JPH11303041A - Pollution preventing method for structure in contact with sea water - Google Patents

Pollution preventing method for structure in contact with sea water

Info

Publication number
JPH11303041A
JPH11303041A JP12811198A JP12811198A JPH11303041A JP H11303041 A JPH11303041 A JP H11303041A JP 12811198 A JP12811198 A JP 12811198A JP 12811198 A JP12811198 A JP 12811198A JP H11303041 A JPH11303041 A JP H11303041A
Authority
JP
Japan
Prior art keywords
titanium
potential
anode
manganese
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12811198A
Other languages
Japanese (ja)
Inventor
Tadahiko Oba
忠彦 大庭
Morihiko Kuwa
守彦 桑
Hidetomo Usui
英智 臼井
Takahiro Kajiyama
貴弘 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakabohtec Corrosion Protecting Co Ltd
Original Assignee
Nakabohtec Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakabohtec Corrosion Protecting Co Ltd filed Critical Nakabohtec Corrosion Protecting Co Ltd
Priority to JP12811198A priority Critical patent/JPH11303041A/en
Publication of JPH11303041A publication Critical patent/JPH11303041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical method for preventing or restricting the sticking of marine living organisms, which is gentle to the environment and excellent in workability and re-processability. SOLUTION: Surface of a structure in contact with sea water 61 is constituted with a base material consisting of titanium, a solution containing cobalt or manganese is coated to the surface of titanium, and it is converted into cobalt oxide or manganese oxide by thermal activated treatment. Using the titanium covered with oxide as anode and maintaining the potential generating only oxygen without generating chlorine, the sticking of marine living organisms to the structure at the interface between the structure and sea water can be restricted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水に接するコン
クリート或いは金属製(主として鉄鋼)構造物の界面に
棲息・成育し種々のトラブルを発生させる海生生物(海
藻類も含む)の付着防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the prevention of adhesion of marine organisms (including seaweeds) which inhabit and grow on the interface of concrete or metal (mainly steel) structures in contact with seawater and cause various troubles. .

【0002】[0002]

【従来の技術】海水に接する桟橋、護岸または取水路等
のコンクリート製構造物や鋼矢板岸壁、鋼管杭、石油掘
削リグ、スクリーン、ポンプ、クラゲ防止金網または熱
交換器等の金属製施設は、これらの構造物の界面に付着
棲息し、成育する海生生物(海藻類も含む)が種々のト
ラブルの要因となっている。
2. Description of the Related Art Metal structures such as piers, seawalls, intake channels and other concrete structures, steel sheet pile quays, steel pipe piles, oil drilling rigs, screens, pumps, jellyfish prevention wire meshes or heat exchangers that are in contact with seawater are: Marine organisms (including seaweeds) that grow on and adhere to the interface of these structures cause various troubles.

【0003】水路や冷却管にあっては管路の閉塞に伴う
水量の減少、冷却効果の低下、または次工程プラントの
操業に影響が大きい。金属構造物にあっては海生生物の
付着に伴って腐食の局部集中化が避けられず、護岸や桟
橋にあっては美観を損なうことも重要な課題である。
[0003] In the case of a water channel or a cooling pipe, the amount of water is reduced due to blockage of the pipe, the cooling effect is reduced, or the operation of the next process plant is greatly affected. In the case of metal structures, localization of corrosion is inevitable due to the attachment of marine organisms, and it is also important to impair the aesthetics of revetments and piers.

【0004】該構造物の海生生物付着防止(以下、防汚
と称する)対策は、環境内に塩素または次亜塩素酸塩の
投入、電解による塩素や銅等の毒性イオンの生成、もし
くは防汚塗料の塗布等が開発され実用に供されている。
しかし、これらの大半は毒性イオンに基づくものであ
り、該海生生物のみならず有用な生物までも死滅させ、
加えて効果を高め、長期に効果を維持させるため濃度は
高めに管理されるので、余剰のイオンは環境汚染の因に
なりやすい。
[0004] Measures for preventing marine organisms from adhering to the structure (hereinafter, referred to as antifouling) include introducing chlorine or hypochlorite into the environment, generating toxic ions such as chlorine and copper by electrolysis, or preventing. The application of a soil paint has been developed and put to practical use.
However, most of these are based on toxic ions, killing not only the marine organisms but also useful organisms,
In addition, since the concentration is controlled to be high in order to enhance the effect and maintain the effect for a long period of time, excess ions are likely to cause environmental pollution.

【0005】海水を冷却水として使用する熱交換器や復
水器は、冷却管の入口または出口の管板にフジツボやイ
ガイ等の大型海生生物が付着し、冷却管の管径を塞ぐの
で、洗浄用スポンジボールを通して除去を図っている
が、該スポンジボールが通過できなかったり詰まったり
して、止むなく運転を停止して海生生物の除去を実施し
ている例がある。特に、銅合金製管板より耐食性の優れ
たチタン製管板において顕著である。
[0005] In a heat exchanger or a condenser using seawater as cooling water, large marine organisms such as barnacles and mussels adhere to the tube plate at the inlet or outlet of the cooling pipe and block the diameter of the cooling pipe. Although the sponge ball is removed through a cleaning sponge ball, there is an example in which the sponge ball cannot pass or is clogged, and the operation is stopped without stopping to remove marine organisms. In particular, it is remarkable in a titanium tube sheet having more excellent corrosion resistance than a copper alloy tube sheet.

【0006】無毒性または無害性の防汚対策も近年盛ん
に研究開発が進められているが、シリコーン系防汚塗料
や亜鉛溶射被覆は、効果はともかく寿命、施工コストに
加えて千m2以上に及ぶ対象物や半永久的な既存施設へ
の対応にはより簡潔な手段の開発が望まれる。対象構造
物の表面にカーボン、グラファイト等の導電材含有導電
塗料で被覆し、該導電塗料皮膜を陽極として通電し次亜
塩素酸イオンや塩素イオンを生成させて該構造物の表面
を防汚する方法が、例えば特公平6−15069、同8
−14036、特許第2601807、および同257
5866号公報に開示されている。また、導電性シート
を被防汚体の防汚を必要とする部分にライニングし、別
途同環境内に電極材と照合電極及び直流電源を設置し、
導電シートを陽極、電極材を陰極とし、照合電極と陽極
の電位差を一定に保持して該導電シートに触れた微生物
が電気的ショックを受けて付着できないようにする方法
が特公平7−24822号公報に記載されている。かか
る導電塗料や導電シートライニングは、導電材であるカ
ーボンや接着用樹脂バインダーの寿命に加えて電解によ
って発生する塩素や次亜塩素イオンによる劣化が避けら
れず、長期使用に耐えられず被覆再加工の頻度が多くな
り、構造物の形状、大きさまたは環境によって再加工は
用意ではない。コンクリート構造物にあっては、塗料や
シート被覆はコンクリートの劣化検査も容易ではない。
Although non-toxic or harmless antifouling measures have been actively researched and developed in recent years, silicone-based antifouling paints and zinc sprayed coatings are not only effective but have a service life and construction cost of at least 1,000 m 2. It is desirable to develop simpler methods for dealing with large objects and semi-permanent existing facilities. The surface of the target structure is coated with a conductive paint containing a conductive material such as carbon or graphite, and the conductive paint film is used as an anode to generate hypochlorite ions or chloride ions, thereby preventing the surface of the structure from being stained. The method is, for example, Japanese Patent Publication No. 6-15069, 8
-14036, Patent Nos. 2601807 and 257
No. 5,866. In addition, a conductive sheet is lined on the part of the object to be stained that requires antifouling, and an electrode material, a reference electrode and a DC power supply are separately installed in the same environment,
Japanese Patent Publication No. Hei 7-24822 discloses a method in which the conductive sheet is used as an anode, the electrode material is used as a cathode, and the potential difference between the reference electrode and the anode is kept constant to prevent microorganisms touching the conductive sheet from adhering due to an electric shock. It is described in the gazette. Such conductive paints and conductive sheet linings are inevitably deteriorated by chlorine and hypochlorite ions generated by electrolysis in addition to the life of the conductive material carbon and the adhesive resin binder, and cannot withstand long-term use. And the rework is not ready depending on the shape, size or environment of the structure. In concrete structures, paint and sheet coating are not easy to test for deterioration of concrete.

