JP2007309052A - Device for preventing fouling of structure and method of preventing fouling - Google Patents

Device for preventing fouling of structure and method of preventing fouling Download PDF

Info

Publication number
JP2007309052A
JP2007309052A JP2006141705A JP2006141705A JP2007309052A JP 2007309052 A JP2007309052 A JP 2007309052A JP 2006141705 A JP2006141705 A JP 2006141705A JP 2006141705 A JP2006141705 A JP 2006141705A JP 2007309052 A JP2007309052 A JP 2007309052A
Authority
JP
Japan
Prior art keywords
antifouling
seawater
forming member
anode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006141705A
Other languages
Japanese (ja)
Inventor
Shuichi Inagaki
修一 稲垣
Shoji Nakajima
昌二 中島
Tomokazu Matahashi
朝和 真玉橋
Nobuo Yamaya
信雄 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006141705A priority Critical patent/JP2007309052A/en
Publication of JP2007309052A publication Critical patent/JP2007309052A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for preventing fouling and a method of preventing fouling which prevent interference between a current used for preventing fouling and a cathodic protection current prevent the change of the surface state of an electric catalyst covered with an anode-forming member caused by the adhesion and deposit of minute quantities of iron ions, manganese ions or the like contained in the seawater, and can securely and easily prevent the adhesion of aquatic creatures in the sea. <P>SOLUTION: The device for preventing fouling is constituted of the anode-forming member, the electric catalyst, a conductive body, and a direct-current power supply. The anode-forming member is integrally provided on the surface of a component of the structure which is brought into contact with the seawater, through the medium of an insulator. The electric catalyst is constituted of a material which is coated on the surface of the anode-forming member, and is electrochemically active and stable. Then the conductive body is provided so that it is brought into contact with the seawater, and the direct-current power supply is provided with a positive electrode, a negative electrode, an automatic potential control part, and a switching circuit part. The anode-forming member and the positive electrode are electrically connected to each other, and potential between the conductive body and the negative electrode is controlled by the automatic potential control part. Then the energized time and the energization-stopping time of the direct-current power supply is arbitrarily set by the switching circuit part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、構造物の防汚装置に係り、特に、海水と接する構造物における海水側の表面への海生生物の付着を防止する防汚装置に関する。   The present invention relates to an antifouling device for a structure, and more particularly to an antifouling device for preventing marine organisms from adhering to the surface of seawater in a structure in contact with seawater.

海水を冷却水として取水する発電所においては、海水と接する構造物としての熱交換器における伝熱管の入口や出口の管板に、イ貝、フジツボ、ヒドロ虫等の動物類や海藻類等(これらの生物を総称して海生生物と称する)が付着することがある。これらの海生生物は、伝熱管の管端部を塞いで洗浄用スポンジの通過障害になったり、伝熱管内面を閉塞したりする。このため、発電所においては、これら海生生物の除去作業のために、しばしば操業の停止を余儀なくされている。一般にこれらの海生生物は、銅合金製の管板や伝熱管よりも、耐海水性のチタン製の管板や伝熱管に付着しやすい。   In power plants that take seawater as cooling water, animals such as mussels, barnacles, hydro-insects, seaweeds, etc. are attached to the heat transfer tube inlet and outlet tube plates of heat exchangers that are in contact with seawater ( These organisms are collectively called marine organisms). These marine organisms block the tube end of the heat transfer tube to obstruct the passage of the cleaning sponge, or block the inner surface of the heat transfer tube. For this reason, power plants are often forced to stop operations for the removal of these marine organisms. In general, these marine organisms are more likely to adhere to seawater-resistant titanium tube sheets and heat transfer tubes than to copper alloy tube sheets and heat transfer tubes.

また、熱交換器の水室は、鋼製の基材で形成され、その表面に防食用にゴム製や樹脂製のライニングが施工されているが、このライニング上にストレーナの網を通り抜けた海生生物の幼生が着生して成育および脱落を繰返す。これにより、冷却用伝熱管の内面が閉塞する原因になる。   In addition, the water chamber of the heat exchanger is made of a steel base, and its surface is provided with a rubber or resin lining for anticorrosion. The sea that has passed through the strainer net on this lining. The living organism's larvae settle and repeat growth and shedding. This causes the inner surface of the cooling heat transfer tube to be blocked.

これら海生生物の駆除や付着防止(以下、防汚と称する)の対策として、従来、塩素や塩素化合物の環境海水中への投入、毒性イオンを生成する顔料を含有する防汚塗料の塗布、および海水電解等の手段により塩素や銅等の、毒性イオンの生成等が行われている。   In order to combat these marine organisms and prevent adhesion (hereinafter referred to as antifouling), conventionally, chlorine and chlorine compounds have been introduced into environmental seawater, and antifouling paints containing pigments that produce toxic ions are applied. In addition, toxic ions such as chlorine and copper are generated by means such as seawater electrolysis.

しかしながら、これら従来の方法は、有効な防汚機能を発揮するものの、大量の海水環境にあっては、量や濃度の管理が容易でない。また、確実な防汚効果を期待するために過大な塩素濃度とする傾向があり、その結果、環境汚染の原因となる可能性も高い。そのため、近年、このような防染対策は、禁止あるいは抑制の方向にある。   However, although these conventional methods exhibit an effective antifouling function, the amount and concentration cannot be easily managed in a large amount of seawater environment. Moreover, in order to expect a reliable antifouling effect, it tends to be an excessive chlorine concentration, and as a result, there is a high possibility of causing environmental pollution. Therefore, in recent years, such antifouling measures are in the direction of prohibition or suppression.

こうした事情を背景として、最近多くの研究者や技術者によって無公害で無毒性の防汚対策の開発が進められている。例えば、シリコーン系防汚塗料は、無公害および無毒性であって顕著な防汚効果がある。   Against this background, a number of researchers and engineers have recently developed pollution-free and non-toxic antifouling measures. For example, silicone-based antifouling paints are non-polluting and non-toxic and have a significant antifouling effect.

しかしながら、シリコーン系防汚塗料は、貝殻等の異物の接触により防汚効果の持続期間が短いことや、施工コストが高いこと、また大面積の対象物や既存の施設への簡単で容易な施工手段がないこと、さらに海水の流れを止めると防汚効果が減少する等の欠点を有するため、広く実用化されるにはいたっていない。   However, silicone-based antifouling paints have a short antifouling effect due to contact with foreign matters such as shells, have high construction costs, and are easy and easy to apply to large-area objects and existing facilities. It has not been put into widespread practical use because it has disadvantages such as lack of means and further, when the flow of seawater is stopped, the antifouling effect is reduced.

一方、別の防汚方法もある。すなわち、水や海水と接するチタン製熱交換器等の表面に、主として白金族金属の混晶あるいはこれらの金属の酸化物との混合物からなる電気的触媒の皮膜を形成し、これを陽極として電解させることにより、塩素ガスを実質的に発生させずに十分な酸素を発生させることによって、水中の生物および海中微量成分によるスケールの沈積を抑制するという防汚方法である(例えば、特許文献1参照)。   On the other hand, there is another antifouling method. That is, a film of an electrocatalyst mainly composed of a mixed crystal of platinum group metals or a mixture of oxides of these metals is formed on the surface of a titanium heat exchanger or the like in contact with water or seawater. Is an antifouling method that suppresses the deposition of scale due to underwater organisms and trace components in the sea by generating sufficient oxygen without substantially generating chlorine gas (see, for example, Patent Document 1). ).

これに対して特許文献2は、熱交換器のチタン製の管板の表面等に、電気抵抗加熱等の熱を加えることなく電気的触媒を設け、かつ、この電気的触媒3とチタン管板等の熱交換器構造部材とを電気的に絶縁することにより、金属部材に設けられたライニング等が何らかの理由で破損した場合でも、陰極防食法を採用することにより、破損部における金属部材の腐食を防止することができる(例えば、特許文献2参照)。
特公平01−46595号公報 特開2000−119884号公報
On the other hand, in Patent Document 2, an electric catalyst is provided on the surface of a titanium tube plate of a heat exchanger without applying heat such as electric resistance heating, and the electric catalyst 3 and the titanium tube plate. Even if the lining etc. provided on the metal member is damaged for some reason by electrically insulating the heat exchanger structural member such as, corrosion of the metal member at the damaged part by adopting the cathodic protection method Can be prevented (see, for example, Patent Document 2).
Japanese Patent Publication No. 01-46595 JP 2000-119884 A

チタン製熱交換器の場合、通常、チタン製部材が使用されている箇所は、伝熱管や管板に限定されており、本体胴,水室,熱交換器へ海水を導く導水管,海水を海へ戻す放水管等の部材は鋼製である。この鋼製の水室、導水管、放水管などは電気的にチタン製部材と導通しているので、海水と接触するとガルバニ腐食を起こし、鋼が激しく腐食される。したがって、海水と接触する鋼材表面には、腐食防止のためにゴム製や樹脂製等のライニングが施工されている。   In the case of titanium heat exchangers, the locations where titanium members are usually used are limited to heat transfer tubes and tube plates. The members such as the water discharge pipe that returns to the sea are made of steel. Since the steel water chamber, the water conduit, and the water discharge pipe are electrically connected to the titanium member, galvanic corrosion is caused when the steel water contact is made, and the steel is severely corroded. Therefore, a rubber or resin lining is applied to the surface of the steel material in contact with seawater to prevent corrosion.

