられる単結晶シリコンの育成に際して原料として用いられるため、多結晶シリコン中に含まれているドーパントとしての不純物は極めて低濃度であることが求められる。このような背景の下、特許文献1(特開2013−151413号公報)には、低ドーパント多結晶質シリコン塊の発明が提案されている。   Since polycrystalline silicon is used as a raw material for growing single crystal silicon used in the manufacture of semiconductor devices and the like, impurities as dopants contained in the polycrystalline silicon are required to have a very low concentration. Under such a background, Patent Document 1 (Japanese Patent Laid-Open No. 2013-151413) proposes an invention of a low-dopant polycrystalline silicon mass.

不純物濃度の低い多結晶シリコンの提供を実現するためには、それを定量する技術も必要となり、標準化された評価方法として、フォトルミネッセンス法によるものとして、ASTM―F1389−00(単結晶化試料)やJIS−H−0615に規定の方法が知られている。これらの標準に既定の方法では、多結晶質試料を単結晶化させることが前提とされており、単結晶化のための標準化手法として、ASTM−F1723−02による帯域熔融法による方法が知られている。   In order to realize the provision of polycrystalline silicon with a low impurity concentration, a technique for quantifying it is also required. As a standardized evaluation method, the photoluminescence method is used, and ASTM-F1389-00 (single crystallized sample) is used. A method defined in JIS-H-0615 is known. The standard methods for these standards are based on the premise that a polycrystalline sample is single-crystallized. As a standardization method for single-crystallizing, a method based on the zone melting method according to ASTM-F1723-02 is known. ing.

また、特許文献2(特開平5−58789号公報)には、化学的気相成長法により製造されたシリコン単結晶中の超微量元素(リン、ヒ素、ホウ素、アルミニウム等)、およびシリコン単結晶を製造する際の原料となるクロロシラン類中の超微量元素(リン、ヒ素、ホウ素、アルミニウム等)を分別定量する方法として、「化学的気相成長法により製造したシリコン単結晶に、照射面におけるエネルギーが3100〜3358mW/cm2のレーザー光線を照射し、発光したスペクトルを光電的に測定してシリコン単結晶中の超微量元素を定量することを特徴とするシリコン単結晶中の超微量元素の分別定量方法」の発明が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 5-58789) discloses ultra-trace elements (phosphorus, arsenic, boron, aluminum, etc.) in a silicon single crystal manufactured by chemical vapor deposition, and a silicon single crystal. As a method of fractionating and quantifying ultra-trace elements (phosphorus, arsenic, boron, aluminum, etc.) in chlorosilanes, which are raw materials when producing, a silicon single crystal produced by chemical vapor deposition is used on the irradiated surface. Fractionation of ultratrace elements in a silicon single crystal characterized by irradiating a laser beam with an energy of 3100-3358 mW / cm 2 and measuring the emitted spectrum photoelectrically to quantify the trace elements in the silicon single crystal The invention of “quantitative method” is disclosed.

特開2013−151413号公報JP 2013-151413 A 特開平5−58789号公報JP-A-5-58789

しかし、上述の方法は何れも、評価試料が単結晶化されていることを求めるものであるから、フォトルミネッセンス法で多結晶シリコン中の不純物を定量するに際してはこれを単結晶化する工程が不可欠となるが、ASTM−F1723−02に規定されている帯域熔融法による単結晶化方法においても、単結晶化の工程での汚染は完全には回避できないから、1,000Ω−cm以上の高抵抗試料中の本来の不純物の濃度を定量することは極めて困難となる。   However, since all of the above methods require that the evaluation sample is single-crystallized, the step of single-crystallizing the impurity in the polycrystalline silicon by the photoluminescence method is indispensable. However, even in the single crystallization method based on the zone melting method defined in ASTM-F1723-02, contamination in the single crystallization process cannot be completely avoided. It is extremely difficult to quantify the concentration of the original impurities in the sample.