【0007】無毒性または無害な他の防汚方法には、本
発明の出願人の先願にかかる国際公開WO93/022
54号公報がある。これは、溶出イオンが無害である鉄
鋼を被防汚対象物の海水との界面に取付け別途同海水環
境中に電極材を取付け、前者の鉄鋼を直流電源の正極に
接続して陽極とし、後者の電極材を負極に接続して陰極
とし、陽極電流密度1A/m2以下で通電し、塩素の発
生を抑え(陽極電位1.1V−SCE−以下に保持)な
がら該鉄鋼表面に海生生物の着生を抑制する方法であ
る。類似の方法に特公平1−46595号公報がある。
これは、水(海水を含む)と接する金属(例えばチタン
製熱交換器)の表面に電気触媒皮膜(主として白金族金
属或いはこれらの金属を基とした合金またはこれらの金
属の酸化物)を形成し、陽極として電解して、塩素ガス
を実質的に発生させないで十分な酸素を発生させて生物
及びスケールの沈積物を存在しないようにする方法であ
る。これらの方法は、環境に無害な方法として注目され
るが、長期効果の期待に比して高価な電極材料と現場施
工工数がかかり、施工コストが他の方法よりも高くなる
のが難点であり、実用に供するための大きな要素となっ
ている。
[0007] Other non-toxic or harmless antifouling methods include WO 93/022, filed by the applicant of the present invention.
No. 54 publication. This is because steel, which has no harmful eluting ions, is attached to the interface with seawater of the object to be contaminated and electrode materials are separately installed in the seawater environment, and the former steel is connected to the positive electrode of the DC power supply to form the anode, The electrode material is connected to a negative electrode to form a cathode, and a current is supplied at an anode current density of 1 A / m 2 or less to suppress the generation of chlorine (anode potential is kept at 1.1 V-SCE- or less) while marine organisms are present on the steel surface. This is a method for suppressing the formation of slime. A similar method is disclosed in Japanese Patent Publication No. 1-46595.
This means that an electrocatalytic film (mainly a platinum group metal or an alloy based on these metals or an oxide of these metals) is formed on the surface of a metal (for example, a titanium heat exchanger) in contact with water (including seawater). Then, electrolysis is performed as an anode, and sufficient oxygen is generated without substantially generating chlorine gas so that organisms and scale deposits are not present. These methods are attracting attention as environmentally harmless methods, but they require expensive electrode materials and on-site construction man-hours compared to the expectation of long-term effects, and the difficulty is that construction costs are higher than other methods. Has become a major factor for practical use.

【0008】[0008]

【発明が解決しようとする課題】本発明は、環境に優し
く、長期に亘って防汚性を有し施工が容易で補修も容易
な防汚方法を提供する。加えて従来の電解方式による防
汚方法に比して防汚効果において優れ且つ施工コストの
低減を図るのが目的である。
SUMMARY OF THE INVENTION The present invention provides an antifouling method which is environmentally friendly, has antifouling properties over a long period of time, is easy to construct, and is easy to repair. In addition, it is another object of the present invention to improve the antifouling effect and reduce the construction cost as compared with the conventional antifouling method using the electrolytic method.

【0009】[0009]

【課題を解決するための手段】以上の課題を解決するた
め、従来の防汚手段と同等またはそれ以上の防汚効果を
有し、電極材料が安価で、施工作業が安全且つ容易で長
寿命である触媒被覆電極の開発に鋭意検討を行い本発明
を完成させた。
In order to solve the above problems, the present invention has an antifouling effect equal to or higher than that of the conventional antifouling means, the electrode material is inexpensive, the construction work is safe and easy, and the life is long. The present inventors have made intensive studies on the development of a catalyst-coated electrode and completed the present invention.

【0010】その手段は次の通りである。基本的手段
は、海水と接する構造物(金属製またはコンクリート
製)の防汚対象表面にチタン溶射を施し、該溶射皮膜の
上にコバルトまたはマンガン含有溶液、もしくはこれら
の溶液にイリジウムを混合した溶液を塗布して乾燥後、
該溶射皮膜を陽極的または火炎で励起して熱活性化処理
をおこない酸化コバルトまたは酸化マンガン皮膜に変換
形成させることにある。該酸化コバルトまたは酸化マン
ガン皮膜を形成させたチタン溶射皮膜は、海水中で陽極
として該陽極電位を酸素発生電位内に保持し、塩素ガス
発生電位より卑な電位で海水電解を行う事により該構造
物の防汚対象面に海生生物(藻類を含め)の付着を抑制
または防止する方法である。
The means are as follows. The basic means is to apply titanium spray to the surface of the antifouling object of a structure (made of metal or concrete) that comes in contact with seawater, and a solution containing cobalt or manganese or a solution obtained by mixing iridium with these solutions on the sprayed coating After applying and drying,
An object of the present invention is to convert the thermal sprayed coating to a cobalt oxide or manganese oxide coating by anodic or flame excitation and performing a thermal activation treatment. The titanium sprayed coating on which the cobalt oxide or manganese oxide coating has been formed is formed as an anode in seawater by maintaining the anode potential within the oxygen generation potential and performing seawater electrolysis at a potential lower than the chlorine gas generation potential. This is a method for suppressing or preventing the adhesion of marine organisms (including algae) to the surface of the object to be stain-proofed.

【0011】対象構造物によっては、該構造物の表面を
覆うチタン溶射被膜がチタン板または薄板条であって、
予め工場で上記コバルトまたはマンガン酸化物皮膜を形
成させて、現地に搬送して対象物に取付けることも可能
である。
[0011] Depending on the target structure, the titanium sprayed coating covering the surface of the structure is a titanium plate or a thin strip,
It is also possible to form the above-mentioned cobalt or manganese oxide film beforehand at a factory, transport it to the site, and attach it to an object.

【0012】また、チタン製管板や管から成る熱交換器
にあっては、チタン溶射やチタン板条の事前用意の必要
はなく、該チタン製管板の表面をケレン清浄後、直接コ
バルトまたはマンガン含有溶液、もしくはこれらの溶液
にイリジウムを混合した溶液を塗布して乾燥後、火炎や
電熱で加熱し酸化コバルトまたは酸化マンガンに変成さ
せる事ができる。
In the case of a heat exchanger composed of a titanium tube sheet or a tube, there is no need to prepare titanium spray or titanium strip in advance, and after cleaning the surface of the titanium tube sheet with kelenium, directly remove cobalt or titanium. A manganese-containing solution or a solution in which iridium is mixed with these solutions is applied, dried, and then heated with a flame or electric heat to transform it into cobalt oxide or manganese oxide.

【0013】本発明において、これらの酸化皮膜形成チ
タンは、該酸化皮膜が電気活性触媒として作用する。該
電気活性触媒を有するチタンは、外部直流電源の正極に
接続して陽極とし、海水中で陽極電位を塩素発生の1.
1V(SCE基準)より卑であって酸素発生電位の0.
5〜1.0Vに保持するように定電位装置で制御する。
In the present invention, these oxide film-forming titaniums function as electroactive catalysts. The titanium having the electroactive catalyst is connected to the positive electrode of an external DC power source to form an anode, and the anode potential in seawater is changed to 1.
1 V (SCE standard), which is lower than 0.
The voltage is controlled by a constant potential device so as to be maintained at 5 to 1.0 V.

