JP3109451B2 - Quartz crucible and method for evaluating the quartz crucible - Google Patents

Quartz crucible and method for evaluating the quartz crucible

Info

Publication number
JP3109451B2
JP3109451B2 JP09166525A JP16652597A JP3109451B2 JP 3109451 B2 JP3109451 B2 JP 3109451B2 JP 09166525 A JP09166525 A JP 09166525A JP 16652597 A JP16652597 A JP 16652597A JP 3109451 B2 JP3109451 B2 JP 3109451B2
Authority
JP
Japan
Prior art keywords
quartz crucible
single crystal
pulling
ratio
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09166525A
Other languages
Japanese (ja)
Other versions
JPH10338595A (en
Inventor
敏昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09166525A priority Critical patent/JP3109451B2/en
Publication of JPH10338595A publication Critical patent/JPH10338595A/en
Application granted granted Critical
Publication of JP3109451B2 publication Critical patent/JP3109451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石英坩堝及び該石英
坩堝の評価方法に関し、より詳細にはチョクラルスキー
法(以下、CZ法と記す)等の引き上げ方法によりシリ
コン単結晶を引き上げる際に使用される石英坩堝及び該
石英坩堝の評価方法に関する。
The present invention relates to a quartz crucible and a method for evaluating the quartz crucible, and more particularly to a method for pulling a silicon single crystal by a pulling method such as a Czochralski method (hereinafter referred to as a CZ method). And a method for evaluating the quartz crucible.

【0002】[0002]

【従来の技術】現在、LSI(大規模集積回路)等の回
路素子形成用基板の製造に使用されているシリコン単結
晶の大部分は、CZ法により引き上げられたシリコン単
結晶である。図9は、このCZ法に用いられる単結晶引
き上げ装置を模式的に示した断面図であり、図中11は
坩堝を示している。
2. Description of the Related Art At present, most of silicon single crystals used for manufacturing substrates for forming circuit elements such as LSIs (large-scale integrated circuits) are silicon single crystals pulled up by the CZ method. FIG. 9 is a cross-sectional view schematically showing a single crystal pulling apparatus used in the CZ method. In the figure, reference numeral 11 denotes a crucible.

【0003】この坩堝11は、非晶質シリカからなる有
底円筒形状の石英坩堝11aと、この石英坩堝11aの
外側に嵌合された、同じく有底円筒形状の黒鉛坩堝11
bとから構成されており、坩堝11は、図中の矢印方向
に所定の速度で回転する支持軸18に支持されている。
この坩堝11の外側には、抵抗加熱式のヒータ12、及
び保温筒17が同心円状に配置されており、坩堝11内
にはヒータ12により溶融させる結晶用原料の溶融液1
3が充填されるようになっている。また、坩堝11の中
心軸上には、引き上げ棒あるいはワイヤー等からなる、
引き上げ軸14が吊設されており、この引き上げ軸14
の下端に、保持具14aを介して種結晶15が取り付け
られるようになっている。また、これら坩堝11やヒー
タ12は、圧力の制御が可能な水冷式のチャンバ19内
に納められている。
The crucible 11 has a bottomed cylindrical quartz crucible 11a made of amorphous silica, and a bottomed cylindrical graphite crucible 11 fitted to the outside of the quartz crucible 11a.
The crucible 11 is supported by a support shaft 18 that rotates at a predetermined speed in the direction of the arrow in the figure.
A heater 12 of a resistance heating type and a heat retaining cylinder 17 are arranged concentrically outside the crucible 11, and a melt 1 of a crystal raw material to be melted by the heater 12 is placed in the crucible 11.
3 is filled. In addition, on the central axis of the crucible 11, a pulling rod or a wire is used.
A lifting shaft 14 is suspended, and the lifting shaft 14 is
The seed crystal 15 is attached to the lower end of the base via a holder 14a. The crucible 11 and the heater 12 are housed in a water-cooled chamber 19 capable of controlling the pressure.

【0004】上記した単結晶引き上げ装置10を用いて
単結晶16を引き上げる際には、まずヒータ12により
結晶用原料を溶融させ、チャンバ19内を減圧した後、
しばらく放置して溶融液13中のガスを十分に放出さ
せ、その後、Ar等の不活性ガスを導入して減圧の不活
性ガス雰囲気とする。
When the single crystal 16 is pulled using the single crystal pulling apparatus 10 described above, first, the raw material for crystallization is melted by the heater 12, and the pressure in the chamber 19 is reduced.
The gas in the melt 13 is left sufficiently for a while to be released, and then an inert gas such as Ar is introduced to form a reduced-pressure inert gas atmosphere.

【0005】次に、支持軸18と同一軸心で逆方向に所
定の速度で引き上げ軸14を回転させながら、保持具1
4aに取り付けられた種結晶15を降下させて溶融液1
3に着液させ、種結晶15の先端に結晶を成長させてゆ
く。このとき、所定径になるまで結晶を一旦細く絞り、
ネック16aを形成する。
Next, while rotating the pull-up shaft 14 at a predetermined speed in the opposite direction on the same axis as the support shaft 18, the holder 1
The seed crystal 15 attached to the melt 4a is lowered.
3 and the crystal is grown at the tip of the seed crystal 15. At this time, the crystal is once narrowed down to a predetermined diameter,
The neck 16a is formed.

【0006】次に、ネック16aを所定の径まで成長さ
せ、ショルダ16bを形成した後、所定の径、所定長さ
のメインボディ16cを形成する。その後、単結晶16
の直径を徐々に絞って、単結晶16全体の温度を徐々に
降下させ、終端コーン(図示せず)を形成した後、単結
晶16を溶融液13から切り離す。
Next, after growing the neck 16a to a predetermined diameter and forming a shoulder 16b, a main body 16c having a predetermined diameter and a predetermined length is formed. Then, the single crystal 16
Is gradually reduced to gradually lower the temperature of the entire single crystal 16 to form a terminal cone (not shown). Then, the single crystal 16 is separated from the melt 13.

【0007】上記した単結晶の引き上げにおいては、転
位を含まない単結晶16を引き上げる必要があるが、種
結晶15を溶融液13に着液させた際、熱ショックによ
り転位が導入され易く、種結晶15の下方にネック16
aを形成して結晶を細く絞ることによりネック16aの
先端面の形状を下に凸形状とし、前記転位をネック16
aの形成により排除している。
In the above-described pulling of a single crystal, it is necessary to pull up a single crystal 16 that does not contain dislocations. However, when the seed crystal 15 is immersed in the melt 13, dislocations are easily introduced by heat shock, Neck 16 below crystal 15
a is formed and the crystal is squeezed finely to make the shape of the tip end face of the neck 16a convex downward, and the dislocation is
a has been excluded.