本発明は斯かる問題に鑑みてなされたもので、その目的とするところは、シリコン単結晶の製造用原料として用いられる多結晶シリコン中の不純物をフォトルミネッセンス法により定量するに際し、評価試料の単結晶化工程を不要とし、簡便に定量可能な技術を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to determine a single sample of an evaluation sample when quantifying impurities in polycrystalline silicon used as a raw material for producing a silicon single crystal by a photoluminescence method. An object of the present invention is to provide a technique capable of easily quantifying without requiring a crystallization step.

上記課題を解決するために、本発明に係るシリコン結晶中の不純物定量方法は、フォトルミネッセンス法によりシリコン結晶中の不純物を定量する方法であって、多結晶シリコンの一部を高周波加熱により融解し、シリコン融液中で結晶子を対流させた状態を所定時間だけ維持し、その後に冷却させて結晶化させた前記多結晶シリコン試料の一部から評価試料を採取し、該評価試料を用いて不純物定量を行うことを特徴とする。   In order to solve the above problems, a method for quantifying impurities in a silicon crystal according to the present invention is a method for quantifying impurities in a silicon crystal by a photoluminescence method, wherein a part of polycrystalline silicon is melted by high-frequency heating. An evaluation sample is collected from a part of the polycrystalline silicon sample that is maintained in a state where the crystallites are convected in the silicon melt for a predetermined time and then cooled and crystallized, and the evaluation sample is used. Impurity determination is performed.

例えば、前記不純物は、リン、ヒ素、ボロン、アルミニウムの何れかである。   For example, the impurity is any one of phosphorus, arsenic, boron, and aluminum.

好ましくは、前記シリコン融液中での結晶子の対流状態を少なくとも5分より長く維持する。   Preferably, the crystallite convection state in the silicon melt is maintained for at least 5 minutes.

例えば、前記評価試料の採取領域は、円板状換算で、直径が3mm以上で厚さが1mm以上である。   For example, the collection area of the evaluation sample has a diameter of 3 mm or more and a thickness of 1 mm or more in terms of a disk.

また、本発明に係る多結晶シリコンは、上述の方法で評価された不純物濃度が、リンとヒ素の濃度がそれぞれ0.05ppba以下、かつ、ボロンとアルミニウムの濃度がそれぞれ0.05ppba以下であり、本発明に係る多結晶シリコンの選別方法では、上述の方法で評価された不純物濃度が、リンとヒ素の濃度がそれぞれ0.05ppba以下、かつ、ボロンとアルミニウムの濃度がそれぞれ0.05ppba以下である多結晶シリコンを、半導体製造用の多結晶シリコンとして選別する。   Further, the polycrystalline silicon according to the present invention has an impurity concentration evaluated by the above-described method, wherein the concentrations of phosphorus and arsenic are each 0.05 ppba or less, and the concentrations of boron and aluminum are 0.05 ppba or less, In the method for selecting polycrystalline silicon according to the present invention, the impurity concentration evaluated by the above method is such that the concentrations of phosphorus and arsenic are each 0.05 ppba or less, and the concentrations of boron and aluminum are each 0.05 ppba or less. Polycrystalline silicon is selected as polycrystalline silicon for semiconductor manufacturing.

本発明に係るフォトルミネッセンス法によるシリコン結晶中の不純物定量方法においては、従来法のような単結晶化の工程を必要としないため、迅速な定量が可能となる。また、単結晶化に伴う汚染の恐れがないため、本来の不純物濃度を定量することができる。   The method for quantifying impurities in a silicon crystal by the photoluminescence method according to the present invention does not require a single crystallization step as in the conventional method, so that rapid quantification is possible. In addition, since there is no fear of contamination due to single crystallization, the original impurity concentration can be quantified.

融解時間が異なる4種の板状試料から得られたPLスペクトルである。It is a PL spectrum obtained from four types of plate-like samples having different melting times. 多結晶シリコンの一部を高周波加熱により融解させた領域から得た板状試料(実施例)から得られたPLスペクトルである。It is PL spectrum obtained from the plate-shaped sample (Example) obtained from the area | region which melt | dissolved a part of polycrystalline silicon by the high frequency heating. 帯域熔融法により単結晶化させた後に得た板状試料(比較例)から得られたPLスペクトルである。It is PL spectrum obtained from the plate-shaped sample (comparative example) obtained after making it single crystal by the zone melting method.