【0014】酸化コバルトや酸化マンガンが消耗した場
合には、チタン溶射またはチタン面に直接コバルトまた
はマンガン含有溶液、もしくはこれらの溶液にイリジウ
ムを混合した溶液を塗布して乾燥後、火炎や電熱で加熱
することによって容易に再生できる。
When the cobalt oxide or manganese oxide has been consumed, a solution containing cobalt or manganese or a solution obtained by mixing iridium with these solutions is applied directly to the titanium sprayed or titanium surface and dried, and then heated with a flame or electric heat. Can be easily reproduced.

【0015】[0015]

【発明の実施の形態】防汚手段の実施に当たって留意し
なくてはならない条件は、防汚効果に加えて周辺環境へ
の弊害を最小限に抑える事である。環境二次汚染を避け
ることである。海水電解で生成する塩素ガスや銅といっ
た重金属イオン等の毒性イオンによる防汚は、防汚効果
よりも有用海生生物までも駆除し、また環境汚染の因に
なりやすい。このため、無毒性、無害及び無公害の防汚
方法が望まれ、その開発に拍車が懸かった。無公害防汚
塗料や塩素を発生させない電解防汚方法が開発された。
しかし、この方法においては上述した如くトータルコス
トの低減が大きな課題である。電解防汚にあっては、電
極素材、電極形状、施工手段または再生加工等安価で作
業性に優れ、期待寿命が長いことがポイントである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In implementing antifouling means, a condition to be kept in mind is that, in addition to the antifouling effect, adverse effects on the surrounding environment are minimized. Avoid environmental cross-contamination. Antifouling due to toxic ions such as chlorine gas and heavy metal ions such as copper generated by seawater electrolysis removes even more useful marine organisms than the antifouling effect, and easily causes environmental pollution. Therefore, a non-toxic, harmless and pollution-free antifouling method has been desired, and its development has been spurred. Non-polluting antifouling paints and electrolytic antifouling methods that do not generate chlorine have been developed.
However, in this method, as described above, reduction of the total cost is a major problem. In the case of electrolytic antifouling, it is important that the electrode material, electrode shape, construction means, reprocessing, etc. be inexpensive, have excellent workability, and have a long expected life.

【0016】電解防汚は、可溶性金属(例えば鉄鋼)の
アノード溶解を利用する方法と不溶性電極を用いた陽極
の海水電解による塩素または酸素ガスを発生させる方法
に大別される。
Electrolytic antifouling is broadly classified into a method utilizing anodic dissolution of a soluble metal (for example, steel) and a method of generating chlorine or oxygen gas by seawater electrolysis of an anode using an insoluble electrode.

【0017】本発明は、不溶性陽極で海水電解を行い塩
素ガスを発生させないで酸素ガスによる防汚に焦点をし
ぼって施工コストの低減手段を図ったものである。
The present invention is intended to reduce construction costs by focusing on antifouling by oxygen gas without generating chlorine gas by performing seawater electrolysis with an insoluble anode.

【0018】不溶性陽極を用いた海水電解で陽極面の主
たる電気化学反応は、 2Cl- →Cl2 +2e- ・・・・・・・・・・(1) 2H2 O→O2 +4H+ +4e-・・・・・・・・(2) で示される。
The primary electrochemical reaction of the anode surface in seawater electrolysis using an insoluble anode, 2Cl - → Cl 2 + 2e - ·········· (1) 2H 2 O → O 2 + 4H + + 4e - ... (2)

【0019】毒性を有する塩素ガスの発生を抑制するに
は、塩素が発生する電位より低い(卑)電位に維持しな
くてはならない。海水中では、この電位は水素電極基準
で1.37V(SCE[飽和甘汞電極基準]で1.13
V)である。塩分量の低い溶液にあっては、塩素発生限
界電位は多少高くなる。本発明の防汚では、電位を塩素
発生限界電位以下に抑制する必要がある。酸素発生限界
電位は海水のpHが低いほど高くなるが、pH6.5〜
8.5の範囲では0.87〜0.71V(SCEで0.
63〜0.47V)である。標準海水のpH8.2では
0.76V(SCEで0.52V)である。標準海水
(pH8.2)で考えると0.76V(SCEで0.5
2V)より高い電位で1.37V(SCEで1.13
V)より低い電位に保持すれば、陽極表面から酸素は発
生するが塩素の発生は抑制させることができる。陽極電
位は適用陽極電流密度の関数であり、電流密度が大きく
なると電位は上昇し、酸素の発生は通電量に比例して大
きくなる。言い換えると、海水中で陽極電位をSCEで
0.5〜1.1Vの範囲に制御すれば塩素の発生もなく
無公害な防汚が可能である。(2)式から陽極界面では
4モルの水素イオン(4H+ )が生成され、実測は不可
能であるが間接的に1〜3のpH範囲にあり高い酸性度
領域にあるので、これも付加的に海生生物の着生抑制に
寄与する。
In order to suppress the generation of toxic chlorine gas, the potential must be maintained at a lower (base) potential than the potential at which chlorine is generated. In seawater, this potential is 1.37 V on hydrogen electrode basis (1.13 V on SCE [saturated calomel electrode basis]).
V). In a solution having a low salt content, the chlorine generation limit potential is slightly higher. In the antifouling of the present invention, it is necessary to suppress the potential to below the chlorine generation limit potential. The oxygen generation limit potential increases as the pH of seawater decreases, but the pH increases to 6.5 to 6.5.
In the range of 8.5, 0.87 to 0.71 V (0.
63 to 0.47 V). It is 0.76 V (0.52 V in SCE) at pH 8.2 of standard seawater. Considering standard seawater (pH 8.2), 0.76V (0.5 at SCE)
1.37 V at a potential higher than 2 V) (1.13 V at SCE)
If the potential is kept lower than V), oxygen is generated from the anode surface, but generation of chlorine can be suppressed. The anode potential is a function of the applied anode current density, the higher the current density, the higher the potential and the generation of oxygen increases in proportion to the current flow. In other words, if the anode potential is controlled in the range of 0.5 to 1.1 V by SCE in seawater, no pollution is generated without generation of chlorine. From equation (2), 4 moles of hydrogen ions (4H + ) are generated at the anode interface, which cannot be measured, but are indirectly in the pH range of 1 to 3 and in the high acidity range. It contributes to the control of marine organisms.