【0008】[0008]

【発明が解決しようとする課題】しかし、一旦転位を排
除した後、ショルダ16b及びメインボディ16cを形
成する際にも、種々の原因により転位が導入される(有
転位化する)可能性があり、有転位化により引き上げた
単結晶16の歩留まりが低下してしまう。前記有転位化
を引き起こす原因として、種々のものが挙げられるが、
その一つに、単結晶引き上げ中に石英坩堝11aから放
出される結晶性シリカが挙げられる。すなわち、溶融液
13と接している非晶質の石英坩堝11aの内表面近傍
が単結晶引き上げ中にクリストバライト等の結晶性シリ
カに変化し、前記内表面近傍が溶融液13に溶解するの
に伴って前記結晶性シリカが溶融液13中に混入する。
その後、前記結晶性シリカは固液成長界面に到達し、単
結晶16の成長を阻害して転位の導入を図る。
However, once the dislocations are eliminated, even when the shoulder 16b and the main body 16c are formed, dislocations may be introduced (dislocations) due to various causes. In addition, the yield of the single crystal 16 pulled by dislocation decreases. Causes for causing the dislocation include various things,
One of them is crystalline silica released from the quartz crucible 11a during single crystal pulling. That is, the vicinity of the inner surface of the amorphous quartz crucible 11a in contact with the melt 13 changes to crystalline silica such as cristobalite during the pulling of a single crystal, and the vicinity of the inner surface dissolves in the melt 13 Thus, the crystalline silica is mixed into the melt 13.
Thereafter, the crystalline silica reaches the solid-liquid growth interface, and inhibits the growth of the single crystal 16 to introduce dislocations.

【0009】非晶質の石英坩堝11aの内表面近傍が結
晶化する原因の一つとして、前記内表面近傍に存在する
不純物(特にアルカリ金属等)がある。前記内表面近傍
に存在する不純物が核となり、非晶質石英が結晶化する
と考えられる。しかし、石英坩堝11aの内表面近傍に
どの程度の不純物が存在する場合に結晶性シリカが生成
し、単結晶16が有転位化するか等、石英坩堝11aの
内表面近傍の不純物の種類や濃度と、単結晶16の有転
位化との明瞭な相関関係は未だに把握されていないのが
現状である。
One of the causes of crystallization near the inner surface of the amorphous quartz crucible 11a is an impurity (especially an alkali metal or the like) existing near the inner surface. It is considered that the impurities existing near the inner surface serve as nuclei and the amorphous quartz crystallizes. However, the type and concentration of impurities in the vicinity of the inner surface of the quartz crucible 11a, such as how much impurities are present in the vicinity of the inner surface of the quartz crucible 11a to generate crystalline silica and the dislocation of the single crystal 16, etc. At present, a clear correlation between the dislocation and the dislocation of the single crystal 16 has not yet been grasped.

【0010】また、単結晶引き上げ後に結晶化を反映し
て石英坩堝11aの内表面に表われるリング状の模様の
大きさにより、ある程度石英坩堝11a表面の結晶化の
程度が推定されているが、この場合にも、リング状の模
様の大きさと単結晶16の有転位化との間の明確な相関
関係は今だに把握されていない。
The degree of crystallization on the surface of the quartz crucible 11a is estimated to some extent by the size of the ring-shaped pattern appearing on the inner surface of the quartz crucible 11a reflecting the crystallization after pulling the single crystal. Also in this case, a clear correlation between the size of the ring-shaped pattern and the dislocation of the single crystal 16 has not yet been grasped.

【0011】以上のように、従来においては、単結晶1
6の引き上げ中に石英坩堝11aから放出される結晶性
シリカに起因する単結晶16の有転位化と、石英坩堝1
1aの特性との間にはっきりとした相関関係が見い出さ
れていないため、どのような特性を有する石英坩堝11
aを使用すれば、どの程度単結晶16の有転位化を低減
することができるかがはっきりと把握されていないとい
う課題があった。
As described above, conventionally, single crystal 1
6, the dislocation of the single crystal 16 caused by the crystalline silica released from the quartz crucible 11a during the pulling of the quartz crucible 1a.
No clear correlation has been found between the characteristics of the quartz crucible 11a and the characteristics of the quartz crucible 11a.
There is a problem that it is not clearly understood how much dislocation of the single crystal 16 can be reduced if a is used.

【0012】本発明は上記課題に鑑みなされたものであ
り、CZ法等の方法により単結晶を引き上げる際に、単
結晶の有転位化を低減することができる石英坩堝、及び
引き上げる単結晶の有転位化を低減するために有用な前
記石英坩堝の評価方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when a single crystal is pulled by a method such as the CZ method, a quartz crucible capable of reducing dislocations in the single crystal, and a method of pulling the single crystal. An object of the present invention is to provide a method for evaluating the quartz crucible useful for reducing dislocation.

【0013】[0013]

【課題を解決するための手段及びその効果】上記目的を
達成するために本発明に係る石英坩堝は、単結晶の引き
上げに用いられる非晶質の石英坩堝であって、単結晶の
引き上げ終了時に前記溶融液と接している内表面近傍の
結晶化率が10%以下となるものであることを特徴とし
ている。
The quartz crucible according to the present invention for achieving the above object is an amorphous quartz crucible used for pulling a single crystal. The crystallization ratio in the vicinity of the inner surface in contact with the melt is 10% or less.

【0014】上記石英坩堝は、単結晶の引き上げ終了時
に前記溶融液と接している内表面近傍の結晶化率が10
%以下となるものであり、最も長く溶融液と接していた
部分において結晶化率の値が小さい。従って、溶融液中
に結晶性シリカが混入する確率をより確実に低減するこ
とができ、単結晶の引き上げに上記石英坩堝を用いれ
ば、単結晶を高い歩留まりで引き上げることができる。
The quartz crucible has a crystallization rate of 10 near the inner surface in contact with the melt at the end of pulling the single crystal.
% Or less, and the value of the crystallization ratio is small in the portion that has been in contact with the melt for the longest time. Therefore, the probability that the crystalline silica is mixed into the melt can be reduced more reliably. If the quartz crucible is used for pulling the single crystal, the single crystal can be pulled at a high yield.

【0015】また本発明に係る石英坩堝の評価方法
(1)は、単結晶の引き上げに用いられる非晶質の石英
坩堝の評価方法であって、単結晶引き上げ後の前記石英
坩堝の内表面近傍における結晶化領域の割合と、引き上
げられた単結晶の有転位化率との相関関係から、前記石
英坩堝を評価することを特徴としている。
Further, the method (1) for evaluating a quartz crucible according to the present invention is a method for evaluating an amorphous quartz crucible used for pulling a single crystal. Is characterized in that the quartz crucible is evaluated from the correlation between the ratio of the crystallized region and the dislocation ratio of the pulled single crystal.