不純物濃度を定量する多結晶シリコンの塊(例えば、シーメンス法で育成された多結晶シリコン棒)から、以下の手順で評価試料を採取する。例えば、19mm径のコアドリルにより円柱状のサンプル(コアサンプル)をくり抜き、その先端をテーパ加工する。その後、例えば、フッ酸(50wt%)と硝酸(70wt%)の混合液(1:5、体積比)によるエッチングを5分間行い、表面の加工汚れを除去する。そして、これを鉛直方向に吊し、テーパ加工した先端部(例えば、直径5mmで高さ2〜3mmの円錐領域)を高周波加熱し、融解させる。融解物が熔けて落下しない様に、高周波加熱装置の電流値により微調整を行いながら、この状態を所定の時間維持する。   An evaluation sample is collected from a polycrystalline silicon mass (for example, a polycrystalline silicon rod grown by the Siemens method) for quantifying the impurity concentration in the following procedure. For example, a cylindrical sample (core sample) is cut out with a 19 mm diameter core drill, and the tip is tapered. After that, for example, etching with a mixed solution (1: 5, volume ratio) of hydrofluoric acid (50 wt%) and nitric acid (70 wt%) is performed for 5 minutes to remove surface processing stains. Then, this is suspended in the vertical direction, and a tapered tip (for example, a conical region having a diameter of 5 mm and a height of 2 to 3 mm) is heated at high frequency to be melted. This state is maintained for a predetermined time while finely adjusting the current value of the high-frequency heating device so that the melt does not melt and fall.

なお、コアサンプルは多結晶シリコン棒の何れの方向からサンプリングしてもよい。また、融解領域と高周波装置に測定試料を把持させるための距離は40〜50mm程度が必要であり、この距離により、サンプルコアの把持材料への高温化が防止される。   The core sample may be sampled from any direction of the polycrystalline silicon rod. In addition, the distance for causing the melting region and the high-frequency device to grip the measurement sample needs to be about 40 to 50 mm, and this distance prevents the sample core from being held at a high temperature.

上述の融解状態を維持すると、融解した多結晶が融液の中で対流を始め、やがて、重力の影響若しくは高周波による影響により、結晶子が一定の方向に揃う若しくは結晶子が大きく成長するということが起こる。この維持時間は、少なくとも5分よりも長いことが好ましく、例えば10分とする。この際、高周波加熱装置内をArガス(例えば流量18リットル/分)で置換し内圧を0.03MPaなどとしておく。なお、テーパ加工する先端部の高さは5mm以内とする。   Maintaining the above-mentioned melting state means that the melted polycrystal starts convection in the melt, and eventually the crystallites are aligned in a certain direction or the crystallites grow greatly due to the influence of gravity or high frequency. Happens. This maintenance time is preferably longer than at least 5 minutes, for example, 10 minutes. At this time, the inside of the high-frequency heating apparatus is replaced with Ar gas (for example, a flow rate of 18 liter / min), and the internal pressure is set to 0.03 MPa or the like. Note that the height of the tip portion to be tapered is set to be within 5 mm.

溶融状態の維持時間を少なくとも5分よりも長く設定するのは、この時間が短いと、シリコン融液中での結晶子の対流が不十分となり、当該領域からは明瞭なフォトルミネッセンスのスペクトルが得られないためである。また、高周波加熱により融解を行うのは、処理中の汚染を極力回避するためであり、これに対し、マッフル炉やランプ加熱炉等により融解させると汚染を受け易い。   The maintenance time of the molten state is set longer than at least 5 minutes. If this time is short, the convection of crystallites in the silicon melt becomes insufficient, and a clear photoluminescence spectrum is obtained from this region. It is because it is not possible. In addition, melting is performed by high-frequency heating in order to avoid contamination during processing as much as possible. On the other hand, if melting is performed in a muffle furnace, a lamp heating furnace, or the like, contamination is likely to occur.