【0020】陽極近傍は、通電により水素イオンの生
成、酸素の発生ある時は塩素イオンや塩素の発生があり
極めて強い酸化性の雰囲気に保持される。かかる環境で
長期に亘って陽極電流を流出しても消耗の少ない(無視
できる)不溶性電極は、酸化や塩素に対して強くて導電
性に優れた材質であることが必要である。炭素質を導電
材としたカーボン単体または導電塗料は、環境中の酸化
剤が界面から急速に拡散逃避するか、適用陽極電流密度
が小さくて(例えば数十mA/m2以下)数ヵ月から1
カ年位の短期使用と云った条件ならばともかく、大電流
や長期使用にあっては炭素質の酸化消耗が大きくなり不
向きである。ヴァルヴ金属として知られるチタンは、酸
化や塩素に対して優れているが、酸化皮膜が強く導電材
としてはこのままでは付加電圧が大きくなり、チタンの
破壊電圧は、約8Vであるから使用環境によっては適正
ではない。従って、電気化学工業ではチタン素材に白金
系金属或いはこれらの貴金属の酸化物触媒を被覆したも
のが使用されている。該触媒被覆チタン電極は、板状、
網状であれ、触媒被覆と言った製作処理工程があり加え
て高価な被覆であり現地作業や再生加工は容易ではな
い。
The vicinity of the anode is maintained in an extremely strong oxidizing atmosphere due to the generation of hydrogen ions and the generation of oxygen and the generation of chlorine ions and chlorine when oxygen is generated. An insoluble electrode that is less consumed (negligible) even if the anode current flows for a long time in such an environment needs to be made of a material that is strong against oxidation and chlorine and has excellent conductivity. A simple substance of carbon or a conductive paint using carbonaceous as a conductive material has a problem in that the oxidizing agent in the environment rapidly diffuses and escapes from the interface, or the applied anode current density is small (for example, several tens mA / m 2 or less), and is one month to one month.
Regardless of the condition of short-term use for about a year, carbon dioxide is oxidized and consumed undesirably under large current and long-term use. Titanium, known as Valve metal, is excellent against oxidation and chlorine, but the oxide film is strong, and as a conductive material, the additional voltage will be large as it is, and the breakdown voltage of titanium is about 8V. Not proper. Therefore, in the electrochemical industry, titanium materials coated with platinum-based metals or oxide catalysts of these noble metals are used. The catalyst-coated titanium electrode is plate-shaped,
Even if it is net-like, there is a manufacturing process such as catalyst coating, and it is an expensive coating, so that on-site work and reprocessing are not easy.

【0021】前述の特公平1−46595号公報は、ヴ
ァルヴ金属の表面に電気触媒(例えば、白金系金属或い
はこれらの貴金属酸化物を混合したもの等)を被覆した
該触媒被覆ヴァルヴ金属を陽極として電解し、塩素を発
生させないで酸素を発生させて防汚する技術が開示され
ている。これについては理論的効果はともかく実用に供
された例は、類似業者である本願出願人は見聞していな
い。例えばチタン製熱交換器の管板に白金系金属または
これらの貴金属酸化物を混合した電気触媒等の被覆は、
被覆処理すべき対象が大きく、高価な触媒処理手段は工
場製作でも大容量を必要とし、まして現場製作向きでは
なく再加工も容易でないなど、工程が複雑でトータルコ
ストの低減を図らない限り実用向きではない。
The above-mentioned Japanese Patent Publication No. 46595/1994 discloses a catalyst-coated valve metal in which a surface of a valve metal is coated with an electrocatalyst (for example, a platinum-based metal or a mixture of these noble metal oxides) as an anode. There has been disclosed a technique of performing electrolysis and generating oxygen without generating chlorine to prevent contamination. Regarding this case, the applicant who is a similar trader has not heard of an example that has been put to practical use aside from the theoretical effect. For example, coating such as an electrocatalyst mixed with platinum-based metal or these noble metal oxides on the tube plate of a titanium heat exchanger,
The target to be coated is large, and expensive catalyst processing means requires a large capacity even in factory production.Moreover, it is not suitable for on-site production and it is not easy to rework, so it is suitable for practical use unless the process is complicated and total cost is reduced. is not.

【0022】この点に鑑み本発明者らは、対象構造物が
チタン製を除いた該構造物(例えば、コンクリートまた
は鉄鋼など)の表面に容易にチタン等のヴァルヴ金属の
被覆が可能な手段及び上記の高価な貴金属系の電気触媒
に代わる触媒並びに触媒被覆方法について鋭意検討をお
こなった。
In view of this point, the present inventors have developed a method and a method which can easily coat a valve metal such as titanium on the surface of a structure (for example, concrete or steel) other than a structure made of titanium. The present inventors have conducted intensive studies on a catalyst that can replace the above expensive noble metal-based electrocatalyst and a catalyst coating method.

【0023】その結果、対象構造物の表面に火炎または
アークによるチタン溶射被覆を施し、該表面にコバルト
またはマンガン溶液、もしくはこれらの溶液にイリジウ
ムを混合した溶液を塗布し、空気乾燥後火炎または電熱
加熱励起で熱活性化処理して酸化コバルトまたは酸化マ
ンガンに変換させることによって達成される。対象が鉄
筋コンクリート構造物にしろ鉄鋼製構造物であれ表面を
ブラストまたは研磨した上に0.8〜3.2mmφのチ
タンワイヤーを用いて火炎またはアークで溶射被覆を行
う。被覆の厚さは、特に限定する事もないが50〜15
0μmの範囲にするのが実用的である。対象が金属構造
物の場合には、直接チタン溶射を施してもよいが、該構
造物の接水面に耐熱性と絶縁性を有する塗料などの前処
理被覆を施した上にチタン溶射を行うのがよい。チタン
溶射被覆面に硝酸コバルト溶液またはマンガン溶液もし
くはこれらの溶液にイリジウムを混合した溶液をスプレ
ーまたは刷毛で塗布する。塗布面は出来れば20〜30
分空気乾燥後、該被覆チタン溶射膜を陽極的に数十mA
/m2の電流で励起するか、火炎で炙ぶりコバルトまた
はマンガン酸化物に変換する。これによって、酸化コバ
ルトまたは酸化マンガンはチタン溶射皮膜面に活性で密
着性のある皮膜を形成する。チタン製構造物にあって
は、該チタン構造物の表面を清浄にしてから直接上記の
硝酸コバルト溶液または硝酸マンガン溶液、もしくはこ
れらの溶液にイリジウムを混合した溶液をスプレーまた
は塗布し、熱活性化処理を施すことにより電気活性触媒
皮膜が形成される。溶射皮膜に代えて構造物の表面に該
触媒皮膜を形成したチタン板条を工場で製作して現地に
運び常套手段で対象構造物の表面に取付けることも可能
である。いずれの方法であっても従来の白金系金属また
はこれらの貴金属酸化物皮膜の形成手段に比して素材、
装置、作業方法または全施工時間などは大幅に軽減さ
れ、1/5〜1/10にコスト低減が可能である。
As a result, a titanium or thermal spray coating is applied to the surface of the target structure with a flame or an arc, and a cobalt or manganese solution or a solution obtained by mixing these solutions with iridium is applied to the surface, and after air drying, the flame or electric heating is performed. It is achieved by heat activation treatment with heat excitation to convert to cobalt oxide or manganese oxide. Regardless of whether the object is a reinforced concrete structure or a steel structure, the surface is blasted or polished, and then spray-coated by flame or arc using a titanium wire of 0.8 to 3.2 mmφ. The thickness of the coating is not particularly limited, but is 50 to 15
It is practical to set the range to 0 μm. When the target is a metal structure, titanium spraying may be performed directly, but titanium spraying is performed after applying a pre-treatment coating such as a heat-resistant and insulating paint on the water-contact surface of the structure. Is good. A cobalt nitrate solution or a manganese solution or a solution obtained by mixing iridium with these solutions is applied to the titanium spray-coated surface by spraying or brushing. The coated surface is preferably 20-30
After air drying, the coated titanium sprayed film is anodically tens of mA
/ M 2 or excited by flame and converted to cobalt or manganese oxide. As a result, the cobalt oxide or manganese oxide forms an active and adhesive film on the surface of the titanium sprayed film. In the case of a titanium structure, the surface of the titanium structure is cleaned and then directly sprayed or applied with the above-mentioned cobalt nitrate solution or manganese nitrate solution, or a solution obtained by mixing iridium with these solutions, and thermally activated. By performing the treatment, an electroactive catalyst film is formed. Instead of the thermal spray coating, a titanium strip having the catalyst coating formed on the surface of the structure may be manufactured in a factory, transported to the site, and attached to the surface of the target structure by conventional means. Regardless of which method is used, compared to conventional platinum-based metal or these noble metal oxide film forming means,
Equipment, work method or total construction time is greatly reduced, and cost can be reduced to 1/5 to 1/10.