【0016】上記石英坩堝の評価方法(1)によれば、
単結晶引き上げ後の前記石英坩堝の内表面近傍における
結晶化領域の割合と、実際に前記石英坩堝を用いて引き
上げられた単結晶の有転位化率との相関関係を求めるこ
とにより前記石英坩堝の評価を行うので、前記石英坩堝
を用いた場合にどの程度の歩留まりで単結晶を引き上げ
ることができるかの評価を確実に行うことができる。ま
た、前記石英坩堝の内表面近傍における結晶化領域の割
合と、前記単結晶の有転位化率の相関関係については、
前記石英坩堝と同じタイプの石英坩堝を用いた場合に再
現性があることも確認された。従って、前記評価方法を
用いることにより、同じタイプの石英坩堝を用いて単結
晶の引き上げを行った場合に、どの程度の歩留まりで単
結晶を引き上げることができるかを確実に予想すること
ができ、高い評価が得られた石英坩堝を使用することに
より、高い歩留まりで単結晶を引き上げることができ
る。
According to the quartz crucible evaluation method (1),
The ratio of the crystallization region in the vicinity of the inner surface of the quartz crucible after pulling the single crystal and the correlation between the dislocation ratio of the single crystal actually pulled using the quartz crucible and the correlation of the quartz crucible are determined. Since the evaluation is performed, it is possible to reliably evaluate the yield rate at which the single crystal can be pulled when the quartz crucible is used. Further, regarding the correlation between the ratio of the crystallization region near the inner surface of the quartz crucible and the dislocation ratio of the single crystal,
It was also confirmed that reproducibility was obtained when a quartz crucible of the same type as the quartz crucible was used. Therefore, by using the above evaluation method, when pulling a single crystal using the same type of quartz crucible, it is possible to reliably predict how much yield can be pulled single crystal, By using a quartz crucible with a high evaluation, a single crystal can be pulled with a high yield.

【0017】また本発明に係る石英坩堝の評価方法
(2)は、上記石英坩堝の評価方法(1)において、単
結晶の引き上げ終了時に溶融液と接している前記石英坩
堝の内表面近傍の結晶化領域の割合と、引き上げられた
単結晶の有転位化率との相関関係から、前記石英坩堝を
評価することを特徴としている。
Further, the method (2) for evaluating a quartz crucible according to the present invention is the method for evaluating a quartz crucible (1) described above, wherein the crystal near the inner surface of the quartz crucible that is in contact with the molten liquid at the end of pulling of the single crystal. It is characterized in that the quartz crucible is evaluated from the correlation between the ratio of the crystallized region and the dislocation conversion ratio of the pulled single crystal.

【0018】上記石英坩堝の評価方法(2)によれば、
単結晶を引き上げる際最も長く溶融液と接していた内表
面近傍を評価対象としているので、単結晶の引き上げを
行った場合に、どの程度の歩留まりで単結晶を引き上げ
ることができるかをより確実に予想することができる。
従って、高い評価が得られた石英坩堝と同じタイプの石
英坩堝を使用することにより、より確実に高い歩留まり
で単結晶を引き上げることができる。
According to the quartz crucible evaluation method (2),
Since the vicinity of the inner surface that has been in contact with the melt for the longest when pulling the single crystal is evaluated, when pulling the single crystal, it is more reliable to determine the yield at which the single crystal can be pulled. Can be expected.
Therefore, by using a quartz crucible of the same type as a quartz crucible that has been highly evaluated, a single crystal can be more reliably pulled with a high yield.

【0019】また本発明に係る石英坩堝の評価方法
(3)は、上記石英坩堝の評価方法(1)又は(2)に
おいて、前記石英坩堝の内表面から少なくとも20μm
の範囲を結晶化領域の割合を求める範囲とすることを特
徴としている。
The method (3) for evaluating a quartz crucible according to the present invention is the method for evaluating a quartz crucible (1) or (2) above, wherein at least 20 μm from the inner surface of the quartz crucible is measured.
Is characterized in that the range of (1) is a range for obtaining the ratio of the crystallization region.

【0020】上記石英坩堝の評価方法(3)によれば、
前記石英坩堝の内表面から少なくとも20μmの範囲を
結晶化領域の割合を求める範囲とするので、前記内表面
に極めて近い部分おける結晶化領域の割合についての情
報を得ることができ、評価の確実性が高くなる。
According to the quartz crucible evaluation method (3),
Since the range of at least 20 μm from the inner surface of the quartz crucible is set as the range for calculating the ratio of the crystallization region, information on the ratio of the crystallization region in a portion very close to the inner surface can be obtained, and the reliability of the evaluation Will be higher.

【0021】また本発明に係る石英坩堝の評価方法
(4)は、上記石英坩堝の評価方法(1)〜(3)のい
ずれかにおいて、前記石英坩堝の内表面近傍を削り取る
ことにより得られた試料片を用い、X線回折分析を行う
ことにより前記石英坩堝の内表面近傍の結晶化領域の割
合を求めることを特徴としている。
Further, the quartz crucible evaluation method (4) according to the present invention is obtained by shaving the vicinity of the inner surface of the quartz crucible in any of the quartz crucible evaluation methods (1) to (3). It is characterized in that the ratio of the crystallization region near the inner surface of the quartz crucible is determined by performing X-ray diffraction analysis using a sample piece.

【0022】上記石英坩堝の評価方法(4)によれば、
前記石英坩堝の内表面近傍を構成する材料を用いてX線
回折分析を行うので、容易に前記石英坩堝の内表面近傍
の結晶化の割合についてのデータを得ることができ、簡
単に低コストで前記石英坩堝の評価を行うことができ
る。
According to the quartz crucible evaluation method (4),
Since X-ray diffraction analysis is performed using the material constituting the vicinity of the inner surface of the quartz crucible, data on the crystallization ratio near the inner surface of the quartz crucible can be easily obtained, and the cost can be easily reduced. The quartz crucible can be evaluated.

【0023】また本発明に係る石英坩堝の評価方法
(5)は、上記石英坩堝の評価方法(1)〜(3)のい
ずれかにおいて、前記石英坩堝の内表面近傍の結晶化領
域の割合を、透過型電子顕微鏡(TEM)により得られ
た画像を用いて求めることを特徴としている。
The method (5) for evaluating a quartz crucible according to the present invention is the method according to any one of the methods (1) to (3) for evaluating a quartz crucible, wherein the ratio of the crystallized region near the inner surface of the quartz crucible is determined. , Using an image obtained by a transmission electron microscope (TEM).

【0024】上記石英坩堝の評価方法(5)によれば、
TEMにより実際に前記石英坩堝の内表面近傍を観察し
て得られた画像を用いるので、前記結晶化領域の割合を
より正確に求めることができる。また、前記X線回折分
析を行う際に、前記石英坩堝の内表面からどの程度の深
さまで削ったらよいか等を判断する際の資料とすること
ができ、この石英坩堝の評価方法と上記石英坩堝の評価
方法(4)とを併用すれば、より効率よく石英坩堝の評
価を行うことができる。
According to the quartz crucible evaluation method (5),
Since the image obtained by actually observing the vicinity of the inner surface of the quartz crucible by TEM is used, the ratio of the crystallized region can be more accurately obtained. Further, when performing the X-ray diffraction analysis, it can be used as a material for determining how much depth should be cut from the inner surface of the quartz crucible, and the like. By using the crucible evaluation method (4) together, the quartz crucible can be evaluated more efficiently.