融解状態の維持の後に自然冷却を行い、結晶化させる。そして、この結晶化領域から評価試料を採取する。このときの評価試料の採取領域は、後工程でのハンドリングのし易さ等を考慮して、円板状換算で、直径が3mm以上で厚さが1mm以上であることが好ましい。なお、PL測定時のレーザー光照射領域は概ね3mm径であり、発光に関与する深さは概ね100μmである。   After maintaining the molten state, it is naturally cooled and crystallized. Then, an evaluation sample is collected from this crystallization region. The sampling area of the evaluation sample at this time preferably has a diameter of 3 mm or more and a thickness of 1 mm or more in terms of a disk shape in consideration of ease of handling in a subsequent process. In addition, the laser light irradiation area | region at the time of PL measurement is a diameter of about 3 mm, and the depth involved in light emission is about 100 micrometers.

なお、エッチング後の偏光顕微鏡による外観観察では、単結晶のものと外観上の差は認められなかったが、X線回折分析を行うと、(111)、(220)、(311)、(400)の各結晶面からの回折ピークが確認された。   In the appearance observation with a polarizing microscope after etching, no difference in appearance from that of the single crystal was observed. However, when X-ray diffraction analysis was performed, (111), (220), (311), (400 ) Diffraction peaks from each crystal plane were confirmed.

この板状試料の片側をラップ研磨し、表面をフッ酸と硝酸の混合水溶液によりエッチングし、その面に光照射してフォトルミネッセンス(PL)測定を行い、リン、ヒ素、ボロン、アルミニウム等の濃度定量を行う。なお、定量は、ASTM−F1389−00やJIS−H−0615に記載の手法に則る。   One side of this plate sample is lapped, the surface is etched with a mixed aqueous solution of hydrofluoric acid and nitric acid, the surface is irradiated with light, photoluminescence (PL) measurement is performed, and the concentration of phosphorus, arsenic, boron, aluminum, etc. Perform quantification. In addition, fixed_quantity | quantitative_assay follows the method as described in ASTM-F1389-00 and JIS-H-0615.

抵抗率測定は4探針法による。この方法では、外側2本の針に電圧を掛けた時に流れる電流を内側2本の針にて測定する。4探針の針間隔は1mm(延べ3mm)であるから、直径が3mm以上の板状試料であれば、4探針法での抵抗率測定が可能である。   The resistivity measurement is based on the 4-probe method. In this method, the current that flows when voltage is applied to the two outer needles is measured with the two inner needles. Since the distance between the four probes is 1 mm (3 mm in total), the resistivity can be measured by the four-probe method if the plate-like sample has a diameter of 3 mm or more.

上述のとおり、本発明に係るフォトルミネッセンス法によるシリコン結晶中の不純物定量方法は、フォトルミネッセンス法によりシリコン結晶中の不純物を定量する方法であって、多結晶シリコンの一部を高周波加熱により融解し、シリコン融液中で結晶子を対流させた状態を所定時間だけ維持し、その後に冷却させて結晶化させた前記多結晶シリコン試料の一部から評価試料を採取し、該評価試料を用いて不純物定量を行うことを特徴としている。   As described above, the method for quantifying impurities in a silicon crystal by the photoluminescence method according to the present invention is a method for quantifying impurities in the silicon crystal by a photoluminescence method, wherein a part of polycrystalline silicon is melted by high-frequency heating. An evaluation sample is collected from a part of the polycrystalline silicon sample that is maintained in a state where the crystallites are convected in the silicon melt for a predetermined time and then cooled and crystallized, and the evaluation sample is used. It is characterized by quantifying impurities.

この方法においては、従来法のような単結晶化の工程を必要としないため、迅速な定量が可能となる。また、単結晶化に伴う汚染の恐れがないため、本来の不純物濃度を定量することができる。   Since this method does not require a single crystallization step as in the conventional method, rapid quantification is possible. In addition, since there is no fear of contamination due to single crystallization, the original impurity concentration can be quantified.