【0024】陽極電極基板となるチタン材の性状は、対
象構造物がコンクリート(鉄筋コンクリートを含む)に
あってはチタン溶射被覆が、鉄鋼構造物にあってはチタ
ン溶射被覆或いはチタンの板条が使用される。
The properties of the titanium material serving as the anode electrode substrate are as follows. When the target structure is concrete (including reinforced concrete), a titanium spray coating is used, and when the steel structure is a titanium structure, a titanium spray coating or a titanium strip is used. Is done.

【0025】チタン金属被覆に塗布するコバルト溶液は
硝酸塩が好ましく、マンガンは硝酸塩または硫酸塩溶液
が好ましい。また、これらの溶液にイリジウムを添加す
ることによって、塗布後熱活性化処理による酸化コバル
トまたは酸化マンガンの下地チタンとの密着性強化や電
気触媒としての性能安定と寿命の延長が図れる。
The cobalt solution applied to the titanium metal coating is preferably a nitrate, and the manganese is preferably a nitrate or sulfate solution. Further, by adding iridium to these solutions, it is possible to enhance the adhesion of cobalt oxide or manganese oxide to the underlying titanium by thermal activation treatment after coating, to stabilize the performance as an electrocatalyst, and to extend the life.

【0026】対象構造物の表面に形成された該酸化コバ
ルトまたは酸化マンガン被覆チタンは、海水中で外部直
流電源の正極に接続して陽極とし、定電位装置を介して
飽和甘汞電極を照合基準電極として0.5〜1.1Vに
設定通電を行なう。陽極電流密度は、設定電位が1Vを
超えると電極皮膜の溶解と再生が繰返される頻度が激し
くなるので変動するがおよそ0.1〜1A/m2であ
る。本発明では塩素を発生させないで酸素のみを発生さ
せて防汚するのがポイントであるから、0.5〜1.1
Vの電位に保持することが肝要である。すなわち、電極
は電流の変動があっても陽極電位が上記の範囲に保持さ
れ、破損しにくく、損傷しても容易に再加工可能であ
り、本発明はこれを用いた防汚方法である。
The titanium oxide coated with cobalt oxide or manganese oxide formed on the surface of the target structure is connected to the positive electrode of an external DC power source in seawater to serve as an anode, and a saturated calomel electrode is referred to as a reference through a potentiostat. Set current is applied to 0.5 to 1.1 V as an electrode. When the set potential exceeds 1 V, the anode current density fluctuates because the frequency of repeating dissolution and regeneration of the electrode coating increases, but is about 0.1 to 1 A / m 2 . In the present invention, it is important to generate only oxygen without generating chlorine to prevent stains.
It is important to keep the potential of V. That is, the electrode maintains the anode potential in the above range even when the current fluctuates, is hardly damaged, and can be easily reworked even if damaged, and the present invention is an antifouling method using the same.

【0027】[0027]

【実施例】試験例1(海水中におけるチタン、貴金属酸
化物触媒被覆チタンおよび酸化コバルト被覆チタンの陽
分極特性) チタン基板に貴金属酸化物触媒および酸化コバルト触媒
被覆した電極材を海水中で定電位陽極分極法によって試
験した。海水は常温(21〜23℃)であり、pHは
7.8であった。その結果を図1に示す。
EXAMPLES Test Example 1 (Positive Polarization Characteristics of Titanium, Noble Metal Oxide Catalyst Coated Titanium and Cobalt Oxide Coated Titanium in Sea Water) An electrode material obtained by coating a noble metal oxide catalyst and a cobalt oxide catalyst on a titanium substrate was subjected to constant potential in sea water. The test was performed by the anodic polarization method. Seawater was at room temperature (21-23 ° C) and pH was 7.8. The result is shown in FIG.

【0028】図1の結果より次のことが分った。チタン
単体は、チタン表面に形成される酸化皮膜が強固のた
め、不動態化挙動を示し酸素発生領域の0.5〜1.1
Vでは、不動態化維持電流のみで僅かの変化で塩素の発
生電位である1.1Vを超え電極材として不適である。
貴金属酸化物触媒またはコバルト酸化物被覆チタンは、
それぞれの海水中での自然電位から僅かに電位が上昇し
ても電流の流出が見られる。しかも電位の上昇にともな
って電流の流出もほぼ比例して増加している。貴金属酸
化物触媒被覆の陽分極は、塩素発生電位に達するまでは
ほぼ直線的に上昇している。酸素発生電位の分岐点は明
確でない。コバルト酸化物被覆チタンにあっては、陽極
電位が0.5〜0.6V付近に分岐点があり、これが酸
素発生電位に対応している。すなわち、コバルト酸化物
被覆チタン電極の陽極電位を0.5Vから塩素発生電位
である1.1Vの間に保持することで電極面からは酸素
のみが発生する。
The following was found from the results shown in FIG. Since titanium alone has a strong oxide film formed on the surface of titanium, it exhibits a passivation behavior and exhibits an oxygen generation region of 0.5 to 1.1.
In the case of V, the passivation maintaining current alone exceeds the chlorine generation potential of 1.1 V with a slight change and is not suitable as an electrode material.
Noble metal oxide catalyst or cobalt oxide coated titanium
Even if the potential slightly rises from the natural potential in each seawater, outflow of current is observed. In addition, the outflow of the current increases almost in proportion to the rise of the potential. The positive polarization of the noble metal oxide catalyst coating increases almost linearly until it reaches the chlorine evolution potential. The branch point of the oxygen evolution potential is not clear. In the case of titanium coated with cobalt oxide, there is a branch point where the anode potential is around 0.5 to 0.6 V, which corresponds to the oxygen generation potential. That is, by maintaining the anode potential of the cobalt oxide-coated titanium electrode between 0.5 V and 1.1 V, which is a chlorine generation potential, only oxygen is generated from the electrode surface.

【0029】陽極電位が、0.9Vまではコバルト酸化
物被覆チタン電極の陽極電流密度が貴金属酸化物被覆チ
タン電極よりも大きく、それだけ酸素の発生量が多い。
0.9Vよりも高い(貴)電位では両者の電極は類似の
性能を有している。言換えると、コバルト酸化物被覆チ
タン電極はより低電位で酸素の発生が多いのでより環境
に優しい防汚が期待できる。適用陽極電流密度は、通電
時間とともに分極が進行するので明確ではないが、当初
は、0.1〜1.0A/m2であり時間の経過と共に低
い電流で上記電位内に維持されると判断できる。
When the anode potential is up to 0.9 V, the anode current density of the cobalt oxide-coated titanium electrode is higher than that of the noble metal oxide-coated titanium electrode, and the amount of generated oxygen is large.
At (noble) potentials higher than 0.9 V, both electrodes have similar performance. In other words, since the cobalt oxide-coated titanium electrode generates much oxygen at a lower potential, more environmentally friendly antifouling can be expected. The applied anode current density is not clear because the polarization progresses with the energization time, but is initially 0.1 to 1.0 A / m 2 and is determined to be maintained within the above potential with a low current over time. it can.

【0030】試験例2(陽極設定電位で電極面から発生
するガスの成分量) 試験例1の結果に基づいてコバルト酸化物被覆チタンを
海水中で、0.9V及び1.15V(いずれもSCE基
準)の陽極電位に設定して該極面から発生するガスを採
集してガスクロマトグラフィで分析した。
Test Example 2 (Amount of Gas Evolved from Electrode Surface at Anode Set Potential) Based on the results of Test Example 1, cobalt oxide-coated titanium was placed in seawater at 0.9 V and 1.15 V (both SCE The gas generated from the electrode surface was collected at an anode potential of (reference) and analyzed by gas chromatography.