【0025】[0025]

【発明の実施の形態】以下、本発明に係る石英坩堝及び
該石英坩堝の評価方法の実施の形態を図1、図2及び図
5に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a quartz crucible and a method for evaluating the quartz crucible according to the present invention will be described below with reference to FIGS. 1, 2 and 5. FIG.

【0026】図1は、単結晶の引き上げが終了した後の
石英坩堝を模式的に示した断面図であり、110aは石
英坩堝11aの内表面、13aは単結晶の引き上げ後に
石英坩堝11aの底部に残存した溶融液13の凝固体、
111aは内表面110aのうち凝固体13aと接して
いる部分をそれぞれ示している。実施の形態に係る石英
坩堝の評価方法においては、単結晶の引き上げが終了し
た石英坩堝11aを用いて、石英坩堝11aの評価を行
う。
FIG. 1 is a cross-sectional view schematically showing the quartz crucible after the pulling of the single crystal is completed, where 110a is the inner surface of the quartz crucible 11a, and 13a is the bottom of the quartz crucible 11a after the pulling of the single crystal. Solidified body of the melt 13 remaining in the
Reference numeral 111a denotes a portion of the inner surface 110a that is in contact with the solidified body 13a. In the method for evaluating a quartz crucible according to the embodiment, the quartz crucible 11a is evaluated using the quartz crucible 11a from which the single crystal has been pulled up.

【0027】単結晶の引き上げが終了した石英坩堝11
aの内表面110a(内表面111a)近傍の結晶化率
と、引き上げた単結晶のうち転位が発生していない部分
の割合(引き上げ歩留まり)とは所定の相関関係を有す
る。従って、石英坩堝11aの内表面110a近傍の結
晶化率を測定することにより、石英坩堝11aの評価を
行う。具体的には、以下のような手法で石英坩堝11a
の評価を行う。
Quartz crucible 11 from which single crystal has been pulled up
There is a predetermined correlation between the crystallization ratio near the inner surface 110a (inner surface 111a) of a and the ratio of a portion where dislocations do not occur in the pulled single crystal (pulling yield). Therefore, the quartz crystal crucible 11a is evaluated by measuring the crystallization rate near the inner surface 110a of the quartz crucible 11a. Specifically, the quartz crucible 11a is formed by the following method.
Is evaluated.

【0028】最初に、種々の特性を有する石英坩堝11
aを用い、「従来の技術」で説明した方法(図9)によ
り単結晶16の引き上げを行う。次に、引き上げた単結
晶16に転位が発生しているか否か、及び転位が発生し
ている場合には、その引き上げ歩留まり(転位のない部
分の割合)を計算する。単結晶16に転位が発生してい
るか否か、及びどの部分に転位が発生しているかは、引
き上げた単結晶16を成長方向(長さ方向)にスライス
し、得られた単結晶16の薄片のX線トポグラフを測定
することにより判断する。
First, a quartz crucible 11 having various characteristics
Using a, the single crystal 16 is pulled up by the method (FIG. 9) described in “Prior Art”. Next, whether or not dislocations have occurred in the pulled single crystal 16 and, if dislocations have occurred, the pulling yield (the ratio of the portion without dislocations) are calculated. Whether a dislocation has occurred in the single crystal 16 and which portion has a dislocation can be determined by slicing the pulled single crystal 16 in the growth direction (length direction) and obtaining a thin slice of the obtained single crystal 16. The determination is made by measuring the X-ray topograph.

【0029】次に、上記単結晶引き上げに使用した石英
坩堝11aの内表面110a近傍の結晶化の割合を測定
する。
Next, the rate of crystallization near the inner surface 110a of the quartz crucible 11a used for pulling the single crystal is measured.

【0030】図1に示したように、単結晶の引き上げが
終了した石英坩堝11aの底部には、単結晶の引き上げ
に用いられなかった溶融液13の凝固体13aが残って
いる。石英坩堝11aの内表面110aの大部分は、単
結晶を引き上げる際に溶融液13と接触しており、ま
た、内表面110aの中でも凝固体13aと接している
内表面111aが最も長時間にわたって溶融液13と接
していたことになる。単結晶引き上げ前の石英坩堝11
aの内表面110aは、単結晶を引き上げる際に溶融液
13中に溶け込むため、単結晶引き上げ終了後の石英坩
堝11aの内表面110aは、単結晶引き上げ中の石英
坩堝11aの内表面110aと同じ状態ではない。しか
し、単結晶引き上げ後の石英坩堝11aの内表面110
aの近傍、中でも内表面111aの近傍において非晶質
の石英であったものがどの程度結晶化されているかを測
定することにより、単結晶引き上げに伴い石英坩堝11
aがどの程度結晶化されたを推定することができる。
As shown in FIG. 1, a solidified body 13a of the melt 13 not used for pulling the single crystal remains at the bottom of the quartz crucible 11a after the pulling of the single crystal is completed. Most of the inner surface 110a of the quartz crucible 11a is in contact with the melt 13 when the single crystal is pulled, and the inner surface 111a of the inner surface 110a that is in contact with the solidified body 13a is melted for the longest time. This means that it was in contact with liquid 13. Quartz crucible 11 before single crystal pulling
The inner surface 110a of the quartz crystal crucible 11a after the single crystal is pulled up is the same as the inner surface 110a of the quartz crucible 11a during the pulling of the single crystal, because the inner surface 110a of the a melts into the melt 13 when the single crystal is pulled up. Not a state. However, the inner surface 110 of the quartz crucible 11a after the single crystal is pulled up.
a, especially the vicinity of the inner surface 111a, was measured to determine the degree of crystallization of amorphous quartz, and the quartz crucible 11
It can be estimated how much a has crystallized.

【0031】石英坩堝11aの内表面110a近傍の結
晶化領域の割合を測定する方法として、TEMにより得
られた画像を用いる方法とX線回折分析を用いる方法と
が挙げられる。
The method of measuring the ratio of the crystallized region near the inner surface 110a of the quartz crucible 11a includes a method using an image obtained by a TEM and a method using X-ray diffraction analysis.

【0032】TEMにより得られた画像を用いる方法で
は、石英坩堝11aの内表面110a近傍の結晶性をT
EMにより得られた画像により観察し、結晶化した部分
の面積の割合を求めて結晶化率とする。
In the method using an image obtained by a TEM, the crystallinity near the inner surface 110a of the quartz crucible 11a is reduced by T
Observation is performed using an image obtained by EM, and the ratio of the area of the crystallized portion is determined to be the crystallization ratio.