本発明に係る方法で定量される不純物は、例えば、リン、ヒ素、ボロン、アルミニウムなどである。   Impurities quantified by the method according to the present invention are, for example, phosphorus, arsenic, boron, aluminum and the like.

本発明を実行するに際しては、シリコン融液中での結晶子の対流状態を少なくとも5分より長く維持することが好ましい。   In practicing the present invention, it is preferable to maintain the convection state of the crystallites in the silicon melt for at least 5 minutes.

また、上述した評価試料の採取領域は、円板状換算で、直径が3mm以上で厚さが1mm以上であることが好ましい。   Moreover, it is preferable that the collection area | region of the evaluation sample mentioned above is a diameter of 3 mm or more and thickness is 1 mm or more in disk conversion.

本発明に係るフォトルミネッセンス法によるシリコン結晶中の不純物定量方法で評価された不純物濃度が、リンとヒ素の濃度がそれぞれ0.05ppba以下、かつ、ボロンとアルミニウムの濃度がそれぞれ0.05ppba以下である多結晶シリコンを、半導体製造用の多結晶シリコンとして選別することとすると、実測に多結晶シリコンの選別(品質管理)が可能となる。   Impurity concentrations evaluated by the method for quantifying impurities in silicon crystals by the photoluminescence method according to the present invention are such that the concentrations of phosphorus and arsenic are each 0.05 ppba or less, and the concentrations of boron and aluminum are each 0.05 ppba or less. If polycrystalline silicon is selected as polycrystalline silicon for semiconductor manufacturing, it is possible to select polycrystalline silicon for actual measurement (quality control).

一本の多結晶シリコン棒の直胴部から、上述の手順に則り、融解時間が異なる4種の板状試料(融解時間:3分、5分、8分、11分)を採取した。図1にこれらの試料から得られたPLスペクトルを示す。また、表1に、PLスペクトルから定量したP、As、B、Alの濃度と抵抗値を纏めた。なお、表中の計算抵抗値は、抵抗値(Ω-cm)=93/((P濃度+As濃度)−(B濃度+Al濃度))として算出した。   Four plate samples (melting time: 3 minutes, 5 minutes, 8 minutes, and 11 minutes) having different melting times were collected from the straight body portion of one polycrystalline silicon rod in accordance with the above-described procedure. FIG. 1 shows PL spectra obtained from these samples. Table 1 summarizes the concentrations and resistance values of P, As, B, and Al determined from the PL spectrum. The calculated resistance values in the table were calculated as resistance value (Ω-cm) = 93 / ((P concentration + As concentration) − (B concentration + Al concentration)).

融解時間が5分以下の試料からは、PLスペクトル中に明瞭なピークが認められないのに対し、融解時間が5分より長い試料からは明瞭なピークが認められている。   A clear peak is not observed in the PL spectrum from a sample having a melting time of 5 minutes or less, whereas a clear peak is observed from a sample having a melting time longer than 5 minutes.

次に、多結晶シリコンの一部を高周波加熱により融解させた領域から得た板状試料(実施例)と、帯域熔融法により単結晶化させた後に得た板状試料(比較例)につき、PL測定で定量した不純物濃度を比較した。なお、再現性を確認すべく、それぞれの試料につき2つの板状試料を準備した。これらの試料から得られたPLスペクトルを図2(実施例)および図3(比較例)に示す。また、表2に、PLスペクトルから定量したP、As、B、Alの濃度と抵抗値を纏めた。   Next, a plate-like sample (Example) obtained from a region where a part of polycrystalline silicon was melted by high-frequency heating, and a plate-like sample (Comparative Example) obtained after single crystallization by zone melting method, The impurity concentration determined by PL measurement was compared. In order to confirm reproducibility, two plate-like samples were prepared for each sample. The PL spectra obtained from these samples are shown in FIG. 2 (Example) and FIG. 3 (Comparative example). Table 2 summarizes the concentrations and resistance values of P, As, B, and Al determined from the PL spectrum.