【0031】その結果、0.9Vでは主成分は酸素であ
った。1.15Vでは約90%が塩素であり、残り10
%が酸素であった。すなわち、陽極の設定電位を塩素発
生電位より低く(卑)、酸素の発生しやすい高い(貴)
電位に設定することで塩素を発生させないで酸素による
無公害な防汚が期待できる。
As a result, at 0.9 V, the main component was oxygen. At 1.15V, about 90% is chlorine and the remaining 10%
% Was oxygen. That is, the set potential of the anode is lower than the chlorine generation potential (base), and the oxygen is likely to generate high (noble).
By setting the potential, non-polluting antifouling by oxygen can be expected without generating chlorine.

【0032】試験例3 上記の試験結果に基づいて、コンクリートブロックの表
面にチタン溶射を施しさらに酸化コバルト被覆を形成
し、海水中に浸漬して陽極通電を行ない該被覆表面への
海生生物の付着状況を調査した。
Test Example 3 On the basis of the above test results, the surface of the concrete block was sprayed with titanium and further formed with a cobalt oxide coating, immersed in seawater and anodized to conduct marine organisms on the coating surface. The adhesion situation was investigated.

【0033】該試験装置の概要を図2に示す。鉄筋コン
クリートブロック4として縦・横25cm、厚さ10c
mに直径12mmφ、長さ30cmの丸鋼4本#形に組
み、カブリが5cmになるように該コンクリート中に設
置してブロック4を製作した。該ブロックの片表面をサ
ンドブラスト後、1.2mmφのチタン線材をアーク溶
射を用いて約150μmの厚さになるように溶射被覆を
施した。溶射面以外は、タールエポキシ塗装後、シリコ
ーン系防汚塗料で防汚処理を行った。溶射面はコバル
ト、そのイリジウム含有溶液、またはマンガン含有溶液
を塗布した。コバルトおよびマンガンは、6水塩の硝酸
塩で260〜300g/Lである。一部コバルト塩溶液
に15〜20g/Lの塩化イリジウム(IrCl4 ・H
2 O)を添加した溶液を塗布した。塗布後、20〜30
分乾燥してからガス火炎で皮膜を加熱乾燥して、チタン
溶射に該酸化物被覆コンクリートブロック1を得た。
FIG. 2 shows an outline of the test apparatus. Reinforced concrete block 4 length and width 25cm, thickness 10c
The four round steel bars having a diameter of 12 mmφ and a length of 30 cm were assembled in a m shape and placed in the concrete so that the fog was 5 cm. After sandblasting one surface of the block, a titanium wire rod having a diameter of 1.2 mm was spray-coated by arc spraying so as to have a thickness of about 150 μm. After the tar epoxy coating, antifouling treatment was performed with a silicone antifouling paint except for the sprayed surface. The sprayed surface was coated with cobalt, its iridium-containing solution, or manganese-containing solution. Cobalt and manganese are hexahydrate nitrates at 260-300 g / L. 15-20 g / L of iridium chloride (IrCl 4 .H
The solution to which 2O) was added was applied. After application, 20-30
After drying for a minute, the coating was heated and dried with a gas flame to obtain the oxide-coated concrete block 1 by titanium spraying.

【0034】チタン溶射に該酸化物被覆コンクリートブ
ロック1は、東京湾の海水中にロープで吊下げて約7カ
月間ポテンショスタット5(照合電極SCE3)を用い
て4段階の陽極設定電位に保持して浸漬した。設定電位
は、0.7,0.8,0.9及び1.0Vである。別途
比較用に無処理のコンクリートブロック1を1個設置し
た。
The oxide-coated concrete block 1 was hung with rope in seawater of Tokyo Bay and held at the anode set potential in four stages using a potentiostat 5 (reference electrode SCE3) for about 7 months. Dipped. The set potentials are 0.7, 0.8, 0.9 and 1.0V. One untreated concrete block 1 was separately installed for comparison.

【0035】約7カ月間の浸漬通電後、海生生物の付着
湿重量を測定し、防汚率を求めた。防汚率は次式で算出
した。 防汚率(%)=(ブランク供試体湿重量−試験体湿重
量)/ブランク湿重量 試験結果を表1に示す。
After the immersion for about 7 months, the weight of attached marine organisms was measured to determine the antifouling rate. The antifouling rate was calculated by the following equation. Antifouling rate (%) = (wet weight of blank specimen−wet weight of specimen) / wet weight of blank The test results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】陽極設定電位が高くなるほど防汚率が高く
0.9〜1.0Vでは海生生物の付着は実質的に無視で
きる。イリジウムの添加は、幾分防汚効果が高くなる傾
向が見られるが、他の被覆の効果と大同小異である。む
しろ効果の低下を抑制し、持続性があり下地との密着性
を高める。また仕上げ表面の均一灰黒色は見栄えが良
い。
The higher the anode set potential, the higher the antifouling rate, and at 0.9 to 1.0 V, the adhesion of marine organisms can be substantially ignored. The addition of iridium tends to have a somewhat higher antifouling effect, but is slightly different from the effect of other coatings. Rather, it suppresses a decrease in the effect, and is durable and enhances the adhesion to the substrate. In addition, the uniform gray-black color of the finished surface has a good appearance.

【0038】付着した海生生物は、藻類、ヒドロ類で、
フジツボやイガイ類の大型海生生物は殆ど付着していな
かった。ブランクのコンクリートは、ムラサキイガイが
厚さ10〜15cmも付着し、シリコーン系防汚塗料面
も巻き込んで付着していた。
The attached marine organisms are algae, hydros,
Large marine organisms such as barnacles and mussels were hardly attached. On the blank concrete, mussels adhered as thick as 10 to 15 cm and the silicone-based antifouling paint surface was also involved and adhered.

【0039】実施例1 予備的な試験結果に基づいて、実用コンクリート構造物
に適用した。電力会社の実用されている取水路のコンク
リート壁面に本発明の電解防汚装置を適用した。設置状
況の概要を図3に示す。図3(a)は斜視図であり、図
3(b)はその断面図である。スクリーン室のコンクリ
ー卜壁面41の2m×2mをマスキング11し、サンド
ブラストで汚れ除去後1.2mmφのチタン線材を用い
てアーク溶射で約150μm厚のチタン溶射を施した。
次いで、260g/LCo(NO32 ・6H2 O溶液
を該溶射チタン被覆面11に塗布した。水切り乾燥後ガ
ス火炎で加熱励起して活性化した。チタン溶射面11か
ら地上部のケーブル7結線部までチタンリボン12を導
電材とした。チタンリボン12とチタン溶射部11は、
チタン製のアンカーボルト13で面締結した。PVCチ
ューブ15に照合電極(SCE)31(不図示)を挿入
しコンクリート壁面41にPVCチューブ15を金具で
固定した。配線はPVCの配管15内を地上まで立ち上
げポテンショスタッド(定電位装置)51に接続した。
Example 1 Based on preliminary test results, the present invention was applied to a practical concrete structure. The electrolytic antifouling device of the present invention was applied to a concrete wall surface of an intake channel practically used by a power company. An overview of the installation situation is shown in FIG. FIG. 3A is a perspective view, and FIG. 3B is a sectional view thereof. The 2 m × 2 m of the concrete wall 41 of the screen room was masked 11 and dirt was removed by sandblasting, and then titanium spray of about 150 μm thick was applied by arc spraying using a 1.2 mmφ titanium wire.
Next, a 260 g / LCo (NO 3 ) 2 .6H 2 O solution was applied to the sprayed titanium coated surface 11. After draining and drying, it was activated by heating and exciting with a gas flame. The titanium ribbon 12 was used as a conductive material from the titanium sprayed surface 11 to the connection portion of the cable 7 above the ground. The titanium ribbon 12 and the titanium sprayed portion 11
The surface was fastened with an anchor bolt 13 made of titanium. A reference electrode (SCE) 31 (not shown) was inserted into the PVC tube 15, and the PVC tube 15 was fixed to the concrete wall surface 41 with metal fittings. The wiring was started up inside the PVC pipe 15 to the ground, and connected to a potentiostat (constant potential device) 51.