【0033】具体的には、石英坩堝11aの内表面11
0aに対してほぼ垂直方向に切断面を有する薄片を切り
出す。次に、この薄片にさらに研磨処理等を施すことに
より数μmの厚さにし、TEM写真を撮影する。このT
EM写真により、非晶質の部分と結晶化した部分との違
いをはっきりと認識することができる。
Specifically, the inner surface 11 of the quartz crucible 11a is
A slice having a cut surface substantially perpendicular to 0a is cut out. Next, the thin section is further subjected to a polishing treatment or the like to a thickness of several μm, and a TEM photograph is taken. This T
From the EM photograph, the difference between the amorphous portion and the crystallized portion can be clearly recognized.

【0034】図2(a)は実施例に係る石英坩堝Aの単
結晶引き上げ後における内表面111a近傍の結晶構造
を示したTEM写真であり、(b)は石英坩堝Aの内表
面111a近傍の一部(矢印A)に電子線を照射した際
の電子線回折パターンを示した写真である。また、図5
(a)は、実施例に係る石英坩堝Dの単結晶引き上げ後
における内表面111a近傍の結晶構造を示したTEM
写真であり、(b)は石英坩堝Dの内表面111a近傍
の一部(矢印B)に電子線を照射した際の電子線回折パ
ターンを示した写真である。
FIG. 2A is a TEM photograph showing the crystal structure near the inner surface 111a of the quartz crucible A according to the embodiment after pulling a single crystal, and FIG. 2B is a TEM photograph showing the crystal structure near the inner surface 111a of the quartz crucible A. It is a photograph showing an electron beam diffraction pattern when a part (arrow A) was irradiated with an electron beam. FIG.
(A) is a TEM showing a crystal structure near the inner surface 111a after pulling a single crystal of the quartz crucible D according to the example.
(B) is a photograph showing an electron diffraction pattern when a part (arrow B) near the inner surface 111a of the quartz crucible D is irradiated with an electron beam.

【0035】図2より明らかなように、非晶質部分のみ
からなる石英坩堝Aの内表面111a近傍を示したTE
M写真(図2(a))では、内部に結晶を示すような明
瞭な輪郭線が認められず、その電子線回折パターン(図
2(b))も同心円状でアモルファスであることを示し
ている。一方、結晶化領域が多数存在する石英坩堝Dの
内表面111a近傍を示したTEM写真(図5(a))
では、内部に成長した結晶の形状を示す明瞭な輪郭線が
認められ、その部分の電子線回折パターンも結晶が存在
することを示すスポットの集合(図5(b))となって
いる。
As is apparent from FIG. 2, TE showing the vicinity of the inner surface 111a of the quartz crucible A consisting only of the amorphous portion is shown.
In the M photograph (FIG. 2 (a)), a clear contour line showing a crystal inside was not recognized, indicating that the electron diffraction pattern (FIG. 2 (b)) was concentric and amorphous. I have. On the other hand, a TEM photograph showing the vicinity of the inner surface 111a of the quartz crucible D where many crystallization regions exist (FIG. 5 (a))
In FIG. 5, a clear outline indicating the shape of the crystal grown inside is recognized, and the electron beam diffraction pattern at that portion is also a set of spots (FIG. 5B) indicating that the crystal is present.

【0036】TEM写真により結晶化領域を割合を求め
る場合には、石英坩堝11aの内表面110a(内表面
111a)から一定の深さの範囲内において結晶と認め
られる部分の面積の割合を計算することにより、結晶化
率を決定する。内表面110a(内表面111a)から
の深さは測定対象となる石英坩堝11aの特性により変
化するため一慨には言えないが、通常、20μm、より
好ましくは15μm程度以内が好ましい。
When the ratio of the crystallized region is determined from the TEM photograph, the ratio of the area of the portion recognized as a crystal within a certain depth from the inner surface 110a (inner surface 111a) of the quartz crucible 11a is calculated. This determines the crystallization rate. Since the depth from the inner surface 110a (the inner surface 111a) varies depending on the characteristics of the quartz crucible 11a to be measured, it cannot be said generally, but it is usually preferably 20 μm, more preferably about 15 μm or less.

【0037】また、一枚のTEM写真で撮影できる領域
は非常に小さいので、複数のTEM写真を用いて結晶化
率を求め、その平均値をとることが望ましい。
Since the area that can be photographed by one TEM photograph is very small, it is desirable to determine the crystallization rate using a plurality of TEM photographs and take the average value.

【0038】X線回折分析を用いる方法では、石英坩堝
11aの内表面110a(内表面111a)近傍の材料
を削り取った後粉末化し、この粉末のX線回折スペクト
ルを測定することにより非晶質石英中の結晶性シリカの
割合(結晶化率)を求める。なお、X線回折用装置によ
っては、削り取った試料片のままでもX線回折分析を行
うことができるものもあり、その場合には試料片のまま
X線回折分析を行う。このとき、削り取る石英坩堝11
aの内表面110aからの深さは、上記TEM写真を参
考にして決定可能であるが、通常、20μm程度以内が
好ましい。但し、内表面110aから20μmの範囲が
含まれていれば、多少厚く削り取ってもよいが、常に同
じ厚さで削り取る必要がある。前記粉末中に検出される
結晶性シリカとしては、クリストバライト(主として立
方晶系)、トリジマイト(単斜晶系、又は六方晶系)等
が挙げられるが、例えばβ−クリストバライトの場合に
は(111)面のピーク強度が最も大きいので、(11
1)面のピークを対象にそのピーク強度を求め、このピ
ーク強度に基づいて結晶化率を求める。
In the method using X-ray diffraction analysis, the material near the inner surface 110a (inner surface 111a) of the quartz crucible 11a is ground and then powdered, and the X-ray diffraction spectrum of the powder is measured. The ratio (crystallization ratio) of the crystalline silica in the sample is determined. It should be noted that some X-ray diffraction apparatuses can perform X-ray diffraction analysis even with a scraped sample piece. In that case, the X-ray diffraction analysis is performed with the sample piece as it is. At this time, the quartz crucible 11
The depth of a from the inner surface 110a can be determined with reference to the above TEM photograph, but usually it is preferably within about 20 μm. However, if the inner surface 110a has a range of 20 μm from the inner surface 110a, it may be cut off somewhat thicker, but must always be cut off with the same thickness. Examples of crystalline silica detected in the powder include cristobalite (mainly cubic system) and tridymite (monoclinic system or hexagonal system). For example, in the case of β-cristobalite, (111) Since the peak intensity of the surface is the highest, (11
1) The peak intensity of a plane peak is determined, and the crystallization rate is determined based on the peak intensity.