これらの板状試料は、同一の多結晶シリコン棒の同一部位から採取したものであるから、本来、その不純物濃度は同一である。しかし、定量結果によれば、帯域熔融法により単結晶化させた後に得た板状試料(比較例)のものは、高周波加熱により融解させた領域から得た板状試料(実施例)のものよりも、高い不純物濃度を示している。この事実は、単結晶化に伴う汚染により、本来の不純物濃度よりも高い数値が得られていることを示している。   Since these plate samples are collected from the same part of the same polycrystalline silicon rod, their impurity concentrations are essentially the same. However, according to the quantitative results, the plate-like sample (comparative example) obtained after single crystallization by the zone melting method is the plate-like sample (example) obtained from the region melted by high-frequency heating. It shows a higher impurity concentration. This fact indicates that a numerical value higher than the original impurity concentration is obtained due to contamination accompanying single crystallization.

なお、表2中の「CZ単結晶」とは、実施例の板状試料を採取した多結晶シリコンを原料として育成したCZ単結晶シリコンであり、その不純物濃度は、実施例の板状試料で定量して得られた数値に概ね一致している。   “CZ single crystal” in Table 2 is CZ single crystal silicon grown from polycrystalline silicon obtained by collecting the plate sample of the example, and the impurity concentration thereof is the plate sample of the example. It almost agrees with the numerical value obtained by quantification.

このように、本発明による手法は、Pの濃度が0.05ppba以下、Bの濃度が0.05ppba以下といった、極低濃度品についての正確な不純物分析に特に有効である。   Thus, the method according to the present invention is particularly effective for accurate impurity analysis of extremely low-concentration products such as P concentration of 0.05 ppba or less and B concentration of 0.05 ppba or less.

本発明は、シリコン単結晶の製造用原料として用いられる多結晶シリコン中の不純物をフォトルミネッセンス法により定量するに際し、評価試料の単結晶化工程を不要とし、簡便に定量可能な技術を提供する。   The present invention provides a technique capable of easily quantifying an evaluation sample without requiring a single crystallization step when quantifying impurities in polycrystalline silicon used as a raw material for producing a silicon single crystal by a photoluminescence method.

Claims (4)

フォトルミネッセンス法によりシリコン結晶中の不純物を定量する方法であって、
多結晶シリコンの一部を高周波加熱により融解し、シリコン融液中で結晶子を対流させた状態を8分以上維持し、その後に冷却させて単結晶化させることなく結晶化させた前記多結晶シリコン試料の一部から多結晶の評価試料を採取し、該評価試料を用いて不純物定量を行う、フォトルミネッセンス法によるシリコン結晶中の不純物定量方法。
A method for quantifying impurities in a silicon crystal by a photoluminescence method,
The polycrystal obtained by melting a part of polycrystalline silicon by high-frequency heating, maintaining a crystallite convection state in a silicon melt for 8 minutes or more , and then cooling to crystallize without single crystallization. A method for quantifying impurities in a silicon crystal by a photoluminescence method, wherein a polycrystalline evaluation sample is collected from a part of a silicon sample, and impurities are quantified using the evaluation sample.
前記不純物は、リン、ヒ素、ボロン、アルミニウムの何れかである、請求項1に記載のフォトルミネッセンス法によるシリコン結晶中の不純物定量方法。   The method for quantifying impurities in a silicon crystal by a photoluminescence method according to claim 1, wherein the impurity is any one of phosphorus, arsenic, boron, and aluminum. 前記評価試料の採取領域は、円板状換算で、直径が3mm以上で厚さが1mm以上である、請求項1または2に記載のフォトルミネッセンス法によるシリコン結晶中の不純物定量方法。 The method for quantifying impurities in a silicon crystal by a photoluminescence method according to claim 1 or 2 , wherein the sampling region of the evaluation sample has a diameter of 3 mm or more and a thickness of 1 mm or more in terms of a disk. 請求項1〜の何れか1項に記載の方法で評価された不純物濃度が、リンとヒ素の濃度がそれぞれ0.05ppba以下、かつ、ボロンとアルミニウムの濃度がそれぞれ0.05ppba以下である多結晶シリコンを、半導体製造用の多結晶シリコンとして選別する、多結晶シリコンの選別方法。 The impurity concentration evaluated by the method according to any one of claims 1 to 3 is such that the concentrations of phosphorus and arsenic are each 0.05 ppba or less, and the concentrations of boron and aluminum are 0.05 ppba or less, respectively. A method for selecting polycrystalline silicon, wherein crystalline silicon is selected as polycrystalline silicon for semiconductor manufacturing.
JP2016078059A 2016-04-08 2016-04-08 Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon Active JP6472768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078059A JP6472768B2 (en) 2016-04-08 2016-04-08 Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078059A JP6472768B2 (en) 2016-04-08 2016-04-08 Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon

Publications (2)

Publication Number Publication Date
JP2017186216A JP2017186216A (en) 2017-10-12
JP6472768B2 true JP6472768B2 (en) 2019-02-20

Family

ID=60043848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078059A Active JP6472768B2 (en) 2016-04-08 2016-04-08 Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP6472768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006841A (en) * 2019-04-11 2019-07-12 内蒙古神舟硅业有限责任公司 O, C in a kind of granulated polycrystalline silicon, III, the detection method of group Ⅴ element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604924B2 (en) * 1991-07-23 1997-04-30 信越半導体株式会社 Method for analyzing impurities in silicon crystal
DE102010043702A1 (en) * 2010-11-10 2012-05-10 Wacker Chemie Ag Method for the determination of impurities in silicon
DE102011089479A1 (en) * 2011-12-21 2013-06-27 Wacker Chemie Ag Polycrystalline silicon
DE102012200994A1 (en) * 2012-01-24 2013-07-25 Wacker Chemie Ag Method for determining surface contamination of polycrystalline silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006841A (en) * 2019-04-11 2019-07-12 内蒙古神舟硅业有限责任公司 O, C in a kind of granulated polycrystalline silicon, III, the detection method of group Ⅴ element
CN110006841B (en) * 2019-04-11 2022-12-06 内蒙古神舟硅业有限责任公司 Method for detecting O, C, III and V group elements in granular polycrystalline silicon

Also Published As

Publication number Publication date
JP2017186216A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
KR101997561B1 (en) Method for manufacturing silicon monocrystal rod
JP5774400B2 (en) Method for evaluating silica powder, silica glass crucible, method for producing silica glass crucible
DE112006000816T5 (en) Production process for silicon single crystal, annealed wafer and annealed wafer production process
JP6472768B2 (en) Determination of impurities in silicon crystal by photoluminescence method and selection method of polycrystalline silicon
JP6314097B2 (en) Polycrystalline silicon rod
DE112017003436T5 (en) Single-crystalline, plate-shaped silicon body and method for its production
US5361128A (en) Method for analyzing irregular shaped chunked silicon for contaminates
US8801854B2 (en) Method for evaluating metal contamination of silicon single crystal
EP2620412B1 (en) Process for determining surface contamination of polycrystalline silicon
JP5868286B2 (en) Method for selecting polycrystalline silicon rod, method for producing polycrystalline silicon lump, and method for producing single crystal silicon
KR102405621B1 (en) Polycrystalline silicon rod and method for selecting polycrystalline silicon rod
JP6951936B2 (en) Manufacturing method for polycrystalline silicon rods and single crystal silicon
CN107268079B (en) Polycrystalline silicon, FZ single crystal silicon, and methods for producing them
KR101903887B1 (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SAME
JP6547614B2 (en) Method of analyzing metal impurities of silicon crystal and evaluation method
EP4018019B1 (en) Method for determining trace metals in silicon
US20220033267A1 (en) Polycrystalline silicon rod
WO2022012936A1 (en) Crystal piece of monocrystaline silicon
JPH08111444A (en) Atomic vacancy distribution evaluation method of silicon wafer for semiconductor substrate
DE102011080866A1 (en) Manufacturing monocrystalline rod made of silicon, comprises continuously melting a polycrystalline rod by coupling an induction coil, and introducing the molten material having a monocrystalline seed crystal and re-crystallizing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6472768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150