【0040】通電は、設定電位1.0Vで行い、約1年
間実施した。本発明の装置を設置していなかった該取水
路40のコンクリート壁面41はムラサキイガイ、フジ
ツボ、ボヤ或いは藻類等の海生生物が10cm以上の厚
さに付着していた。本装置を設置した壁面11は、部分
的にヒドロの付着が見られたが、取水路40の難敵であ
るイガイ等大型海生物の付着は見られなかった。
The energization was performed at a set potential of 1.0 V for about one year. The marine creatures such as mussels, barnacles, sea squirts, and algae were attached to the concrete wall surface 41 of the intake channel 40 where the apparatus of the present invention was not installed in a thickness of 10 cm or more. On the wall surface 11 on which the present apparatus was installed, attachment of hydro was partially observed, but attachment of large marine organisms such as mussels, which are difficult enemy of the intake channel 40, was not observed.

【0041】実施例2 チタン製管板、チューブを有する熱交換器の水室内管板
に本発明の電解防汚装置を適用した。
Example 2 The electrolytic antifouling device of the present invention was applied to a tube plate in a water chamber of a heat exchanger having a titanium tube plate and tubes.

【0042】設置概要を図4に示す。チタン製熱交換器
7の管板面71をサンドペーパーで研磨して表面の汚れ
を除去した。実施例1と同様の260g/LCo(NO
32 ・6H2 O溶液を該研磨チタン管板の表面に塗布
した。次いでガスバーナーで熱活性化処理を施した。水
室72内に別途陰極73となるSUS316の40mm
φ×300mmLの丸棒73を水室72と絶縁して設置
した。照合電極は海水塩化銀電極32である。チタン製
管板面71の電位を1.0V(SCE換算)に設定して
通電した。夏場の4カ月の状況では本電解防汚装置を設
置した熱交換器7では管板71に海生生物の付着は見ら
れなかった。それに対して、未設置の管板71は、ヒド
ロ類が多量に付着しフジツボ類の付着もかなり見られ
た。
FIG. 4 shows an outline of the installation. The tube sheet surface 71 of the titanium heat exchanger 7 was polished with sandpaper to remove surface dirt. 260 g / LCo (NO as in Example 1)
3) 2 · 6H 2 O solution was applied to the surface of the polishing titanium tube plate. Next, a heat activation treatment was performed using a gas burner. 40mm of SUS316 which becomes cathode 73 separately in water room 72
A φ × 300 mmL round bar 73 was installed insulated from the water chamber 72. The reference electrode is a seawater silver chloride electrode 32. The electric potential was set to 1.0 V (SCE conversion) on the titanium tube sheet surface 71 and electricity was supplied. No marine organisms were found to adhere to the tube sheet 71 in the heat exchanger 7 equipped with the present electrolytic antifouling device in the four months in summer. On the other hand, on the tube sheet 71 not installed, a large amount of hydro was attached, and considerable adhesion of barnacles was observed.

【0043】[0043]

【発明の効果】以上詳細に記したように、本発明の電解
防汚方法は、海水に接する構造物の海生生物の付着防止
にあたって、環境に優しく、長期に亘って防汚性を有し
加えて施工や補修が容易である。
As described above in detail, the electrolytic antifouling method of the present invention is environmentally friendly and has a long-term antifouling property for preventing marine organisms from adhering to structures in contact with seawater. In addition, construction and repair are easy.

【0044】また、本発明の電解防汚方法は、毒性の塩
素の発生を抑え、電解による酸素を主成分とした防汚で
あって、従来からの貴金属またはこれらの貴金属酸化物
触媒被覆に代わる安価な素材からなる酸化物触媒の利用
と施工や補修の容易性が確保できた。
The electrolytic antifouling method of the present invention is an antifouling method which suppresses the generation of toxic chlorine and contains oxygen by electrolysis as a main component, and replaces conventional noble metals or their noble metal oxide catalyst coatings. The use of inexpensive oxide catalysts and the ease of construction and repair were secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 海水中におけるチタン、貴金属酸化物被覆チ
タン及び酸化コバルト被覆チタンの定電位陽分極特性。
FIG. 1 shows the potentiostatic polarization characteristics of titanium, noble metal oxide-coated titanium, and cobalt oxide-coated titanium in seawater.

【図2】 鉄筋コンクリートに酸化コバルトを被覆した
溶射チタンを陽極とした定電位通電試験装置を示す図。
FIG. 2 is a diagram showing a constant potential energization test apparatus using sprayed titanium obtained by coating reinforced concrete with cobalt oxide as an anode.

【図3】 実取水路のコンクリート壁面の一部に本発明
を適用した概要図であり、(a)は斜視図、(b)はそ
の断面図。
FIG. 3 is a schematic view in which the present invention is applied to a part of a concrete wall surface of an actual intake channel, (a) is a perspective view, and (b) is a cross-sectional view thereof.

【図4】 チタン製熱交換器管板に本発明の方法を適用
した概要図。
FIG. 4 is a schematic diagram in which the method of the present invention is applied to a titanium heat exchanger tube sheet.

【符号の説明】[Explanation of symbols]

1;酸化コバルト被覆チタン溶射コンクリート、2;鉄
板(陰極)、3;照合電極(SCE)、4;ブランク
(鉄筋コンクリートブロック)、5;ポテンショスタッ
ト(定電位装置)、11;酸化コバルト被覆チタン溶射
コンクリート、12.チタンリボン、13;チタン製ア
ンカーボルト、14;ケーブル、15;PVC管、2
0;鉄筋、40;コンクリート製取水路、41;コンク
リート壁面、51;ポテンショスタット、61;海水、
7;熱交換器、71;チタン製管板、72;水室(ゴム
ライニング)、73;カソード(陰極)、74;冷却
管、32;照合電極、52;ポテンショスタット(定電
位直流電源)、62;海水。
1; Cobalt oxide coated titanium sprayed concrete; 2; Iron plate (cathode); 3; Reference electrode (SCE); 4; Blank (reinforced concrete block); 5; Potentiostat (constant potential device); , 12. Titanium ribbon, 13; Titanium anchor bolt, 14; Cable, 15; PVC pipe, 2
0; rebar, 40; concrete intake channel, 41; concrete wall surface, 51; potentiostat, 61; seawater,
7; heat exchanger, 71; titanium tube sheet, 72; water chamber (rubber lining), 73; cathode (cathode), 74; cooling tube, 32; reference electrode, 52; potentiostat (constant potential DC power supply), 62; seawater.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶山 貴弘 埼玉県上尾市中新井417−16株式会社ナカ ボーテック技術開発研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Takahiro Kajiyama 417-16 Nakaarai, Ageo City, Saitama

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 海水に接するコンクリート構造物の接水
面にチタン溶射皮膜を施し、もしくは該コンクリート構
造物の接水面を板状または薄板状のチタン材で表面を覆
い、その上にコバルトまたはマンガン含有溶液、もしく
はこれらの溶液にイリジウムを混合した溶液を塗布し、
熱活性化処理により酸化コバルトまたは酸化マンガン皮
膜に変成させ、次いで該溶射皮膜またはチタン材を直流
電源の正極に接続して陽極とし、該陽極を酸素発生電位
内に保持し塩素発生限界電位により卑な電位で通電する
ことを特徴とするコンクリート構造物海面に海生生物の
付着を抑制または防止する方法。
1. A titanium spray coating is applied to a water-contacting surface of a concrete structure which comes into contact with seawater, or the water-contacting surface of the concrete structure is covered with a plate-like or thin plate-like titanium material and contains cobalt or manganese. Apply a solution or a mixture of these solutions with iridium,
It is transformed into a cobalt oxide or manganese oxide film by a heat activation treatment, and then the sprayed film or the titanium material is connected to a positive electrode of a DC power source to form an anode. A method for suppressing or preventing marine organisms from adhering to the sea surface of a concrete structure, characterized in that a current is applied at an appropriate potential.
【請求項2】 海水に接する鉄鋼構造物の接水面に絶縁
性を有する塗料を塗布しその上にチタン溶射を施すか、
または該鉄鋼構造物に絶縁性の塗料を塗布し板状若しく
は薄板状チタン材で表面を覆い、さらにコバルトまたは
マンガン含有溶液、もしくはこれらの溶液にイリジウム
を混合した溶液を塗布し、熱活性化処理により酸化コバ
ルト若しくは酸化マンガン皮膜に変成させ、次いで、該
溶射皮膜またはチタン材を直流電源の正極に接続して陽
極とし、該陽極を酸素発生電位内に保持し塩素発生限界
電位により卑な電位で通電することを特徴とする鉄鋼構
造物海生生物の付着を抑制または防止する方法。
2. An insulative paint is applied to a water-contact surface of a steel structure in contact with seawater, and titanium spraying is performed on the paint.
Or applying an insulating paint to the steel structure, covering the surface with a plate-like or thin plate-like titanium material, further applying a solution containing cobalt or manganese, or a solution obtained by mixing iridium with these solutions, and performing a heat activation treatment. To form a cobalt oxide or manganese oxide film, and then connect the sprayed film or the titanium material to a positive electrode of a DC power source to form an anode. A method for suppressing or preventing the adhesion of marine organisms in a steel structure, characterized by energizing.
【請求項3】 チタン材で覆われたコンクリート構造物
または鉄鋼構造物、もしくはチタン製構造物のチタン材
外面に、コバルトまたはマンガン含有溶液、もしくはこ
れらの溶液にイリジウムを混合した溶液を塗布し、該塗
布皮膜を陽極的に励起または火炎などによって熱活性化
処理して酸化コバルトまたは酸化マンガン皮膜に変成さ
せ、次いで、該チタン材を直流電源の正極に接続して陽
極とし、該陽極を酸素発生電位内に保持し塩素発生限界
電位により卑な電位で通電して該チタン材外面の海面に
海生生物の付着を抑制または防止する方法。
3. A cobalt or manganese-containing solution or a solution obtained by mixing iridium with a solution containing cobalt or manganese, which is applied to a concrete structure or a steel structure covered with a titanium material or an outer surface of a titanium material of a titanium structure, The coated film is anodically excited or thermally activated by a flame or the like to transform it into a cobalt oxide or manganese oxide film, and then the titanium material is connected to a positive electrode of a DC power source to form an anode, and the anode is used to generate oxygen. A method of suppressing or preventing marine organisms from adhering to the sea surface on the outer surface of the titanium material by maintaining the electric potential within a potential and applying a current at a lower potential according to the chlorine generation limit potential.
JP12811198A 1998-04-23 1998-04-23 Pollution preventing method for structure in contact with sea water Pending JPH11303041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12811198A JPH11303041A (en) 1998-04-23 1998-04-23 Pollution preventing method for structure in contact with sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12811198A JPH11303041A (en) 1998-04-23 1998-04-23 Pollution preventing method for structure in contact with sea water

Publications (1)

Publication Number Publication Date
JPH11303041A true JPH11303041A (en) 1999-11-02

Family

ID=14976663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12811198A Pending JPH11303041A (en) 1998-04-23 1998-04-23 Pollution preventing method for structure in contact with sea water

Country Status (1)

Country Link
JP (1) JPH11303041A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985546B1 (en) 2008-12-19 2010-10-05 재단법인 포항산업과학연구원 Apparatus for preventing approach of sea urchin
JP2012036614A (en) * 2010-08-05 2012-02-23 Ihi Corp Organism adhesion prevention method and organism adhesion prevention device
JP5922278B1 (en) * 2015-03-31 2016-05-24 株式会社ビルドランド Metal spraying method
JP2017095892A (en) * 2015-11-19 2017-06-01 株式会社ナカボーテック Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method
CN115522204A (en) * 2022-09-26 2022-12-27 中国科学院金属研究所 Anode polarization method for inhibiting microbial corrosion of ocean engineering equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985546B1 (en) 2008-12-19 2010-10-05 재단법인 포항산업과학연구원 Apparatus for preventing approach of sea urchin
JP2012036614A (en) * 2010-08-05 2012-02-23 Ihi Corp Organism adhesion prevention method and organism adhesion prevention device
JP5922278B1 (en) * 2015-03-31 2016-05-24 株式会社ビルドランド Metal spraying method
WO2016158836A1 (en) * 2015-03-31 2016-10-06 株式会社ビルドランド Metal spraying method
JP2017095892A (en) * 2015-11-19 2017-06-01 株式会社ナカボーテック Antifouling device for seawater utilization structure, antifouling device for seawater pump, and seawater pollution prevention method
CN115522204A (en) * 2022-09-26 2022-12-27 中国科学院金属研究所 Anode polarization method for inhibiting microbial corrosion of ocean engineering equipment

Similar Documents

Publication Publication Date Title
Flitt et al. Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions
CN103233260B (en) One prepares the anti-fouling ceramic membrane electrolyte of titanium alloy surface and differential arc oxidation method
Wake et al. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium
AU613824B2 (en) Metal mesh and production thereof
CN106367777A (en) Oxide anode material suitable for low salinity seawater environment and preparation process thereof
WO1993002254A1 (en) Method and device for preventing adhesion of aquatic organisms
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
JPH0146595B2 (en)
JP3040613B2 (en) Corrosion protection method for reinforced concrete structures
JP4059457B2 (en) Antifouling and anticorrosion equipment for heat exchangers and seawater conduits
JP2007309052A (en) Device for preventing fouling of structure and method of preventing fouling
CN106222692A (en) Anti-fouler based on platform piling bar ring type electrolysis anti-soil electrode and its implementation
EP4223704A1 (en) Apparatus for cleaning seawater with improved electrochemical cell
JP2018070764A (en) Exterior coating material for electrolytically protecting reinforced concrete, and anode film
JP3090187B2 (en) Room temperature zinc sprayed coating for antifouling and antifouling management method of the sprayed coating
JP4323292B2 (en) Cementitious composition
JP2008126184A (en) Electrode for preventing adhesion of organism
JP3925619B2 (en) Electrochemical antifouling method and apparatus
US6001225A (en) Catalytically coated anodes
CN110461705B (en) Method and apparatus for inhibiting biological adhesion
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
JP2006247466A (en) Method for preventing adhesion and/or controlling removal of aquatic insect
RU2057203C1 (en) Corrosion-resistant antifouling material manufacture method
Hamilton Archaeological Metal Artifact Reduction/Cleaning by Electrolysis
JP2002143859A (en) Anti-fouling method and device for underwater structure