【0039】具体的には、例えば石英坩堝11aの内表
面110a近傍の粉末のX線回折分析により得られた
(111)面のピーク強度と、β−クリストバライト結
晶を粉砕した粉末のX線回折分析により得られた(11
1)面のピーク強度との比を求め、これを結晶化率とす
る。また、種々の特性を有する石英坩堝11aについ
て、石英坩堝11aの内表面110a近傍の粉末のX線
回折分析により得られた(111)面のピーク強度と、
同じ石英坩堝11aの内表面110a近傍のTEM写真
の分析により得られた結晶化率とをプロットした一種の
検量線を描いておき、前記検量線を用いてX線回折分析
を行った粉末の結晶化率を求めてもよい。
Specifically, for example, the peak intensity of the (111) plane obtained by X-ray diffraction analysis of the powder near the inner surface 110a of the quartz crucible 11a and the X-ray diffraction analysis of the powder obtained by pulverizing the β-cristobalite crystal (11)
1) The ratio to the peak intensity of the plane is determined, and this is defined as the crystallization ratio. Further, with respect to the quartz crucible 11a having various characteristics, the peak intensity of the (111) plane obtained by X-ray diffraction analysis of powder near the inner surface 110a of the quartz crucible 11a;
A kind of calibration curve plotting the crystallization rate obtained by analyzing the TEM photograph near the inner surface 110a of the same quartz crucible 11a is drawn, and the powder crystal obtained by performing X-ray diffraction analysis using the calibration curve is drawn. The conversion ratio may be determined.

【0040】前記X線回折分析法及び/又はTEMによ
り得られた画像を用いる方法により得られる石英坩堝1
1aの内表面110a(内表面111a)近傍の結晶化
率と、上記単結晶の引き上げにより得られた単結晶の歩
留まりとは、はっきりした相関関係を有し、前記結晶化
率が増大するに従って単結晶の歩留まりが低下してい
く。また、前記結晶化率と前記単結晶の引き上げ歩留ま
りとは、同じタイプの石英坩堝11aについてほぼ再現
性のあるデータとなる。このことは、単結晶引き上げ後
の石英坩堝11aの内表面110a(内表面111a)
近傍の結晶化率が高いものは、単結晶引き上げ中に石英
坩堝11aの内表面110aから結晶性シリカが溶融液
13に混入し易く、この結晶性シリカに起因して単結晶
16に転位が発生し易いことを示している。従って、単
結晶引き上げ後に石英坩堝11aの内表面110a(内
表面111a)近傍の結晶化率を上記方法により測定す
ることにより、同じタイプ(同じ材料特性)の石英坩堝
11aを使用した場合に、単結晶の歩留まりがどの程度
になるかを予想できることになる。実際に、同じタイプ
の石英坩堝11aを使用して単結晶を引き上げることに
より、引き上げられた単結晶はほぼ予想通りの歩留まり
を示す。
The quartz crucible 1 obtained by the method using the image obtained by the X-ray diffraction analysis and / or the TEM
The crystallization ratio near the inner surface 110a (inner surface 111a) of 1a and the yield of the single crystal obtained by pulling up the single crystal have a clear correlation, and as the crystallization ratio increases, the crystallization ratio increases. The yield of crystals decreases. The crystallization rate and the pulling yield of the single crystal are substantially reproducible data for the same type of quartz crucible 11a. This means that the inner surface 110a (the inner surface 111a) of the quartz crucible 11a after pulling the single crystal.
When the crystallinity in the vicinity is high, crystalline silica is easily mixed into the melt 13 from the inner surface 110a of the quartz crucible 11a during the pulling of the single crystal, and dislocation occurs in the single crystal 16 due to the crystalline silica. It is easy to do. Therefore, by measuring the crystallization rate near the inner surface 110a (inner surface 111a) of the quartz crucible 11a after pulling the single crystal by the above method, when the same type (same material characteristics) quartz crucible 11a is used, It will be possible to predict the yield of crystals. Actually, by pulling the single crystal using the quartz crucible 11a of the same type, the pulled single crystal exhibits almost the expected yield.

【0041】すなわち、単結晶引き上げ後の石英坩堝1
1aの内表面111a近傍の結晶化率が10%以下であ
れば、単結晶の引き上げ歩留まりは、該引き上げ歩留ま
りが最もよいものを100%としたとき、98%以上と
非常に高い値となり、一方、前記結晶化率が10%を超
えると引き上げた単結晶が有転位化する割合が急上昇す
る。
That is, the quartz crucible 1 after pulling the single crystal
If the crystallization ratio in the vicinity of the inner surface 111a of 1a is 10% or less, the pulling yield of the single crystal is as extremely high as 98% or more when the best yield is 100%. If the crystallization ratio exceeds 10%, the rate of dislocation of the pulled single crystal sharply increases.

【0042】従って、単結晶引き上げ後の内表面111
aの結晶化率が10%以下となる石英坩堝11aと同じ
タイプの石英坩堝を使用して単結晶を引き上げれば、単
結晶の引き上げ歩留まりを極めて高く保つことができ
る。
Accordingly, the inner surface 111 after the single crystal is pulled up.
If a single crystal is pulled up using a quartz crucible of the same type as the quartz crucible 11a in which the crystallization ratio of a is 10% or less, the pulling yield of the single crystal can be kept extremely high.

【0043】[0043]

【実施例】以下、実施例に係る石英坩堝及び該石英坩堝
の評価方法を図面に基づいて説明する。本実施例におい
ては、使用する石英坩堝11aを石英坩堝A、石英坩堝
B、石英坩堝C、石英坩堝Dと変化させた以外は、「従
来の技術」において説明した単結晶引き上げ装置10と
同様の装置を用い、単結晶16の引き上げを行った。表
1〜3に単結晶引き上げの条件を記載する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A quartz crucible according to an embodiment and a method for evaluating the quartz crucible will be described below with reference to the drawings. In the present embodiment, the same as the single crystal pulling apparatus 10 described in “Prior art” except that the quartz crucible 11a used is changed to a quartz crucible A, a quartz crucible B, a quartz crucible C, and a quartz crucible D. The single crystal 16 was pulled using the apparatus. Tables 1 to 3 list the conditions for pulling a single crystal.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】<単結晶16の引き上げ歩留まり>実施の
形態で説明したX線トポグラフ法により単結晶16の引
き上げ歩留まりを求めた。
<Pull Yield of Single Crystal 16> The pull yield of single crystal 16 was determined by the X-ray topography method described in the embodiment.

【0048】<TEMを用いた石英坩堝11aの内表面
111a近傍の結晶化率の算出>TEM写真撮影用のサ
ンプルを各石英坩堝11a(A〜D)について20個作
製してTEM写真を撮り、内表面111aから深さ20
μmの範囲で全体の面積に対する結晶化領域の面積の割
合を計算し、その平均値を求めた。
<Calculation of Crystallization Ratio Near Inner Surface 111a of Quartz Crucible 11a Using TEM> Twenty samples for TEM photography were prepared for each of the quartz crucibles 11a (A to D), and TEM photographs were taken. 20 depth from inner surface 111a
The ratio of the area of the crystallization region to the entire area in the range of μm was calculated, and the average value was calculated.