しかしながら、特許文献1に記載の方法は、水や海水と接するチタン製構造部材の表面に電気的触媒を形成して陽極として作用させるため、チタン製構造部材と導通している熱交換器の金属部材も陽極的に負荷されることになる。従って、このライニング等が何らかの理由で破損した場合、この破損部から流出電流が生じるため、チタン材以外の構成金属部材が腐食してしまうことがある。   However, in the method described in Patent Document 1, an electric catalyst is formed on the surface of a titanium structural member in contact with water or seawater to act as an anode, so that the metal of the heat exchanger that is electrically connected to the titanium structural member. The member will also be loaded anodically. Accordingly, when the lining or the like is damaged for some reason, an outflow current is generated from the damaged portion, and the constituent metal members other than the titanium material may be corroded.

万一、ライニング等が破損した場合には、鋼製部材を電気的に鋼材の防食電位まで下げる手法、すなわち陰極防食法を採用して、鋼製部材と導通しているチタン製部材を陰極的に負荷する方法がある。   In the unlikely event that the lining is damaged, a method of lowering the steel member to the anticorrosion potential of the steel material, that is, the cathodic protection method is adopted, and the titanium member that is electrically connected to the steel member is cathodic. There is a way to load.

しかし、特許文献1に記載の技術は、チタン製部材を陽極としているので、それに導通している鋼製の水室、導水管、放水管も陽極的に負荷されており、原理上陰極防食法が採用できず、破損部から流出電流が生じて鋼製部材が腐食を起こしてしまう。   However, since the technique described in Patent Document 1 uses a titanium member as an anode, a steel water chamber, a water conduit, and a water discharge pipe that are connected to the titanium member are also anodically loaded. Cannot be adopted, and an outflow current is generated from the damaged portion, causing corrosion of the steel member.

さらに、特許文献1に記載の方法は、電気的触媒の触媒活性のために、350〜450℃で数時間の電気抵抗加熱処理等を実施する。そのため、その際の発生熱や熱応力等による構造物の損傷が懸念され、かつ処理コストが膨大になる。従って、この方法も広く実用化されるにはいたっていない。   Furthermore, the method described in Patent Document 1 performs an electrical resistance heat treatment for several hours at 350 to 450 ° C. for the catalytic activity of the electrocatalyst. Therefore, there is a concern about damage to the structure due to the generated heat or thermal stress at that time, and the processing cost becomes enormous. Therefore, this method has not been widely put into practical use.

一方、特許文献2に記載の技術は、海水に接する構造物の海水側の表面において酸素を発生させて、構造物の海水側の表面における海生生物の着生を抑制する防汚装置に関するもので、海水に接する構造物の海水側の表面に絶縁性接着剤を介して設けられた陽極形成部材と、陽極形成部材に被覆された電気化学的に活性で安定な電気的触媒と、海水に接触するように設置された導電体と、自動電位制御部を内蔵する直流電源とを備える。この直流電源の正極が陽極形成部材または電気的触媒に接続され、負極が導電体に接続され、正極と負極との間の電位が海水中で塩素の発生を抑制しつつ酸素を発生させる値に設定される。   On the other hand, the technology described in Patent Document 2 relates to an antifouling apparatus that generates oxygen on the seawater-side surface of a structure in contact with seawater and suppresses the formation of marine organisms on the seawater-side surface of the structure. An anode forming member provided on the sea water side surface of the structure in contact with seawater via an insulating adhesive, an electrochemically active and stable electrocatalyst coated on the anode forming member, and seawater It is provided with a conductor installed so as to be in contact with and a DC power source incorporating an automatic potential control unit. The positive electrode of this DC power source is connected to an anode forming member or an electrocatalyst, the negative electrode is connected to a conductor, and the potential between the positive electrode and the negative electrode is such that oxygen is generated while suppressing the generation of chlorine in seawater. Is set.

この特許文献2に記載の発明によれば、予め電気的触媒を被覆した陽極形成部材を、絶縁性接着剤を用いて常温で容易に構造物の海水側の表面に接着できるため、熱応力等による構造物の損傷の懸念がない。しかも、絶縁性接着剤が介在するため、例えばチタン管板等の構造物との電気的絶縁が達成され、チタン管板等と導通する金属部材を保護するライニング等が何らかの理由で破損した場合でも、ライニング破損部における金属部材の腐食を防止することができる。   According to the invention described in Patent Document 2, since the anode forming member previously coated with the electrocatalyst can be easily adhered to the seawater side surface of the structure at room temperature using an insulating adhesive, thermal stress, etc. There is no concern about damage to the structure. Moreover, since an insulating adhesive is present, for example, electrical insulation with a structure such as a titanium tube sheet is achieved, and even if a lining that protects a metal member that is electrically connected to the titanium tube sheet is damaged for some reason. Further, corrosion of the metal member at the damaged lining can be prevented.

このような特性を有する特許文献2の防汚装置は、チタン製熱交換器のように耐食性の優れたチタン製伝熱管を使用し、伝熱管そのものに対して陰極防食法が必要ない場合には、非常に有効な方法である。   The antifouling device of Patent Document 2 having such characteristics uses a titanium heat transfer tube having excellent corrosion resistance, such as a titanium heat exchanger, and the cathodic protection method is not required for the heat transfer tube itself. This is a very effective method.

しかしながら、アルミニウム黄銅管などのようにそれ自体の耐食性が劣っており、伝熱管そのものに陰極防食法を適用しなければならない熱交換器の場合には、防汚効果が減少する懸念がある。すなわち、アルミニウム黄銅管に流れ込む陰極防食電流と防汚装置の負極に接続された導電体に流れ込む防汚用電流とが互いに対向して干渉し合うため、防汚装置の電流の制御すなわち電位の制御が難しくなるためである。   However, the corrosion resistance of itself, such as an aluminum brass tube, is inferior, and there is a concern that the antifouling effect may be reduced in the case of a heat exchanger that must apply the cathodic protection method to the heat transfer tube itself. That is, since the cathodic protection current flowing into the aluminum brass tube and the antifouling current flowing into the conductor connected to the negative electrode of the antifouling device interfere with each other, the current control of the antifouling device, that is, the potential control Because it becomes difficult.

具体的な数値例に基づいて説明すると、防汚装置において熱交換器管板面に貼り付けた陽極形成部材の電位を例えば1.0Vに維持して酸素を発生させるために必要な防汚用電流密度を0.5A/mとすると、1000MW級発電プラントの熱交換器管板の面積は、約18mであり、防汚に必要な電流は、約9Aである。 Explaining based on specific numerical examples, in the antifouling device, for the antifouling necessary for maintaining the potential of the anode forming member attached to the surface of the heat exchanger tube plate at, for example, 1.0 V to generate oxygen If the current density is 0.5 A / m 2 , the area of the heat exchanger tube sheet of the 1000 MW class power plant is about 18 m 2 , and the current required for antifouling is about 9 A.

そして、防汚装置の陰極は一般的に水室内部に設けることが行なわれており、その場合には、電流は管板面から陰極側へ、言い換えれば管板面から水室内への方向へ流れることになる。   The cathode of the antifouling device is generally provided inside the water chamber, and in that case, the current flows from the tube plate surface to the cathode side, in other words, from the tube plate surface to the water chamber. Will flow.

一方、アルミニウム黄銅管を陰極防食法を適用した場合には、この黄銅管を陰極にするとともに、水室内部の適当な場所に陽極を設けることになる。そして、この場合、防食に必要な電流値は約6〜7倍の約60A程度とされており、この電流が陽極から陰極であるアルミニウム黄銅管の方向に、言い換えれば水室側から管板面側の方向に流れることになる。   On the other hand, when the cathodic protection method is applied to an aluminum brass tube, the brass tube is used as a cathode and an anode is provided at an appropriate location inside the water chamber. In this case, the current value required for anticorrosion is about 6 to 7 times, about 60 A, and this current flows from the anode to the cathode aluminum brass tube, in other words, from the water chamber side to the tube plate surface. Will flow in the direction of the side.

すなわち、防汚装置による電流の流れと、陰極防食法による電流の流れとは全く逆の方向に流れることになり、一方の電流値が60A程度、もう一方の電流値が9A程度というものであり、この両者の電流が、水室内海水中で対向して流れ干渉し合うと、電流値の大きい陰極防食電流の制御は容易であるが、それと対向して管板面から流れ出る、約1/20と相対的に小さい防汚用電流の制御は難しく、その結果防汚効果の維持に支障を来たすことがあった。   That is, the current flow by the antifouling device and the current flow by the cathodic protection method flow in opposite directions, with one current value being about 60A and the other current value being about 9A. When the currents of both flow in the sea water in the water in opposition to each other and interfere with each other, it is easy to control the cathodic protection current having a large current value. However, it is difficult to control the relatively small antifouling current, and as a result, the maintenance of the antifouling effect may be hindered.

また、耐食性に優れるためそれ自体へ陰極防食法を適用する必要がないチタン製伝熱管を用いた場合でも、伝熱管に電気的に接続された水室や配管に陰極防食法を適用しなければならない場合もあり、このような場合にも、上記と同様の防汚用電流と陰極防食電流との干渉に起因する問題が発生することになる。   In addition, even when using a titanium heat transfer tube that does not need to apply the cathodic protection method to itself because of its excellent corrosion resistance, the cathodic protection method must be applied to water chambers and pipes that are electrically connected to the heat transfer tube. In such a case, a problem due to interference between the antifouling current and the cathodic protection current similar to the above may occur.

さらに、海水中に微量含まれている鉄イオンやマンガンイオン等が陽極形成部材に被覆された電気的触媒の表面に付着および堆積すると、触媒の表面状態が変わり、電気的触媒自体の持つ電位−電流の相対的な関係が崩れ、自動定電位制御のみによって所定の防汚用電流を得ることができず、防汚効果の維持に支障を来たす懸念がある。   Furthermore, when iron ions or manganese ions contained in trace amounts in seawater adhere to and deposit on the surface of the electrocatalyst coated on the anode forming member, the surface state of the catalyst changes, and the potential of the electrocatalyst itself − There is a concern that the relative relationship between currents breaks down, and a predetermined antifouling current cannot be obtained only by automatic constant potential control, which may hinder the maintenance of the antifouling effect.

本発明は、上述した問題点を解決するためになされたものであり、防汚用電流と陰極防食電流との干渉を防止し、さらに陽極形成部材に被覆された電気的触媒の表面状態が海水中に微量含まれている鉄イオンやマンガンイオン等の付着および堆積で変化することを防止し、確実かつ容易に海生生物の付着を防止する防汚装置および防汚方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and prevents interference between the antifouling current and the cathodic anticorrosive current, and the surface state of the electrocatalyst coated on the anode forming member is seawater. An object of the present invention is to provide an antifouling device and an antifouling method for preventing the adhesion of marine organisms reliably and easily by preventing changes in adhesion and deposition of iron ions and manganese ions contained in trace amounts And

本発明の防汚装置は、上述した課題を解決するために、構造物の海水と接触する構成部材の表面に、絶縁体を介して一体的に設けられた陽極形成部材と、前記陽極形成部材の表面に被覆された電気化学的に活性かつ安定な材料により構成された電気的触媒と、海水に接触するように設置された導電体と、正極と負極と自動電位制御部とスイッチ回路部とを備えた直流電源とから構成され、前記陽極形成部材と前記正極とを電気的に接続し、前記導電体と前記負極とを電気的に接続し、前記自動電位制御部にて前記正極と前記負極との間の電位を制御するとともに、前記スイッチ回路部にて前記直流電源の通電時間および通電停止時間を任意に設定することを特徴とするものである。   In order to solve the above-described problems, an antifouling device of the present invention is provided with an anode forming member provided integrally with an insulator on the surface of a structural member that contacts seawater of the structure, and the anode forming member An electrocatalyst composed of an electrochemically active and stable material coated on the surface of the substrate, a conductor placed in contact with seawater, a positive electrode, a negative electrode, an automatic potential controller, and a switch circuit unit. The anode forming member and the positive electrode are electrically connected, the conductor and the negative electrode are electrically connected, and the automatic potential control unit includes the positive electrode and the positive electrode. The potential between the negative electrode and the negative electrode is controlled, and the energization time and energization stop time of the DC power supply are arbitrarily set in the switch circuit unit.

また、本発明の防汚方法は、上述した課題を解決するために、電気化学的に活性かつ安定な材料により構成された電気的触媒を陽極形成部材の表面に被覆し、この陽極形成部材を、構造物の海水と接触する構成部材の表面に絶縁体を介して設ける一方、導電体を海水に接触するように設置し、正極と負極と自動電位制御部とスイッチ回路部とを備えた直流電源の前記正極を前記陽極形成部材または前記電気的触媒に接続するとともに、前記負極を前記導電体に接続し、前記自動電位制御部によって前記正極と前記負極との間の電位差を海水中で塩素の発生を抑制しつつ酸素を発生させる電位に調整するとともに、前記スイッチ回路部により前記直流電源による前記正極と前記負極との間の通電時間および通電停止時間を任意に設定することを特徴とする方法である。   Further, in order to solve the above-described problem, the antifouling method of the present invention coats the surface of an anode forming member with an electrocatalyst composed of an electrochemically active and stable material, and the anode forming member The DC is provided on the surface of the structural member that contacts the seawater of the structure through an insulator, while the conductor is installed so as to contact the seawater, and includes a positive electrode, a negative electrode, an automatic potential control unit, and a switch circuit unit. The positive electrode of the power source is connected to the anode forming member or the electric catalyst, the negative electrode is connected to the conductor, and the potential difference between the positive electrode and the negative electrode is chlorinated in seawater by the automatic potential controller. Adjusting the potential to generate oxygen while suppressing the occurrence of oxygen, and arbitrarily setting the energization time and energization stop time between the positive electrode and the negative electrode by the DC power source by the switch circuit unit. It is a method for the butterflies.

本発明の防汚装置および防汚方法によれば、防汚用電流と陰極防食電流との干渉を防止し、陽極形成部材に被覆された電気的触媒の表面状態が海水中に微量含まれている鉄イオンやマンガンイオン等の付着および堆積で変化するのを防止するため、無公害で確実かつ容易に海生生物の付着を効果的に防止できる経済的な防汚装置および防汚方法を提供することが可能である。   According to the antifouling apparatus and the antifouling method of the present invention, interference between the antifouling current and the cathodic anticorrosive current is prevented, and the surface state of the electrocatalyst coated on the anode forming member is contained in a small amount in seawater. We provide an economical antifouling device and antifouling method that can effectively prevent marine organisms from adhering to pollution-free, reliably and easily in order to prevent changes in adhesion and deposition of iron ions and manganese ions. Is possible.

本発明の防汚装置の好ましい実施例について、それぞれ図面を参照して以下に詳細に説明する。なお、各実施例に共通する要素については、実施例1と同一の符号を付して、実施例2以降での詳しい説明を省略する。   Preferred embodiments of the antifouling device of the present invention will be described below in detail with reference to the drawings. In addition, about the element common to each Example, the code | symbol same as Example 1 is attached | subjected, and detailed description after Example 2 is abbreviate | omitted.

図1に、本発明の実施例1の防汚装置10の構成図を示す。この図1に示すように、海水15に接する構造物の防汚装置10は、防汚対象構造物である海水15に接するチタン製熱交換器1の海水15側の表面において、酸素を発生させて、熱交換器1の海水15側の表面における海生生物の着生を抑制する防汚装置である。   In FIG. 1, the block diagram of the antifouling apparatus 10 of Example 1 of this invention is shown. As shown in FIG. 1, the antifouling device 10 for a structure in contact with the seawater 15 generates oxygen on the surface of the titanium heat exchanger 1 in contact with the seawater 15 that is the antifouling target structure on the seawater 15 side. The antifouling device suppresses the formation of marine organisms on the surface of the heat exchanger 1 on the seawater 15 side.

熱交換器1は、チタン製管板1aと、このチタン製管板1aに支持された複数のチタン製伝熱管1bとを有する。図1に示すように、海水を取り入れる水室9が設けられ、海水15側と接する内面には、ゴム製のライニング11が形成される。   The heat exchanger 1 has a titanium tube sheet 1a and a plurality of titanium heat transfer tubes 1b supported by the titanium tube sheet 1a. As shown in FIG. 1, a water chamber 9 for taking in seawater is provided, and a rubber lining 11 is formed on the inner surface in contact with the seawater 15 side.

この熱交換器1に対して、電気的触媒3とチタンシート4と絶縁シート5とを備えた防汚装置10が設けられる。この防汚装置10は、以下のような構成である。すなわち、管板1aの海水15側の表面の略全面に、絶縁性接着剤6を介して、絶縁性と耐海水性とを有するシート材料である絶縁シート5が取付けられており、さらに絶縁シート5の上面には、絶縁性接着剤6を介して、厚さが0.1〜0.3mmのパネル状の陽極形成部材であるチタンシート4が略全面に設けられる。絶縁シート5およびチタンシート4は、図1に示すように、複数のチタン製の伝熱管1bの管径に対応する複数の開孔を有する。   An antifouling device 10 including an electrical catalyst 3, a titanium sheet 4, and an insulating sheet 5 is provided for the heat exchanger 1. The antifouling device 10 has the following configuration. That is, the insulating sheet 5 which is a sheet material having insulating properties and seawater resistance is attached to substantially the entire surface of the tube sheet 1a on the seawater 15 side via the insulating adhesive 6, and further, the insulating sheet On the upper surface of 5, a titanium sheet 4, which is a panel-like anode forming member having a thickness of 0.1 to 0.3 mm, is provided on substantially the entire surface with an insulating adhesive 6. As shown in FIG. 1, the insulating sheet 5 and the titanium sheet 4 have a plurality of openings corresponding to the tube diameters of the plurality of titanium heat transfer tubes 1 b.

チタンシート4の図1における上面側には、電気的触媒3が設けられる。この電気的触媒3は、予め触媒被覆処理によってチタンシート4の表面に被覆されるもので、電気抵抗加熱等により350〜450℃で数時間の加熱処理を行うことにより熱活性化処理され、電気化学的に活性で安定な触媒として設けられる。電気的触媒3の材料としては、具体的には、白金系金属または白金系金属酸化物、あるいは、コバルトまたはマンガンの酸化物からなる単一体、混晶体または複合体が好ましい。   An electric catalyst 3 is provided on the upper surface side of the titanium sheet 4 in FIG. This electric catalyst 3 is coated on the surface of the titanium sheet 4 in advance by a catalyst coating treatment, and is heat-activated by performing heat treatment at 350 to 450 ° C. for several hours by electric resistance heating or the like. Provided as a chemically active and stable catalyst. Specifically, the material of the electrocatalyst 3 is preferably a single body, a mixed crystal body, or a composite body made of a platinum-based metal, a platinum-based metal oxide, or an oxide of cobalt or manganese.

一方、水室9の海水15側の表面に一体的に設けられたライニング11から、海水15側に向かって導電体8が突出して設けられる。同様に、照合電極12も海水15側に突出して設けられる。   On the other hand, the conductor 8 protrudes from the lining 11 provided integrally on the surface of the water chamber 9 on the seawater 15 side toward the seawater 15 side. Similarly, the collation electrode 12 is provided so as to protrude toward the seawater 15 side.

この防汚装置10は、外部に設けられた直流電源7と接続されており、直流電源7の正極7aがチタンシート4に電気的に接続され、一方、負極が導電体8に接続される。さらに照合極7rが照合電極12に接続される。この直流電源7は、自動電位制御部7cを内蔵しており、正極7aと負極7bとの間に形成される通電回路の電位が、海水15中において塩素の発生を抑制しつつ酸素を発生させる電位に設定されている。この電位は、具体的には、海水電解で塩素が発生する電位であるSCE基準電位1.20Vより低く、かつ標準海水における酸素発生電位0.52Vより高い値として設定される。   This antifouling device 10 is connected to a DC power supply 7 provided outside, and a positive electrode 7 a of the DC power supply 7 is electrically connected to the titanium sheet 4, while a negative electrode is connected to the conductor 8. Further, the verification electrode 7r is connected to the verification electrode 12. The DC power source 7 includes an automatic potential control unit 7c, and the potential of the energizing circuit formed between the positive electrode 7a and the negative electrode 7b generates oxygen while suppressing generation of chlorine in the seawater 15. Set to potential. Specifically, this potential is set to a value lower than the SCE reference potential 1.20 V, which is a potential at which chlorine is generated by seawater electrolysis, and higher than the oxygen generation potential 0.52 V in standard seawater.

さらに直流電源7には、スイッチ回路部7dが内蔵されており、正極7aと負極7bとの間の通電時間および通電停止時間を任意に設定できる。   Further, the DC power supply 7 has a built-in switch circuit portion 7d, and the energization time and energization stop time between the positive electrode 7a and the negative electrode 7b can be arbitrarily set.

なお、防汚装置10の照合電極12とは、チタンシート4の電位をモニターするためのものであり、この照合電極12による検出電圧は、自動電位制御部7cの制御用データとして用いられる。   The reference electrode 12 of the antifouling device 10 is for monitoring the potential of the titanium sheet 4, and the detected voltage by the reference electrode 12 is used as control data for the automatic potential control unit 7 c.

次に、本実施例の防汚装置10の作用について説明する。   Next, the operation of the antifouling device 10 of this embodiment will be described.

陽極として機能するチタンシート4(陽極形成部材)の電位、すなわち電気的触媒3の電位が、直流電源7によって0.52Vから1.20Vの範囲に保持される。この電位に保持することにより、電気的触媒3の表面から、塩素の発生が抑制されつつ酸素が発生する。この酸素によって、海生生物の付着を効果的に防止することができる。   The potential of the titanium sheet 4 (anode forming member) functioning as the anode, that is, the potential of the electric catalyst 3 is maintained in the range of 0.52 V to 1.20 V by the DC power source 7. By maintaining this potential, oxygen is generated from the surface of the electric catalyst 3 while suppressing generation of chlorine. This oxygen can effectively prevent the attachment of marine organisms.

しかしこのとき、海水中に微量含まれている鉄イオンやマンガンイオン等が、陽極形成部材(チタンシート)4に被覆された電気的触媒3の表面に付着および堆積すると電気的触媒3の表面状態が変わり、電気的触媒3自体の持つ電位と電流との相対的な関係が崩れる。詳しくは、上記鉄イオンおよびマンガンイオンが発生させた酸素により酸化されて陽極表面に付着する。この酸化物の付着により、同じ陽極と陰極の電位差であっても陽極表面での電流密度が次第に低下して、酸素の発生量が低下することになる。この結果、自動電位制御部7cによる自動定電位制御のみによって所定の防汚用電流を得ることができず、防汚装置の効果の維持に支障をきたす。   However, at this time, if iron ions or manganese ions contained in a trace amount in seawater adhere to and deposit on the surface of the electrocatalyst 3 covered with the anode forming member (titanium sheet) 4, the surface state of the electrocatalyst 3 Changes, and the relative relationship between the electric potential and current of the electric catalyst 3 itself is broken. Specifically, it is oxidized by the oxygen generated by the iron ions and manganese ions and adheres to the anode surface. Due to the adhesion of the oxide, even if the potential difference between the anode and the cathode is the same, the current density on the anode surface gradually decreases and the amount of oxygen generated decreases. As a result, the predetermined antifouling current cannot be obtained only by the automatic constant potential control by the automatic potential control unit 7c, which hinders the maintenance of the effect of the antifouling device.

そこでこうした場合には、スイッチ回路部7dにより正極7aと負極7bとの間の通電停止時間を設定し、陽極形成部材であるチタンシート4に被覆された電気的触媒の表面状態が海水中に微量含まれている鉄イオンやマンガンイオン等の付着および堆積によって変化することを防止する。   Therefore, in such a case, the switch circuit unit 7d sets the energization stop time between the positive electrode 7a and the negative electrode 7b, and the surface state of the electrocatalyst covered with the titanium sheet 4 serving as the anode forming member is very small in seawater. Prevents changes due to adhesion and deposition of contained iron ions and manganese ions.

図2は、通常時の電流密度が0.5A/mで運転されている場合の電流密度と通電率の関係を模式的に示した一例である。通電初期においては、通電時の0.5A/mであるが、時間の経過とともに上記したように電極に鉄イオンやマンガンイオンが付着し、電流密度が低下してくる。そこで、予め決められた通電時間の後、通電を停止する時間を設け、その後再通電することにより、電極上に付着した上記各イオンは、周囲の海水により洗い流され、再び最初の0.5A/mを回復するのである。 FIG. 2 is an example schematically showing the relationship between the current density and the current ratio when the current density is operated at a normal current density of 0.5 A / m 2 . In the initial stage of energization, the current is 0.5 A / m 2 at the time of energization, but as described above, iron ions and manganese ions adhere to the electrode and the current density decreases. Therefore, after a predetermined energization time, a time for stopping the energization is provided, and then the energization is performed again, whereby each of the ions adhering to the electrode is washed away by the surrounding seawater, and again the first 0.5 A / m 2 is restored.

このとき、スイッチ回路部7dによる通電停止時間の設定を60分間以内にする一方、通電時間を運用時間(すなわち通電停止時間+通電時間で表される1サイクルの時間)で除した通電率を25%以上に調整することが好ましい。   At this time, while setting the energization stop time by the switch circuit unit 7d within 60 minutes, the energization rate obtained by dividing the energization time by the operation time (that is, the time of one cycle represented by the energization stop time + the energization time) is 25. It is preferable to adjust to% or more.

このように、通電率を25%以上に調整することが好ましい理由を表1を用いて説明する。表1は、図1で説明した構成の防汚装置10を実験用に一部簡略化した上で実際に海水中にある期間浸漬した結果を示したものである。

Figure 2007309052
The reason why it is preferable to adjust the energization rate to 25% or more will be described with reference to Table 1. Table 1 shows the result of immersing the antifouling device 10 having the configuration described in FIG. 1 for a period of time in the sea water after being partially simplified for the experiment.
Figure 2007309052

表1に示すように、通常停止時間を60分と30分とに分け、それぞれについて通電率をパラメータとして50%、33.3%、25%、14.3%と振って実験を行なった。その結果、通電時間に拘らず、通電率が25%以上の場合に限って海生生物の付着は見られず、25%未満では付着があった。なお、防汚装置10を設けず単に金属片を海水中に浸漬した比較例1の場合には、その金属片表面に全体に亘って海生生物の付着が見られた。   As shown in Table 1, the normal stop time was divided into 60 minutes and 30 minutes, and the experiment was carried out by varying the energization rate as a parameter to 50%, 33.3%, 25%, and 14.3%. As a result, marine organisms were not attached only when the energization rate was 25% or more regardless of the energization time, and when less than 25%, adhesion occurred. In the case of Comparative Example 1 in which a metal piece was simply immersed in seawater without providing the antifouling device 10, marine organisms were observed to adhere to the entire surface of the metal piece.

このような機能により、防汚装置10は、通電停止時間を設けることによって、海水中に微量含まれるイオンの影響による防汚効果の低下を防止する。   With such a function, the antifouling device 10 prevents a decrease in the antifouling effect due to the influence of ions contained in a trace amount in seawater by providing an energization stop time.

次に、本実施例の防汚装置10を製作する工程について説明する。   Next, a process for manufacturing the antifouling device 10 of this embodiment will be described.

予め電気的触媒3を被覆したパネル状のチタンシート4を、絶縁性接着剤6、絶縁シート5およびもう一つの絶縁性接着剤6を介して、熱交換器1の海水15側の表面に接着する。この製作工程は、常温で容易に施工することが可能であるため、熱応力等による熱交換器1の損傷の懸念がなく、かつ、絶縁性接着剤6および絶縁シート5が介在するため、チタン管板1a等とパネル状のチタンシート4との電気的絶縁が達成され、チタン管板1aと電気的に導通する金属部材の腐食を防止することができる。   A panel-shaped titanium sheet 4 previously coated with the electrocatalyst 3 is bonded to the surface of the heat exchanger 1 on the seawater 15 side through an insulating adhesive 6, an insulating sheet 5, and another insulating adhesive 6. To do. Since this manufacturing process can be easily performed at room temperature, there is no fear of damage to the heat exchanger 1 due to thermal stress or the like, and since the insulating adhesive 6 and the insulating sheet 5 are interposed, titanium is used. Electrical insulation between the tube sheet 1a and the like and the panel-like titanium sheet 4 is achieved, and corrosion of the metal member that is electrically connected to the titanium tube sheet 1a can be prevented.

また、本実施例の防汚装置10は、電気的触媒3の構成材料が、白金系金属または白金系金属酸化物、あるいはコバルトやマンガンの酸化物からなる単一体、混晶体または複合体であるため、電極としての活性化が図られると共に、電気的触媒3の海水15への溶出量が最小に抑えられる。この構成により、防汚装置10は、長時間安定した酸素発生を実現できる。   Further, in the antifouling apparatus 10 of this embodiment, the constituent material of the electrocatalyst 3 is a single body, a mixed crystal body or a composite body made of platinum-based metal, platinum-based metal oxide, or cobalt or manganese oxide. Therefore, activation as an electrode is achieved and the amount of elution of the electrocatalyst 3 into the seawater 15 is minimized. With this configuration, the antifouling device 10 can realize stable oxygen generation for a long time.

なお、本発明者らの実施によれば、上記したように特にスイッチ回路部7dにより通電停止時間を60分間、通電時間20分間、通電率25%に調整することにより、陽極形成部材に被覆された電気的触媒の表面状態が海水中に微量含まれている鉄イオンやマンガンイオン等の付着および堆積により変化するのを防止できるため、より一層防汚効果が顕著になる。   According to the implementation of the present inventors, the anode forming member is covered by adjusting the energization stop time to 60 minutes, the energization time of 20 minutes, and the energization rate of 25% by the switch circuit portion 7d as described above. In addition, since the surface state of the electrocatalyst can be prevented from changing due to adhesion and deposition of iron ions, manganese ions, and the like contained in trace amounts in seawater, the antifouling effect becomes even more remarkable.

また、絶縁シート5は、耐海水性に優れ、劣化しない塩化ビニールまたは繊維強化プラスチックのシート材料により構成された絶縁性材料である。これらの材料は、加工性にも優れているため、伝熱管1bの管径に対応する複数の開孔を容易に加工できる。特に、チタンシート4と絶縁シート5とを予め絶縁性接着剤6で接合した後の開孔加工が容易である。   The insulating sheet 5 is an insulating material made of a sheet material of vinyl chloride or fiber reinforced plastic that has excellent seawater resistance and does not deteriorate. Since these materials are also excellent in workability, it is possible to easily process a plurality of holes corresponding to the tube diameter of the heat transfer tube 1b. In particular, the opening process after the titanium sheet 4 and the insulating sheet 5 are previously joined with the insulating adhesive 6 is easy.

また、本実施例の防汚装置10において使用される、絶縁性接着剤6としては、変性シリコーンポリマーおよびエポキシ樹脂を主成分とした高機能弾力性接着剤が好ましい。こうした材料を用いた絶縁性接着剤6は、温度0〜500℃でも安定した接着強度を有するので、安定で耐久性のある接着強度を得ることができるとともに、その材料自体が高い弾力性を有するので、異物等の衝突に対する耐性も高くすることができるため、安全性も向上する。   Moreover, as the insulating adhesive 6 used in the antifouling apparatus 10 of the present embodiment, a high-functional elastic adhesive mainly composed of a modified silicone polymer and an epoxy resin is preferable. Since the insulating adhesive 6 using such a material has a stable adhesive strength even at a temperature of 0 to 500 ° C., it can obtain a stable and durable adhesive strength, and the material itself has a high elasticity. As a result, the resistance against collisions of foreign matter and the like can be increased, and safety is also improved.

なお、陽極電位は、陽極表面の電流密度の関数であり、電流密度が大きくなるほど電位が高くなり、それに比例して酸素の発生量も大きくなる。すなわち、陽極の電位を1.20Vにより近く維持すれば、塩素を生成することなく、また海生生物を死滅させることもなく、無公害で環境に優しい効果的な防汚装置が実現できる。   The anode potential is a function of the current density on the anode surface. The higher the current density, the higher the potential, and the proportion of oxygen generated increases in proportion to this. That is, if the potential of the anode is kept closer to 1.20 V, an effective pollution control device that is pollution-free and environmentally friendly can be realized without generating chlorine and without killing marine organisms.

ただし、陽極の電流密度が高過ぎると、電気的触媒3の海中への溶出量が増加するので電気的触媒3の劣化が速まり、また防汚用電流値が必要以上に高くなるため、防汚装置10の運転コストが高くなるため得策でない。   However, if the current density of the anode is too high, the amount of the electrocatalyst 3 eluted into the sea increases, so the deterioration of the electrocatalyst 3 is accelerated and the antifouling current value becomes higher than necessary. Since the operating cost of the soiling apparatus 10 becomes high, it is not a good idea.

そこで、スイッチ回路部7dにより通電停止時間を60分間、通電時間を20分間、通電率25%を調整する。このような運転条件により、電気的触媒3の溶出量を最小限に留め、かつ、防汚装置を経済的に運転できる。   Thus, the switch circuit unit 7d adjusts the energization stop time to 60 minutes, the energization time to 20 minutes, and the energization rate to 25%. Under such operating conditions, the elution amount of the electrocatalyst 3 can be minimized and the antifouling apparatus can be operated economically.

図3に、本発明の実施例2の防汚装置20の構成を示す。   In FIG. 3, the structure of the antifouling | stain-proof apparatus 20 of Example 2 of this invention is shown.

この図3に示すように、本実施例の防汚装置20は、図1に示す第1の実施例の防汚装置10とほぼ同様の構成を有するが、絶縁シート5を設けずに、熱交換器1の海水15側の表面に絶縁性接着剤6のみを介してチタンシート4が取付ける構成としたものである。   As shown in FIG. 3, the antifouling device 20 of the present embodiment has substantially the same configuration as the antifouling device 10 of the first embodiment shown in FIG. In this configuration, the titanium sheet 4 is attached to the surface of the exchanger 1 on the seawater 15 side only through the insulating adhesive 6.

この実施例の防汚装置20のように、絶縁性接着剤6による絶縁作用が十分な材料であれば、絶縁シート5を設けなくとも、チタン管板1a等とパネル状のチタンシート4との電気的絶縁が達成されるため、チタン管板1a等に電気的に導通する金属部材の腐食を防止することができる。   If the insulating action by the insulating adhesive 6 is sufficient as in the antifouling device 20 of this embodiment, the titanium tube plate 1a and the like and the panel-like titanium sheet 4 can be provided without providing the insulating sheet 5. Since electrical insulation is achieved, corrosion of the metal member that is electrically connected to the titanium tube sheet 1a and the like can be prevented.

この防汚装置20は、実施例1の防汚装置10に比べて、より構成を簡素化したものであるので、同様の防汚性能を有する一方、施工コストが低く抑制されるというメリットを有する。   Since this antifouling device 20 has a more simplified configuration than the antifouling device 10 of Example 1, it has the same antifouling performance while having the merit that the construction cost is suppressed low. .

図4に、本発明の実施例3の防汚装置30の構成を示す説明図である。この図4に示すように、本実施例の防汚装置30が施工される熱交換器31は、複数のアルミニウム黄銅製の伝熱管31bと、これら複数の伝熱管31bを支えるネーバル黄銅製の管板31aとを有している。   In FIG. 4, it is explanatory drawing which shows the structure of the antifouling apparatus 30 of Example 3 of this invention. As shown in FIG. 4, a heat exchanger 31 in which the antifouling device 30 of this embodiment is constructed includes a plurality of aluminum brass heat transfer tubes 31b and naval brass tubes that support the plurality of heat transfer tubes 31b. And a plate 31a.

アルミニウム黄銅製の伝熱管31bは、実施例1の防汚装置20を施工した熱交換器1のチタン製の管板1aおよび伝熱管1bに比して海水に対する耐食性が劣るため、陰極防食法による防食が施されている。この陰極防食法としては、外部電源方式や犠牲陽極方式を適用することができる。   The heat transfer tube 31b made of aluminum brass is inferior in corrosion resistance to seawater compared to the titanium tube plate 1a and the heat transfer tube 1b of the heat exchanger 1 in which the antifouling device 20 of Example 1 is installed. Corrosion protection is provided. As this cathodic protection method, an external power source method or a sacrificial anode method can be applied.

図4に示す本実施例の防汚装置30においては、陰極防食電流を居給するための手段として、外部直流電源装置35と陰極防食用電極36とを備える。この図4の防汚装置30は、外部電源方式を用いた例を示しており、伝熱管31bと陰極防食用電極36とが陰極防食用の外部直流電源装置35を介して接続され、陰極防食用電極36から伝熱管31bに陰極防食用電流が供給されるように構成される。なお、犠牲陽極方式により伝熱管31bに陰極防食用電流が供給されるようにしてもよい。   The antifouling device 30 of the present embodiment shown in FIG. 4 includes an external DC power supply device 35 and a cathodic protection electrode 36 as means for supplying a cathodic protection current. The antifouling device 30 shown in FIG. 4 shows an example using an external power supply system, in which a heat transfer tube 31b and a cathodic protection electrode 36 are connected via an external direct current power supply 35 for cathodic protection to prevent cathodic protection. A cathodic protection current is supplied from the edible electrode 36 to the heat transfer tube 31b. Note that a cathodic protection current may be supplied to the heat transfer tube 31b by a sacrificial anode method.

この実施例3の防汚装置30によれば、伝熱管31bを直流電源7の負極7bに接続して、伝熱管31bの内周面を海水電解のための陰極として用いているため、防汚用電流と陰極防食電流とが同じ方向に流れる。従って、防汚用電流と陰極防食電流との干渉を少なくすることができるので、防汚用電流の制御、すなわち電位の制御をより確実に容易に行うことができる。   According to the antifouling device 30 of the third embodiment, the heat transfer tube 31b is connected to the negative electrode 7b of the DC power source 7, and the inner peripheral surface of the heat transfer tube 31b is used as a cathode for seawater electrolysis. Current and cathodic protection current flow in the same direction. Therefore, since the interference between the antifouling current and the cathodic anticorrosion current can be reduced, the control of the antifouling current, that is, the potential can be more reliably and easily performed.

また、本実施例の防汚装置30において、図4のように照合電極12を陽極形成部材であるチタンシート4の近傍に突き出して設けたので、チタンシート4の電位を精度良くモニターすることができ、電位の制御をより確実にすることが可能である。   Further, in the antifouling apparatus 30 of the present embodiment, as shown in FIG. 4, the reference electrode 12 is provided so as to protrude in the vicinity of the titanium sheet 4 that is an anode forming member, so that the potential of the titanium sheet 4 can be monitored with high accuracy. It is possible to more reliably control the potential.

図5に、実施例4の防汚装置40を示す。この防汚装置40は、実施例3の防汚装置30と同様に管板31aおよび伝熱管31bがそれぞれネーバル黄銅およびアルミニウム黄銅にて形成される。絶縁シート5を設けずに絶縁性接着剤6の絶縁作用を利用してチタンシートを設けた構成としたものである。   In FIG. 5, the antifouling apparatus 40 of Example 4 is shown. In the antifouling device 40, similarly to the antifouling device 30 of the third embodiment, the tube plate 31a and the heat transfer tube 31b are formed of naval brass and aluminum brass, respectively. In this configuration, the insulating sheet 5 is not provided and the titanium sheet is provided using the insulating action of the insulating adhesive 6.

すなわち、管板31a上に絶縁シート5なしで、十分な絶縁性を有する絶縁性接着剤6のみを介してチタンシート4を設ける構成とする。この防汚装置40は、絶縁性接着剤6の十分な絶縁性により、図3に示す防汚装置30とほぼ同様の防汚効果を得つつ、より簡素な構成の防汚装置40を得ることができるため、施工コストを抑制することができる。   That is, the titanium sheet 4 is provided on the tube plate 31a without the insulating sheet 5 and only through the insulating adhesive 6 having sufficient insulation. The antifouling device 40 obtains the antifouling device 40 having a simpler structure while obtaining substantially the same antifouling effect as the antifouling device 30 shown in FIG. 3 due to sufficient insulation of the insulating adhesive 6. Therefore, the construction cost can be suppressed.

図6に、実施例5の防汚装置50の構成を示す。この防汚装置50は、照合電極12を設ける位置についての他の構成例を示したものである。   In FIG. 6, the structure of the antifouling apparatus 50 of Example 5 is shown. This antifouling device 50 shows another configuration example of the position where the verification electrode 12 is provided.

すなわち、照合電極12を伝熱管31bの内部に設け、伝熱管31bの管端から海水15側に突出させるように設置する構成としたものである。この防汚装置50のような構成とした場合、照合電極12を、チタンシート4すなわち陽極形成部材に対してより近接して配置することができるため、電位のモニタリングおよび制御をさらに正確に行うことが可能である。   That is, the verification electrode 12 is provided inside the heat transfer tube 31b and is installed so as to protrude from the tube end of the heat transfer tube 31b to the seawater 15 side. In the case of such a configuration as the antifouling device 50, the reference electrode 12 can be disposed closer to the titanium sheet 4, that is, the anode forming member, so that the potential monitoring and control can be performed more accurately. Is possible.

図7に、実施例6の防汚装置60の構成を示す。この防汚装置60は、管板31aの表面だけでなく、海水15の流入側および放出側の水室9の壁体に設けたライニング11の表面も防汚対象部位として、電気的触媒3を被覆したチタンシート4を設けたものである。   In FIG. 7, the structure of the antifouling apparatus 60 of Example 6 is shown. The antifouling device 60 uses not only the surface of the tube plate 31a but also the surface of the lining 11 provided on the wall of the water chamber 9 on the inflow side and the discharge side of the seawater 15 as an antifouling target site. A coated titanium sheet 4 is provided.

このような構成として、電気的触媒3の表面から、塩素の発生を抑制しつつ酸素を発生させるように設けてもよい。なお、上記のような構成の防汚装置60の場合、ライニング11とチタンシート4とを接着する接着剤16は、絶縁性を有するものでなくてもよい。この防汚装置60は、管板31aの表面だけでなく、ライニング11の表面においても効果的な防汚効果が期待できる。   As such a configuration, oxygen may be generated from the surface of the electrocatalyst 3 while suppressing generation of chlorine. In the case of the antifouling device 60 having the above-described configuration, the adhesive 16 that bonds the lining 11 and the titanium sheet 4 may not have insulating properties. The antifouling device 60 can be expected to have an effective antifouling effect not only on the surface of the tube plate 31 a but also on the surface of the lining 11.

なお、図4ないし図7に示す各実施例の防汚装置においては、管板31aの材料としてネーバル黄銅を用い、伝熱管31bの材料としてアルミニウム黄銅を用いた例を示したが、材料の組み合わせについては、上記材料に限定されない。例えば、管板31aの材料としてアルミニウム青銅を用い、また伝熱管31bの材料としてアルミニウム黄銅を用いてもよい。この他に、管板31aの材料としてネーバル黄銅を用い、伝熱管31bの材料としてスーパーステンレス鋼を用いたり、管板31aの材料としてアルミニウム青銅、伝熱管31bの材料としてスーパーステンレス鋼を用いたり、管板31aの材料および伝熱管31bを共にスーパーステンレス鋼とする等の構成としてもよい。   In addition, in the antifouling apparatus of each Example shown in FIG. 4 thru | or 7, although the example which used the naval brass as a material of the tube sheet 31a and used the aluminum brass as the material of the heat exchanger tube 31b was shown, it is a combination of materials. Is not limited to the above materials. For example, aluminum bronze may be used as the material of the tube plate 31a, and aluminum brass may be used as the material of the heat transfer tube 31b. In addition to this, Naval brass is used as the material of the tube plate 31a, Super stainless steel is used as the material of the heat transfer tube 31b, Aluminum bronze is used as the material of the tube plate 31a, Super stainless steel is used as the material of the heat transfer tube 31b, The material of the tube plate 31a and the heat transfer tube 31b may be super stainless steel.

さらに、図1の熱交換器1のように管板1aおよび伝熱管1bのように、材料を共にチタンとした熱交換器に対しては、チタン自体耐食性に優れているため、管板および伝熱管に陰極防食法を適用する必要はないが、管板および伝熱管に接続された熱交換器の他の構成部材、例えば水室や配管に陰極防食法を適用することがある。この場合にも防汚用電流と陰極防食電流とが互いに干渉することがあるため、陰極防食法を適用することによりこれら構成部材の防食をより確実なものとすることが可能である。   Further, for a heat exchanger in which the material is titanium, such as the tube plate 1a and the heat transfer tube 1b, as in the heat exchanger 1 of FIG. 1, the titanium itself is excellent in corrosion resistance. Although it is not necessary to apply the cathodic protection method to the heat tube, the cathodic protection method may be applied to other components of the heat exchanger connected to the tube plate and the heat transfer tube, for example, a water chamber or piping. Also in this case, since the antifouling current and the cathodic protection current may interfere with each other, it is possible to further ensure the anticorrosion of these components by applying the cathodic protection method.

図8に、実施例7の防汚装置70の構成を示す。この防汚装置70は、図8に示すように、海水15の流入側および放出側の水室9に設けたライニング11を防汚対象の構造物として、その海水15側の表面において酸素を発生させて、水室9表面の海生生物の着生を抑制する防汚装置である。   In FIG. 8, the structure of the antifouling apparatus 70 of Example 7 is shown. As shown in FIG. 8, this antifouling device 70 generates oxygen on the surface of the seawater 15 side using the lining 11 provided in the water chamber 9 on the inflow side and the discharge side of the seawater 15 as a structure to be antifouled. The antifouling device suppresses the formation of marine organisms on the surface of the water chamber 9.

本実施例の防汚装置70は、ライニング11の海水15側の表面に、接着剤16を介して厚さが0.1〜0.3mmのチタンシート4(陽極形成部材)が取付けられている。この防汚装置70の場合、接着剤16は、絶縁性を有する必要がない。なお、防汚装置70のおけるその他の構成については、図1に示す第1の実施例の防汚装置20と同様の構成である。   In the antifouling apparatus 70 of the present embodiment, a titanium sheet 4 (anode forming member) having a thickness of 0.1 to 0.3 mm is attached to the surface of the lining 11 on the seawater 15 side via an adhesive 16. . In the case of the antifouling device 70, the adhesive 16 does not need to have insulating properties. In addition, about the other structure in the antifouling apparatus 70, it is the same structure as the antifouling apparatus 20 of 1st Example shown in FIG.

本実施例の防汚装置70によれば、絶縁体であるライニング11に設けられた電気的触媒3の表面から、塩素の発生が抑制されつつ酸素が発生する。従って、絶縁体であるライニング11の海水15側の表面においても、海生生物の付着を防止することができるという効果を有する。この防汚装置70は、陰極防食法を適用しない場合において、水室9に対する防汚効果を得る構成を示している。   According to the antifouling apparatus 70 of the present embodiment, oxygen is generated from the surface of the electric catalyst 3 provided on the lining 11 that is an insulator while the generation of chlorine is suppressed. Therefore, even on the surface of the lining 11 that is an insulator on the seawater 15 side, it is possible to prevent adhesion of marine organisms. This antifouling device 70 shows a configuration for obtaining an antifouling effect on the water chamber 9 when the cathodic protection method is not applied.

図9に、実施例8の防汚装置80の構成を示す。図9に示すように、防汚装置80は、防汚対象の構造物である冷却用海水取入れコンクリート製取水路81における海水15側の表面において、酸素を発生させて海生生物の着生を抑制するものである。   FIG. 9 shows the configuration of the antifouling device 80 of the eighth embodiment. As shown in FIG. 9, the antifouling apparatus 80 generates oxygen on the surface of the seawater 15 side in the cooling seawater intake concrete intake channel 81 that is a structure to be antifouled, thereby causing marine organisms to settle. It is to suppress.

防汚装置80の構成は、導電体8が冷却用海水取入れコンクリート製取水路81の鉄筋82(一部が海水15と接触している)として形成されて、その他の装置構成は、図8に示した防汚装置70と同様の構成である。   The antifouling device 80 has a structure in which the conductor 8 is formed as a reinforcing bar 82 (part of which is in contact with the seawater 15) of a cooling water intake concrete intake channel 81, and the other device configuration is shown in FIG. The configuration is the same as the antifouling device 70 shown.

本実施例の防汚装置80によれば、絶縁体である冷却用海水取入れコンクリート製取水路81の海水15側の表面に設けられた電気的触媒3の表面から、塩素の発生が抑制されつつ酸素が発生する。したがって、冷却用海水取入れコンクリート製取水路81の海水15側の表面における海生生物の付着を防止することができる。   According to the antifouling apparatus 80 of the present embodiment, generation of chlorine is being suppressed from the surface of the electrical catalyst 3 provided on the surface of the seawater 15 side of the cooling water intake concrete intake 81 that is an insulator. Oxygen is generated. Accordingly, it is possible to prevent marine organisms from adhering to the surface of the seawater 15 side of the cooling water intake concrete intake 81.

なお、上述した第1の実施例から第8の実施例において、チタンシート4は、ライニング11、冷却用海水取入れコンクリート製取水路81の他、樹脂製部材などの種々の絶縁体部分にも設けることができる。   In the first to eighth embodiments described above, the titanium sheet 4 is provided not only on the lining 11 and the cooling water intake concrete intake channel 81 but also on various insulator parts such as resin members. be able to.

また、上述した第1の実施例から第8の実施例において、防汚対象物として熱交換器を構成する部材を適用対象とした例を示したが、本発明の適用範囲は、上記対象に限定されず、防汚用電流と陰極防食電流との干渉が問題となるような、あらゆる種類の海水と接して使用される構造物に適用することが可能であり、海水との接触による部材の防汚について優れた効果を得ることができる。   Moreover, in the first to eighth embodiments described above, an example in which a member constituting a heat exchanger is applied as an antifouling object has been shown. However, the scope of the present invention is the above object. It is not limited and can be applied to structures used in contact with all kinds of seawater where interference between the antifouling current and the cathodic protection current becomes a problem. An excellent effect of antifouling can be obtained.

本発明に係る実施例1の防汚装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the antifouling apparatus of Example 1 which concerns on this invention. 本発明に係る陽極の電流密度の時間的変化を表した図。The figure showing the time change of the current density of the anode which concerns on this invention. 本発明に係る実施例2の防汚装置の構成図。The block diagram of the antifouling apparatus of Example 2 which concerns on this invention. 本発明に係る実施例3の防汚装置の構成図。The block diagram of the pollution protection apparatus of Example 3 which concerns on this invention. 本発明に係る実施例4の防汚装置の構成図。The block diagram of the antifouling apparatus of Example 4 which concerns on this invention. 本発明に係る実施例5の防汚装置の構成図。The block diagram of the pollution protection apparatus of Example 5 which concerns on this invention. 本発明に係る実施例6の防汚装置の構成図。The block diagram of the pollution protection apparatus of Example 6 which concerns on this invention. 本発明に係る実施例7の防汚装置の構成図。The block diagram of the pollution protection apparatus of Example 7 which concerns on this invention. 本発明に係る実施例8の防汚装置の構成図。The block diagram of the pollution protection apparatus of Example 8 which concerns on this invention.

符号の説明Explanation of symbols

1 熱交換器
1a 管板(防汚対象部位)
1b 伝熱管
3 電気的触媒
4 チタンシート
5 絶縁シート
6 絶縁性接着剤
7 外部直流電源
7a 正極
7b 負極
7c 自動電位制御部
7d スイッチ回路部
7r 照合極
8 導電体
9 水室
10 防汚装置
11 ライニング
12 照合電極
15 海水
16 接着剤
20 防汚装置
30 防汚装置
31a 管板
32b 伝熱管
35 陰極防食用の外部直流電源装置
36 陰極防食用電極
40 防汚装置
50 防汚装置
60 防汚装置
70 防汚装置
80 防汚装置
81 冷却用海水取入れコンクリート製取水路
82 鉄筋
1 Heat exchanger 1a Tube sheet (antifouling target part)
1b Heat transfer tube 3 Electrocatalyst 4 Titanium sheet 5 Insulating sheet 6 Insulating adhesive 7 External DC power source 7a Positive electrode 7b Negative electrode 7c Automatic potential control unit 7d Switch circuit unit 7r Reference electrode 8 Conductor 9 Water chamber 10 Antifouling device 11 Lining 12 collation electrode 15 seawater 16 adhesive 20 antifouling device 30 antifouling device 31a tube plate 32b heat transfer tube 35 external direct current power supply device 36 for cathodic protection anticorrosive electrode 40 antifouling device 50 antifouling device 60 antifouling device 70 antifouling Antifouling device 80 Antifouling device 81 Cooling seawater intake concrete intake 82 Reinforcing bar

Claims (11)

構造物の海水と接触する構成部材の表面に、絶縁体を介して一体的に設けられた陽極形成部材と、前記陽極形成部材の表面に被覆された電気化学的に活性かつ安定な材料により構成された電気的触媒と、海水に接触するように設置された導電体と、正極と負極と自動電位制御部とスイッチ回路部とを備えた直流電源とから構成され、前記陽極形成部材と前記正極とを電気的に接続し、前記導電体と前記負極とを電気的に接続し、前記自動電位制御部にて前記正極と前記負極との間の電位を制御するとともに、前記スイッチ回路部にて前記直流電源の通電時間および通電停止時間を任意に設定することを特徴とする防汚装置。 Constructed by an anode forming member provided integrally with an insulator on the surface of a structural member that contacts seawater of the structure, and an electrochemically active and stable material coated on the surface of the anode forming member And a positive electrode, a negative electrode, an automatic potential control unit, and a DC circuit including a switch circuit unit, and the anode forming member and the positive electrode. And electrically connecting the conductor and the negative electrode, controlling the potential between the positive electrode and the negative electrode by the automatic potential control unit, and at the switch circuit unit An antifouling device, wherein an energization time and an energization stop time of the DC power supply are arbitrarily set. 前記絶縁体が、耐海水性を備えたシート材料により構成されたことを特徴とする請求項1記載の防染装置。 The dyeing-proof device according to claim 1, wherein the insulator is made of a sheet material having seawater resistance. 前記絶縁体が、前記構造物に前記陽極形成部材を固定するための絶縁性接着剤により形成されていることを特徴とする請求項1記載の防染装置。 The dyeing-proof apparatus according to claim 1, wherein the insulator is formed of an insulating adhesive for fixing the anode forming member to the structure. 前記構造物の海水と接触する構成部材の表面に、ゴム系あるいは樹脂系のライニングが施工されたことを特徴とする請求項1記載の防汚装置。 2. The antifouling apparatus according to claim 1, wherein a rubber-based or resin-based lining is applied to a surface of a structural member that contacts seawater of the structure. 前記構造物がコンクリート製構造物であって、前記導電体が前記コンクリート製構造物の補強用鉄筋であることを特徴とする請求項1記載の防汚装置。 2. The antifouling apparatus according to claim 1, wherein the structure is a concrete structure, and the conductor is a reinforcing bar for the concrete structure. 前記構造物の構成部材のうち海水と接触する金属材料製の構成部材に陰極防食電流を供給する手段を設けたことを特徴とする請求項1記載の防汚装置。 2. The antifouling apparatus according to claim 1, further comprising means for supplying a cathodic protection current to a component made of a metal material that contacts seawater among the components of the structure. 前記構造物が金属製の複数の伝熱管とこれら複数の伝熱管を支持する金属材料製の管板とを備えた熱交換器であり、前記伝熱管または前記伝熱管に対して電気的に接続された海水と接触する構成部材に陰極防食電流を供給する手段を設け、前記伝熱管の内表面を酸素を発生させるための電極として用いることにより防汚することを特徴とする請求項1記載の防汚装置。 The structure is a heat exchanger provided with a plurality of metal heat transfer tubes and a tube plate made of a metal material that supports the plurality of heat transfer tubes, and is electrically connected to the heat transfer tubes or the heat transfer tubes A means for supplying a cathodic protection current to a component that contacts the seawater formed is provided, and the inner surface of the heat transfer tube is used as an electrode for generating oxygen to prevent contamination. Antifouling device. 前記構造物の海水と接触する構成部材が前記熱交換器の管板であることを特徴とする請求項7記載の防汚装置。 The antifouling apparatus according to claim 7, wherein the structural member that contacts seawater of the structure is a tube plate of the heat exchanger. 前記構造物の海水と接触する構成部材が熱交換器の水室を構成する壁体であり、前記壁体の内面にゴム若しくは樹脂のライニングが施工され、前記陽極形成部材が前記ライニング上に設けられたことを特徴とする請求項7記載の防汚装置。 The structural member in contact with seawater of the structure is a wall body constituting a water chamber of a heat exchanger, a rubber or resin lining is applied to the inner surface of the wall body, and the anode forming member is provided on the lining. 8. The antifouling device according to claim 7, wherein the antifouling device is provided. 電気化学的に活性かつ安定な材料により構成された電気的触媒を陽極形成部材の表面に被覆し、この陽極形成部材を、構造物の海水と接触する構成部材の表面に絶縁体を介して設ける一方、導電体を海水に接触するように設置し、正極と負極と自動電位制御部とスイッチ回路部とを備えた直流電源の前記正極を前記陽極形成部材または前記電気的触媒に接続するとともに、前記負極を前記導電体に接続し、前記自動電位制御部によって前記正極と前記負極との間の電位差を海水中で塩素の発生を抑制しつつ酸素を発生させる電位に調整するとともに、前記スイッチ回路部により前記直流電源による前記正極と前記負極との間の通電時間および通電停止時間を任意に設定することを特徴とする防汚方法。 An electrocatalyst composed of an electrochemically active and stable material is coated on the surface of the anode forming member, and this anode forming member is provided on the surface of the structural member in contact with seawater of the structure via an insulator. On the other hand, the conductor is installed so as to be in contact with seawater, and the positive electrode of the DC power source including the positive electrode, the negative electrode, the automatic potential control unit, and the switch circuit unit is connected to the anode forming member or the electric catalyst, The negative electrode is connected to the conductor, and the automatic potential control unit adjusts the potential difference between the positive electrode and the negative electrode to a potential for generating oxygen while suppressing generation of chlorine in seawater, and the switch circuit An antifouling method, wherein an energization time and an energization stop time between the positive electrode and the negative electrode by the DC power source are arbitrarily set by a unit. 前記スイッチ回路部により通電停止時間を60分間以内に設定するとともに、通電時間を運用時間で除した通電率を25%以上に設定することを特徴とする請求項10記載の防汚方法。 The antifouling method according to claim 10, wherein the energization stop time is set within 60 minutes by the switch circuit unit, and the energization rate obtained by dividing the energization time by the operation time is set to 25% or more.
JP2006141705A 2006-05-22 2006-05-22 Device for preventing fouling of structure and method of preventing fouling Pending JP2007309052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141705A JP2007309052A (en) 2006-05-22 2006-05-22 Device for preventing fouling of structure and method of preventing fouling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141705A JP2007309052A (en) 2006-05-22 2006-05-22 Device for preventing fouling of structure and method of preventing fouling

Publications (1)

Publication Number Publication Date
JP2007309052A true JP2007309052A (en) 2007-11-29

Family

ID=38842161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141705A Pending JP2007309052A (en) 2006-05-22 2006-05-22 Device for preventing fouling of structure and method of preventing fouling

Country Status (1)

Country Link
JP (1) JP2007309052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173734A (en) * 2013-03-08 2014-09-22 Itt Italia Srl Electric protection circuit for brake disc pad unit, kit and method therefor, for motor vehicle
JPWO2017047121A1 (en) * 2015-09-15 2018-02-08 株式会社東芝 Electrode and electrolyzer
CN115449802A (en) * 2022-09-26 2022-12-09 山东德瑞防腐材料有限公司 Novel low-carbon energy composite intelligent cathode protection system
WO2024014743A1 (en) * 2022-07-13 2024-01-18 장한호 Electrode installation apparatus of water fluid transfer means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275882A (en) * 1996-04-19 1997-10-28 Nohmi Bosai Ltd Adhesion-proofing system for organism spoiling underwater equipment or the like
JPH11123382A (en) * 1997-10-21 1999-05-11 Daiki Engineering Kk Antifouling device
JP2002302923A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Antifouling method and its device for seawater contact structural body
JP2004339782A (en) * 2003-05-15 2004-12-02 Toshiba Corp Anti-fouling device of structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275882A (en) * 1996-04-19 1997-10-28 Nohmi Bosai Ltd Adhesion-proofing system for organism spoiling underwater equipment or the like
JPH11123382A (en) * 1997-10-21 1999-05-11 Daiki Engineering Kk Antifouling device
JP2002302923A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Antifouling method and its device for seawater contact structural body
JP2004339782A (en) * 2003-05-15 2004-12-02 Toshiba Corp Anti-fouling device of structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173734A (en) * 2013-03-08 2014-09-22 Itt Italia Srl Electric protection circuit for brake disc pad unit, kit and method therefor, for motor vehicle
JPWO2017047121A1 (en) * 2015-09-15 2018-02-08 株式会社東芝 Electrode and electrolyzer
WO2024014743A1 (en) * 2022-07-13 2024-01-18 장한호 Electrode installation apparatus of water fluid transfer means
CN115449802A (en) * 2022-09-26 2022-12-09 山东德瑞防腐材料有限公司 Novel low-carbon energy composite intelligent cathode protection system

Similar Documents

Publication Publication Date Title
KR100389446B1 (en) Heat exchanger comprising soil resisting device
CN103233260B (en) One prepares the anti-fouling ceramic membrane electrolyte of titanium alloy surface and differential arc oxidation method
JP4028169B2 (en) Antifouling equipment for structures and heat exchangers in contact with seawater
WO1999043618A1 (en) Electrochemical antifouling device comprising underwater structure and method of producing underwater structure used for the device
JP2007309052A (en) Device for preventing fouling of structure and method of preventing fouling
JP3826012B2 (en) Sea life adhesion prevention device and operation method thereof
CN102409353B (en) Distributed titanium alloy pipeline electrolytic antifouling apparatus
JP2003013264A (en) Antifouling device for structure and heat exchanger contacting with seawater
JP2004339782A (en) Anti-fouling device of structure
JP2007177449A (en) Antifouling device of structure
JP4059457B2 (en) Antifouling and anticorrosion equipment for heat exchangers and seawater conduits
JPH11140677A (en) Method for preventing contamination and local corrosion of wire net made of copper or copper alloy and device therefor
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
JP2004183018A (en) Antifouling device
JP4789043B2 (en) Seawater electrolyzer
CN115874187A (en) Electrochemical method for solving fouling of titanium metal material and antifouling system
JP2001115427A (en) Anti-fouling device of structure in contact with sea water, and its performance degradation monitoring method
JP4229047B2 (en) Electronic antibacterial device
WO2004001102A1 (en) Process for in-situ electroforming a structural layer of metallic material to an outside wall of a metal tube
JP2003164881A (en) Electrochemical antifouling apparatus for water contact structure and performance degradation monitoring method
JP2010242161A (en) Galvanic anode body and galvanic anode method
JPH10306390A (en) Method for electrolytically preventing seawater contamination as well as electric corrosion and device therefor
JP4923375B2 (en) Electrochemical antifouling method
JP2005131611A (en) Electrochemical water control method and apparatus
JP2002302923A (en) Antifouling method and its device for seawater contact structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329