【0049】図2〜5は、各石英坩堝11a(A〜D)
ついて撮影したTEM写真のうちのそれぞれの一つを示
している。また図6は、各石英坩堝11a(A〜D)に
ついて、単結晶16の引き上げ歩留まり、及びTEM写
真より得られた石英坩堝11a(A〜D)の内表面11
1a近傍の結晶化率を示したグラフである。
FIGS. 2 to 5 show the respective quartz crucibles 11a (A to D).
One of each of the TEM photographs taken is shown. FIG. 6 shows the pulling yield of the single crystal 16 for each of the quartz crucibles 11a (A to D) and the inner surface 11 of the quartz crucible 11a (A to D) obtained from a TEM photograph.
It is the graph which showed the crystallization rate of 1a vicinity.

【0050】図6に示したグラフより明らかなように、
石英坩堝11aの結晶化率が増大するに従って、単結晶
16の引き上げ歩留まりが低下しており、特に結晶化率
が10%を超えると急激に単結晶16の引き上げ歩留ま
りが低下している。
As is clear from the graph shown in FIG.
As the crystallization rate of the quartz crucible 11a increases, the pulling yield of the single crystal 16 decreases. In particular, when the crystallization rate exceeds 10%, the pulling yield of the single crystal 16 sharply decreases.

【0051】図6のグラフに示された結果を確認するた
めに、石英坩堝11a(A〜D)と同じタイプの石英坩
堝を使用して、単結晶を引き上げたところ、所定の誤差
範囲内で図6に示したグラフと同様の引き上げ歩留まり
となった。
In order to confirm the results shown in the graph of FIG. 6, a single crystal was pulled up using a quartz crucible of the same type as the quartz crucibles 11a (A to D). The pulling yield was similar to the graph shown in FIG.

【0052】以上のように、単結晶引き上げ後における
石英坩堝11aの内表面111a近傍の結晶化率と、そ
の石英坩堝11aを用いて単結晶を引き上げた際の引き
上げ歩留まりとの関係を求めることにより、石英坩堝1
1aを評価することができ、最終的には単結晶引き上げ
後における石英坩堝11aの内表面111a近傍の結晶
化率のみを求めることにより、石英坩堝11aを評価す
ることができることが実証された。
As described above, the relationship between the crystallization rate in the vicinity of the inner surface 111a of the quartz crucible 11a after pulling the single crystal and the yield of pulling the single crystal using the quartz crucible 11a is determined. , Quartz crucible 1
1a could be evaluated, and it was proved that the quartz crucible 11a could be finally evaluated by obtaining only the crystallization ratio near the inner surface 111a of the quartz crucible 11a after pulling the single crystal.

【0053】<X線回折分析による石英坩堝11aの内
表面111a近傍の結晶化率の算出>石英坩堝11a
(A〜D)の内表面111a近傍を削り取って粉末を作
製し、該粉末を用いてX線回折分析を行った。図7及び
図8に、石英坩堝11a(A、D)についてのX線回折
スペクトルのチャートを示す。
<Calculation of Crystallization Rate Near Inner Surface 111a of Quartz Crucible 11a by X-ray Diffraction Analysis> Quartz Crucible 11a
A powder was prepared by shaving the vicinity of the inner surface 111a of (A to D), and X-ray diffraction analysis was performed using the powder. 7 and 8 show charts of the X-ray diffraction spectrum of the quartz crucible 11a (A, D).

【0054】図7及び図8に示したX線回折スペクトル
より明らかなように、検出されたβ−クリストバライト
の(111)面のピークは、図6に示したグラフと全く
同様の傾向を示しており、石英坩堝Aの前記ピーク強度
(図7)は極めて小さいため殆ど検出されず、他方、石
英坩堝Dのピーク強度(図8)はかなり大きくなってい
る。
As is apparent from the X-ray diffraction spectra shown in FIGS. 7 and 8, the detected peak of the (111) plane of β-cristobalite shows the same tendency as the graph shown in FIG. Therefore, the peak intensity of the quartz crucible A (FIG. 7) is extremely small and hardly detected, while the peak intensity of the quartz crucible D (FIG. 8) is considerably large.

【0055】石英坩堝Dのピーク強度を基準に、他の石
英坩堝11a(A〜C)とのピーク強度比をとったとこ
ろ、図6に示したグラフのばらつきの範囲に納まった。
When the peak intensity ratio of the quartz crucible D to the other quartz crucibles 11a (A to C) was determined based on the peak intensity of the quartz crucible D, the peak intensity ratio was within the range of variation in the graph shown in FIG.

【0056】このように、X線回折分析によっても、石
英坩堝11aの内表面111a近傍の結晶化率を求める
ことができることが実証された。
As described above, it has been proved that the crystallization ratio in the vicinity of the inner surface 111a of the quartz crucible 11a can be obtained also by the X-ray diffraction analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る石英坩堝の評価方法
において用いられる石英坩堝を模式的に示した断面図で
ある。
FIG. 1 is a cross-sectional view schematically showing a quartz crucible used in a method for evaluating a quartz crucible according to an embodiment of the present invention.

【図2】(a)は実施例に係る石英坩堝Aの内表面近傍
を示したTEM写真であり、(b)は前記内表面近傍の
一部に電子線を照射した際の電子線回折パターンを示し
た写真である。
FIG. 2A is a TEM photograph showing the vicinity of the inner surface of a quartz crucible A according to an example, and FIG. 2B is an electron diffraction pattern when a part of the vicinity of the inner surface is irradiated with an electron beam. It is a photograph showing.

【図3】実施例に係る石英坩堝Bの内表面近傍を示した
TEM写真である。
FIG. 3 is a TEM photograph showing the vicinity of the inner surface of a quartz crucible B according to an example.

【図4】実施例に係る石英坩堝Cの内表面近傍を示した
TEM写真である。
FIG. 4 is a TEM photograph showing the vicinity of the inner surface of a quartz crucible C according to an example.

【図5】(a)は実施例に係る石英坩堝Dの内表面近傍
を示したTEM写真であり、(b)は前記内表面近傍の
一部に電子線を照射した際の電子線回折パターンを示し
た写真である。
FIG. 5A is a TEM photograph showing the vicinity of the inner surface of a quartz crucible D according to an example, and FIG. 5B is an electron beam diffraction pattern when a part of the vicinity of the inner surface is irradiated with an electron beam. It is a photograph showing.

【図6】各石英坩堝A〜Dについて、単結晶の引き上げ
歩留まり、及びTEM写真より得られた石英坩堝A〜D
の内表面近傍の結晶化率を示したグラフである。
FIG. 6 is a drawing yield of a single crystal for each of the quartz crucibles A to D, and quartz crucibles A to D obtained from TEM photographs.
3 is a graph showing the crystallization ratio near the inner surface of FIG.

【図7】実施例に係る石英坩堝Aの内表面近傍の粉末を
作製し、該粉末のX線回折分析を行った結果得られたX
線回折スペクトルである。
FIG. 7 shows a powder obtained by producing a powder near the inner surface of a quartz crucible A according to an example and performing X-ray diffraction analysis of the powder.
It is a line diffraction spectrum.

【図8】実施例に係る石英坩堝Dの内表面近傍の粉末を
作製し、該粉末のX線回折分析を行った結果得られたX
線回折スペクトルである。
FIG. 8 shows a powder obtained by producing a powder near the inner surface of a quartz crucible D according to an example and performing X-ray diffraction analysis of the powder.
It is a line diffraction spectrum.

【図9】従来の単結晶引き上げ装置を模式的に示した断
面図である。
FIG. 9 is a cross-sectional view schematically showing a conventional single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

11a 石英坩堝 110a 内表面 111a 内表面 13 溶融液 13a 凝固体 16 単結晶 11a Quartz crucible 110a Inner surface 111a Inner surface 13 Melt 13a Solidified body 16 Single crystal

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶の引き上げに用いられる非晶質の
石英坩堝であって、単結晶の引き上げ終了時に溶融液と
接している内表面近傍の結晶化率が10%以下となるも
のであることを特徴とする石英坩堝。
1. An amorphous quartz crucible used for pulling a single crystal, wherein a crystallization ratio in the vicinity of an inner surface in contact with a molten liquid at the end of the pulling of the single crystal is 10% or less. A quartz crucible characterized in that:
【請求項2】 単結晶の引き上げに用いられる非晶質の
石英坩堝の評価方法であって、単結晶引き上げ後の前記
石英坩堝の内表面近傍における結晶化領域の割合と、引
き上げられた単結晶の有転位化率との相関関係から、前
記石英坩堝を評価することを特徴とする石英坩堝の評価
方法。
2. A method for evaluating an amorphous quartz crucible used for pulling a single crystal, comprising: determining a ratio of a crystallized region near an inner surface of the quartz crucible after pulling the single crystal; A method for evaluating a quartz crucible, comprising evaluating the quartz crucible from a correlation with the dislocation ratio of the quartz crucible.
【請求項3】 単結晶の引き上げ終了時に溶融液と接し
ている前記石英坩堝の内表面近傍の結晶化領域の割合
と、引き上げられた単結晶の有転位化率との相関関係か
ら、前記石英坩堝を評価することを特徴とする請求項2
記載の石英坩堝の評価方法。
3. The quartz crystal is obtained from a correlation between a ratio of a crystallized region near an inner surface of the quartz crucible in contact with the melt at the time of completion of pulling of the single crystal and a dislocation ratio of the pulled single crystal. 3. The crucible is evaluated.
The evaluation method of the described quartz crucible.
【請求項4】 前記石英坩堝の内表面から少なくとも2
0μmの範囲を結晶化領域の割合を求める範囲とするこ
とを特徴とする請求項2又は請求項3記載の石英坩堝の
評価方法。
4. At least 2 mm from the inner surface of the quartz crucible
The method for evaluating a quartz crucible according to claim 2 or 3, wherein a range of 0 µm is set as a range for obtaining a ratio of the crystallization region.
【請求項5】 前記石英坩堝の内表面近傍を削り取るこ
とにより得られた試料片を用い、X線回折分析を行うこ
とにより前記石英坩堝の内表面近傍の結晶化領域の割合
を求めることを特徴とする請求項2〜4のいずれかの項
に記載の石英坩堝の評価方法。
5. A ratio of a crystallized region near the inner surface of the quartz crucible is obtained by performing X-ray diffraction analysis using a sample piece obtained by shaving the vicinity of the inner surface of the quartz crucible. The method for evaluating a quartz crucible according to any one of claims 2 to 4.
【請求項6】 前記石英坩堝の内表面近傍の結晶化領域
の割合を、透過型電子顕微鏡(TEM)により得られた
画像を用いて求めることを特徴とする請求項2〜4のい
ずれかの項に記載の石英坩堝の評価方法。
6. The quartz crystal crucible according to claim 2, wherein a ratio of a crystallization region near an inner surface of the quartz crucible is determined using an image obtained by a transmission electron microscope (TEM). 3. The method for evaluating a quartz crucible according to the item.
JP09166525A 1997-06-09 1997-06-09 Quartz crucible and method for evaluating the quartz crucible Expired - Fee Related JP3109451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09166525A JP3109451B2 (en) 1997-06-09 1997-06-09 Quartz crucible and method for evaluating the quartz crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09166525A JP3109451B2 (en) 1997-06-09 1997-06-09 Quartz crucible and method for evaluating the quartz crucible

Publications (2)

Publication Number Publication Date
JPH10338595A JPH10338595A (en) 1998-12-22
JP3109451B2 true JP3109451B2 (en) 2000-11-13

Family

ID=15832936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09166525A Expired - Fee Related JP3109451B2 (en) 1997-06-09 1997-06-09 Quartz crucible and method for evaluating the quartz crucible

Country Status (1)

Country Link
JP (1) JP3109451B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288652B2 (en) 2002-10-22 2009-07-01 ジャパンスーパークォーツ株式会社 Judgment method of molten metal surface vibration
JP4726138B2 (en) * 2006-12-28 2011-07-20 ジャパンスーパークォーツ株式会社 Quartz glass crucible
US8163083B2 (en) 2008-07-09 2012-04-24 Japan Super Quartz Corporation Silica glass crucible and method for pulling up silicon single crystal using the same

Also Published As

Publication number Publication date
JPH10338595A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
KR101710814B1 (en) Method for producing sic single crystal
JP4165068B2 (en) Method for producing silicon single crystal
JP2937115B2 (en) Single crystal pulling method
JP3109451B2 (en) Quartz crucible and method for evaluating the quartz crucible
US6019836A (en) Method for pulling a single crystal
JP3016126B2 (en) Single crystal pulling method
JP2014162665A (en) Production method of sapphire single crystal
JP4158237B2 (en) Method for growing high-quality silicon single crystals
US6447601B1 (en) Crystal puller and method for growing monocrystalline silicon ingots
US10066313B2 (en) Method of producing single crystal
JP2822904B2 (en) Method for producing silicon single crystal
JPH1149597A (en) Quartz crucible for pulling up silicon single crystal
JP2973916B2 (en) Seed crystal holder and single crystal pulling method using the seed crystal holder
JP4000772B2 (en) Seed crystal inspection method and single crystal manufacturing method
JP2720268B2 (en) Single crystal pulling method and apparatus
TWI855477B (en) A monitoring system and a monitoring method for monitoring the growth of a crystal line
Kuroda et al. Growth of 10 cm wide silicon ribbon
JP4173216B2 (en) Single crystal manufacturing method
JP6418052B2 (en) Method for detecting timing of seeding and method for producing single crystal
JP3253742B2 (en) Method and apparatus for producing silicon single crystal
JP2001106591A (en) Method for producing cz silicon single crystal
JP3508803B2 (en) Method of growing silicon single crystal
TW202436709A (en) Wafer of semiconductor material and method for pulling a single-crystal ingot of semiconductor material
JPH11189489A (en) Growth of single crystal, single crystal thus grown, and single crystal wafer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees