JP2009144199A - Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same - Google Patents

Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same Download PDF

Info

Publication number
JP2009144199A
JP2009144199A JP2007322686A JP2007322686A JP2009144199A JP 2009144199 A JP2009144199 A JP 2009144199A JP 2007322686 A JP2007322686 A JP 2007322686A JP 2007322686 A JP2007322686 A JP 2007322686A JP 2009144199 A JP2009144199 A JP 2009144199A
Authority
JP
Japan
Prior art keywords
stainless steel
titanium oxide
steel material
dispersed
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007322686A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅仁 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007322686A priority Critical patent/JP2009144199A/en
Publication of JP2009144199A publication Critical patent/JP2009144199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel on which a titanium oxide-containing film is formed having excellent durability and capable of sufficiently feeding electrons to the stainless steel, and which has excellent anticorrosion property, to provide a method for producing the stainless steel, and to provide a marine steel structure using the stainless steel. <P>SOLUTION: The stainless steel is excellent in anticorrosion property, and has an inorganic glassy film, formed on its surface, in which granular titanium oxide is dispersed. This stainless steel is produced by coating the surface with a metal alkoxide-containing solution in which the granular titanium oxide is dispersed, and then curing it. At that time, it is preferable that the granular titanium oxide with the average particle diameter of ≤30 nm is dispersed by ≥3 mass%, or an alcohol aqueous solution containing alkyl silicate, aluminum chelate, or methyl acid phosphate is used as the metal alkoxide-containing solution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、防食性に優れたステンレス鋼材、特に、光照射によるカソード防食を利用した防食性に優れたステンレス鋼材、その製造方法およびそれを用いた海洋鋼構造物に関する。   The present invention relates to a stainless steel material excellent in anticorrosion properties, in particular, a stainless steel material excellent in anticorrosion properties utilizing cathodic protection by light irradiation, a method for producing the same, and a marine steel structure using the same.

海洋鋼構造物の防食方法としては、電気防食法が最も信頼性の高い方法であるが、この方法は、常に海水中に浸漬されている鋼構造物に対してしか有効ではない。そのため、海水の飛沫や潮の満ち干によって海水が間歇的に接触する鋼構造物の防食方法としては、重防食塗装や有機ライニングが主流となっている。しかし、重防食塗装や有機ライニングでは、紫外線による材料の劣化や、被膜の欠陥部などを起点として鋼材から剥離することが知られており、その防食寿命は十分ではない。   As an anticorrosion method for marine steel structures, the anticorrosion method is the most reliable method, but this method is effective only for steel structures that are always immersed in seawater. Therefore, heavy-duty anti-corrosion coating and organic lining are the mainstream as anti-corrosion methods for steel structures where sea water is intermittently contacted by splashes of sea water and tides. However, it is known that heavy anticorrosion coating and organic lining peel off from steel materials starting from deterioration of materials due to ultraviolet rays, coating defects, and the like, and their anticorrosion life is not sufficient.

また、普通鋼に代えて防食性の高いステンレス鋼を使用する例もあるが、海水のような塩化物イオンを多量に含む環境では、孔食や隙間腐食が発生しやすい。そのため、非特許文献1には、電気防食により再不働態化電位より卑にする、例えば、SUS304鋼で-400〜-500mV・vs・SCEにする方法が提案されている。しかし、前述のとおり電気防食法は、常に海水中に浸漬されている鋼構造物に対してしか有効でなく、海水が間歇的に接触する鋼構造物には適用できない。   Further, although there is an example in which stainless steel having high corrosion resistance is used instead of ordinary steel, pitting corrosion and crevice corrosion are likely to occur in an environment containing a large amount of chloride ions such as seawater. Therefore, Non-Patent Document 1 proposes a method of lowering the repassivation potential by electro-corrosion, for example, −400 to −500 mV · vs · SCE with SUS304 steel. However, as described above, the cathodic protection method is only effective for steel structures that are always immersed in seawater, and cannot be applied to steel structures that contact seawater intermittently.

一方、最近、酸化チタンの光触媒作用を利用して鋼材のカソード防食を図る技術が提案されている。例えば、特許文献1には、PVD法、CVD法、酸化チタン粉末含有樹脂液の塗布乾燥法、またはゾルゲル法により表面に酸化チタン膜を形成させた耐光・耐食性ステンレス鋼材が開示されている。また、特許文献2には、アナタース型酸化チタンを含んだ樹脂塗膜(アクリル樹脂塗膜など)をステンレス鋼などの鋼材表面に被覆して、カソード防食を図る方法が開示されている。こうした酸化チタンの光触媒作用、すなわち光によるカソード防食を利用すれば、電気防食法が適用できない海水が間歇的に接触する鋼構造物の防食を効果的に図れることが期待されるが、それには、非特許文献2に記載されているように、n型半導体である酸化チタンに400nm以下の波長の光を照射して価電子帯から伝導帯に励起された電子をステンレス鋼に十分に供給できるとともに、十分な耐久性を有する酸化チタンを含む被膜を形成することが必要である。
「海洋鋼構造物の防食Q&A」(社)鋼材倶楽部(2001年10月発行、ISBN:4765516210) 篠原ほか;「光触媒による金属材料のカソード防食」防食管理(2005年10月発行) 特許第3150427号公報 特開平11-158665号公報
On the other hand, recently, a technique for cathodic protection of steel using the photocatalytic action of titanium oxide has been proposed. For example, Patent Document 1 discloses a light / corrosion resistant stainless steel material in which a titanium oxide film is formed on the surface by a PVD method, a CVD method, a coating and drying method of a titanium oxide powder-containing resin liquid, or a sol-gel method. Patent Document 2 discloses a method of cathodic protection by coating a resin coating (such as an acrylic resin coating) containing anatase-type titanium oxide on the surface of a steel material such as stainless steel. If such photocatalytic action of titanium oxide, that is, cathodic protection by light, is utilized, it is expected to effectively prevent corrosion of steel structures where seawater is intermittently in contact with which the cathodic protection method cannot be applied. As described in Non-Patent Document 2, the titanium oxide, which is an n-type semiconductor, is irradiated with light having a wavelength of 400 nm or less to sufficiently supply electrons excited from the valence band to the conduction band to stainless steel. It is necessary to form a film containing titanium oxide having sufficient durability.
"Anti-corrosion Q & A for offshore steel structures" Steel Club (issued in October 2001, ISBN: 4765516210) Shinohara et al .: “Cathode protection of metal materials by photocatalyst” Corrosion prevention management (issued in October 2005) Japanese Patent No. 3150427 Japanese Patent Laid-Open No. 11-158665

しかしながら、特許文献1に記載の表面に酸化チタン膜を形成させた耐光・耐食性ステンレス鋼材では、次のような問題がある。すなわち、PVD法、CVD法やゾルゲル法に形成された酸化チタン膜は剥離しやすく、耐久性に劣る。酸化チタン粉末含有樹脂液の塗布乾燥法により形成された酸化チタン膜は、酸化チタンの光触媒作用により発生した活性酸素(一重項酸素など)により樹脂被膜が酸化劣化し、耐久性に劣るばかりでなく、有機樹脂は絶縁性が高いのでステンレス鋼に電子を十分に供給できない。また、特許文献2に記載のアナタース型酸化チタンを含んだ樹脂塗膜をステンレス鋼材表面に形成して、カソード防食を図る方法でも、アナタース型酸化チタンを保持するバインダーとして有機樹脂であるアクリル樹脂が使用されているため絶縁性が高く、ステンレス鋼に電子を十分に供給できない、酸化劣化しやすく耐久性に劣る、などの問題がある。   However, the light / corrosion resistant stainless steel material having a titanium oxide film formed on the surface described in Patent Document 1 has the following problems. That is, the titanium oxide film formed by the PVD method, the CVD method, or the sol-gel method is easy to peel off and is inferior in durability. The titanium oxide film formed by the coating and drying method of the titanium oxide powder-containing resin liquid is not only inferior in durability because the resin film is oxidized and deteriorated due to active oxygen (singlet oxygen, etc.) generated by the photocatalytic action of titanium oxide. Since organic resin has high insulating properties, it cannot sufficiently supply electrons to stainless steel. Also, in the method of forming a resin coating film containing anatase-type titanium oxide described in Patent Document 2 on the surface of a stainless steel material to achieve cathodic protection, an acrylic resin that is an organic resin is used as a binder for holding anatase-type titanium oxide. Since it is used, there are problems such as high insulation properties, insufficient supply of electrons to stainless steel, and oxidative degradation that is poor in durability.

本発明は、耐久性に優れ、ステンレス鋼に電子を十分に供給できる酸化チタンを含む被膜の形成された防食性に優れたステンレス鋼材、その製造方法およびそれを用いた海洋鋼構造物を提供することを目的とする。   The present invention provides a stainless steel material excellent in durability and having excellent anticorrosion properties in which a coating containing titanium oxide that can sufficiently supply electrons to stainless steel is formed, a method for producing the same, and a marine steel structure using the same. For the purpose.

本発明者は、耐久性に優れ、ステンレス鋼に電子を十分に供給できる酸化チタンを含む被膜の形成された防食性に優れたステンレス鋼材について鋭意検討したところ、ナノサイズの酸化チタン粉末を、金属アルコキシドを主成分とする溶液中に分散させ、ステンレス鋼材に塗布・硬化させて酸化チタン粉末が均一に分散した無機系ガラス質の被膜を形成させることが有効であることを見出した。   The present inventor has intensively studied a stainless steel material excellent in durability and having an anticorrosion property in which a coating containing titanium oxide that can sufficiently supply electrons to stainless steel is formed. It has been found that it is effective to form an inorganic glassy film in which a titanium oxide powder is uniformly dispersed by dispersing in a solution containing alkoxide as a main component and applying and curing to a stainless steel material.

本発明は、このような知見に基づきなされたもので、表面に、粒子状酸化チタンの分散した無機系ガラス質の被膜が形成された防食性に優れたステンレス鋼材を提供する。   The present invention has been made on the basis of such knowledge, and provides a stainless steel material excellent in anticorrosion property in which an inorganic glassy film in which particulate titanium oxide is dispersed is formed on the surface.

粒子状酸化チタンの平均粒子径は、30nm以下であることが好ましい。   The average particle diameter of the particulate titanium oxide is preferably 30 nm or less.

無機系ガラス質の被膜には、Si、Zr、Al、Yから選ばれた少なくとも1種の元素が含有される被膜を挙げることができる。   Examples of the inorganic glassy coating include a coating containing at least one element selected from Si, Zr, Al, and Y.

本発明の防食性に優れたステンレス鋼材は、粒子状酸化チタンと金属アルコキシドを含有する溶液を表面に塗布後、硬化させる方法によって製造できる。   The stainless steel material excellent in corrosion resistance of the present invention can be produced by a method in which a solution containing particulate titanium oxide and a metal alkoxide is applied to the surface and then cured.

このとき、平均粒子径が30nm以下の粒子状酸化チタンを用いたり、金属アルコキシドを含有する溶液として、アルキルシリケート、アルミニウムキレート、メチルアシッドホスヘートを含有するアルコール水溶液を用いることが好ましい。   At this time, it is preferable to use particulate titanium oxide having an average particle size of 30 nm or less, or an aqueous alcohol solution containing an alkyl silicate, an aluminum chelate, or a methyl acid phosphate as a solution containing a metal alkoxide.

本発明は、また、こうした防食性に優れたステンレス鋼材を用いた海洋鋼構造物を提供する。   The present invention also provides a marine steel structure using such a stainless steel material excellent in corrosion resistance.

本発明により、耐久性に優れ、ステンレス鋼に電子を十分に供給できる酸化チタンを含む被膜の形成された防食性に優れたステンレス鋼材を製造できるようになった。本発明のステンレス鋼材は、光照射によるカソード防食機能を有しているため、海水の飛沫や潮の満ち干によって海水が間歇的に接触する海洋鋼構造物に好適である。   According to the present invention, it has become possible to produce a stainless steel material that is excellent in durability and excellent in anticorrosion properties in which a coating containing titanium oxide that can sufficiently supply electrons to stainless steel is formed. Since the stainless steel material of the present invention has a cathodic protection function by light irradiation, it is suitable for marine steel structures in which seawater is intermittently contacted by splashing seawater or tides.

1)素材としてのステンレス鋼材
粒子状酸化チタンの分散した無機系ガラス質の被膜を形成させるステンレス鋼材には、フェライト系やオーステナイト系の全てのステンレス鋼を適用できるが、その再不働態化電位がアナタース型の酸化チタンのフラットバンド電位(約-600mV・vs・SCE)より貴であることが必要である。また、ステンレス鋼材の前処理は、特に必要ではないが、被膜形成の直前にブラスト処理などをしてステンレス鋼材表面を活性化しておくと、被膜形成時にハジキなどが生ぜず、均一な被膜を形成しやくなる。なお、本発明の素材としてのステンレス鋼材には、普通鋼表面にステンレス鋼を被覆したステンレスクラッド鋼材など、表面のみにステンレス鋼が用いられている素材も適用可能である。
1) Stainless steel as a material All ferritic and austenitic stainless steels can be applied to the stainless steel that forms an inorganic vitreous film in which particulate titanium oxide is dispersed, but the repassivation potential is anatase. It is necessary to be nobler than the flat band potential (about −600 mV · vs · SCE) of the type titanium oxide. In addition, pre-treatment of stainless steel is not particularly necessary, but if the surface of the stainless steel is activated by blasting immediately before forming the coating, no repelling will occur during the formation of the coating and a uniform coating will be formed. It becomes easy. In addition, as the stainless steel material as the material of the present invention, a material in which stainless steel is used only on the surface, such as a stainless clad steel material in which stainless steel is coated on the surface of ordinary steel, is also applicable.

2)粒子状酸化チタンの分散した無機系ガラス質被膜
ステンレス鋼材の表面に形成する粒子状酸化チタンの分散した被膜には、半導体としての性質を有する無機系ガラス質の被膜を用いているため、有機樹脂の場合とは異なり、電子をステンレス鋼に効率的に供給できる。また、酸化による劣化を生じにくく、耐久性にも優れている。無機系ガラス質の被膜には、金属アルコキシドの構成成分であるSi、Zr、Al、Yから選ばれた少なくとも1種の元素が含有されることが好ましい。
2) Inorganic glassy coating in which particulate titanium oxide is dispersed Because the coating in which particulate titanium oxide is dispersed on the surface of the stainless steel material uses an inorganic glassy coating having properties as a semiconductor, Unlike organic resins, electrons can be efficiently supplied to stainless steel. Moreover, it is difficult to cause deterioration due to oxidation and is excellent in durability. The inorganic glassy coating preferably contains at least one element selected from Si, Zr, Al, and Y, which are constituent components of the metal alkoxide.

粒子状酸化チタンは純度が高く、その平均粒子径が30nm以下、好ましくは20nm以下であるものが好ましい。これは、粒子径が小さいほど比表面積が大きくなるため、添加する酸化チタンの量が少なくて済むからである。また、酸化チタンとしては、ルチル型、アナタース型いずれも適用できるが、アナタース型の方が光カソード防食の効果が大きいので好ましい。   Particulate titanium oxide has a high purity, and an average particle diameter thereof is preferably 30 nm or less, preferably 20 nm or less. This is because the smaller the particle diameter, the larger the specific surface area, so that the amount of titanium oxide to be added can be reduced. Further, as the titanium oxide, either a rutile type or an anatase type can be applied, but the anatase type is preferable because the effect of photocathodic protection is great.

3)製造方法
上記粒子状酸化チタンの分散した無機系ガラス質被膜は、粒子状酸化チタンを分散させた金属アルコキシドを含む溶液を、ステンレス鋼材あるいはブラスト処理などを施したステンレス鋼材の表面に塗布後、硬化させることにより形成できる。
3) Manufacturing method The inorganic glassy film in which the particulate titanium oxide is dispersed is obtained by applying a solution containing a metal alkoxide in which the particulate titanium oxide is dispersed on the surface of a stainless steel material or a stainless steel material subjected to blasting or the like. It can be formed by curing.

このとき、平均粒子径が30nm以下の酸化チタンを3質量%以上分散させることが好ましい。   At this time, it is preferable to disperse 3% by mass or more of titanium oxide having an average particle size of 30 nm or less.

また、金属アルコキシドを含む溶液としては、一液硬化型に調整された溶液、例えば、アルキルシリケート、触媒用のアルミニウムキレート、反応抑制剤であるメチルアシッドホスヘートを含有するアルコール水溶液が望ましい。   The solution containing the metal alkoxide is preferably a solution adjusted to a one-part curable type, for example, an alcohol aqueous solution containing alkyl silicate, an aluminum chelate for catalyst, and methyl acid phosphate as a reaction inhibitor.

粒子状酸化チタンを分散させた金属アルコキシドを含む溶液を、ステンレス鋼材表面に塗布する方法は、特に限定されないが、スプレーまたはディップコートなどの方法により塗布できる。塗布後は、常温で放置、または加熱して溶媒であるアルコールを揮発させると、それまでアルコールにより抑制されていた金属アルコキシドの加水分解が進行し、ステンレス鋼材表面にナノサイズの酸化チタンが均一に分散した無機系ガラス質被膜が形成される。   Although the method of apply | coating the solution containing the metal alkoxide which disperse | distributed particulate titanium oxide to the stainless steel material surface is not specifically limited, It can apply | coat by methods, such as a spray or a dip coat. After coating, if the alcohol, which is a solvent, is volatilized by leaving it at room temperature or heating, hydrolysis of the metal alkoxide that has been suppressed by the alcohol proceeds, and nano-sized titanium oxide is uniformly formed on the surface of the stainless steel material. A dispersed inorganic glassy coating is formed.

(実施例1)
一液硬化型金属アルコキシド溶液として、グランデックス(株)製FJ803を用い、溶液中に石原産業(株)製平均粒子径7nmの酸化チタンST01を3質量%添加し、十分に混合・分散させて粒子状酸化チタンを分散させた金属アルコキシドを含む溶液を作製した。厚さ0.8mm、幅15mm、長さ100mmの短冊状のSUS304ステンレ鋼の研磨紙(#400)により研磨した表面に、上記溶液を研磨後30分以内にディップ法により塗布し、常温にて約30分間乾燥させた後、120℃で10分間恒温槽中で硬化処理し、粒子状酸化チタンの分散した無機系ガラス質被膜が形成されたステンレス鋼材の試料を作製した。そして、試料を、10mm×10mmサイズの受光部を残してシリコンシーラントにより被覆し、海水相当の3質量%のNaCl水溶液中に標準電極(Ag/AgCl、飽和KCl)とともに浸漬し、アズワン(株)社製ハンディUVランプLUV-16のブラックライト(波長:365nm)を受光部に照射し、照射前後の浸漬電位の変化を測定した。その結果、浸漬電位は、照射前では+100mV・vs・SSEであったが、照射後は-500mV・vs・SSEと大幅に低下しており、本発明により光照射によるカソード防食機能が顕著に発現されていることを確認できた。
(実施例2)
酸化チタンとして、Degussa(株)製平均粒子径20nmの酸化チタンP-25を用いた以外は実施例1と同じ条件で、粒子状酸化チタンの分散した無機系ガラス質被膜が形成されたステンレス鋼材の試料を作製し、実施例1と同様な方法で照射前後の浸漬電位の変化を測定した。その結果、浸漬電位は、照射前では+100mV・vs・SSEであったが、照射後は-490mV・vs・SSEと大幅に低下しており、本発明により光照射によるカソード防食機能が顕著に発現されていることを確認できた。
(比較例1)
関東化学(株)製チタニウムテトライソプロポキシドを加水分解させ酸化チタンゾルを、実施例1と同様なステンレス鋼の表面にディップ法により塗布後、600℃で10〜30分間焼結させて、酸化チタン被膜を形成させたステンレス鋼材の試料を作製した。そして、実施例1と同様な方法で照射前後の浸漬電位の変化を測定しようとしたが、酸化チタン被膜が非常に脆く、剥離してしまったため測定ができなかった。
(比較例2)
エポキシ樹脂(アラルダイト)中に、石原産業(株)製平均粒子径7nmの酸化チタンST01を3質量%添加し、十分に混合・分散させた後、実施例1と同様なステンレス鋼の表面に塗布し、常温にて3日間硬化させて、酸化チタンの分散した有機系被膜が形成されたステンレス鋼材の試料を作製した。そして、実施例1と同様な方法で照射前後の浸漬電位の変化を測定しようとしたが、被膜の絶縁性が高いため測定ができなかった。
(Example 1)
As a one-part curable metal alkoxide solution, using FJ803 made by Grandex Co., Ltd., 3% by weight of titanium oxide ST01 with an average particle diameter of 7 nm made by Ishihara Sangyo Co., Ltd. was added to the solution, and thoroughly mixed and dispersed. A solution containing a metal alkoxide in which particulate titanium oxide was dispersed was prepared. The above solution was applied to the surface polished with a strip of SUS304 stainless steel polishing paper (# 400) with a thickness of 0.8 mm, a width of 15 mm, and a length of 100 mm within 30 minutes after polishing, and at about room temperature. After drying for 30 minutes, the material was cured in a constant temperature bath at 120 ° C. for 10 minutes to prepare a sample of a stainless steel material on which an inorganic glassy film in which particulate titanium oxide was dispersed was formed. Then, the sample was covered with a silicon sealant leaving a 10 mm x 10 mm size light-receiving part, and immersed in a 3% by mass NaCl solution equivalent to seawater with a standard electrode (Ag / AgCl, saturated KCl). The light receiving part was irradiated with black light (wavelength: 365 nm) of a handy UV lamp LUV-16 manufactured by the company, and the change in immersion potential before and after irradiation was measured. As a result, the immersion potential was + 100mV · vs · SSE before irradiation, but it was significantly reduced to -500mV · vs · SSE after irradiation, and the cathodic protection function due to light irradiation was remarkable according to the present invention. It was confirmed that it was expressed.
(Example 2)
A stainless steel material on which an inorganic glassy coating in which particulate titanium oxide is dispersed is formed under the same conditions as in Example 1 except that titanium oxide P-25 having an average particle diameter of 20 nm manufactured by Degussa Co., Ltd. is used as titanium oxide. A change in immersion potential before and after irradiation was measured in the same manner as in Example 1. As a result, the immersion potential was + 100mV · vs · SSE before irradiation, but it decreased significantly to -490mV · vs · SSE after irradiation, and the cathodic protection function due to light irradiation was remarkable according to the present invention. It was confirmed that it was expressed.
(Comparative Example 1)
Titanium tetraisopropoxide manufactured by Kanto Chemical Co., Inc. was hydrolyzed and titanium oxide sol was applied to the same stainless steel surface as in Example 1 by the dipping method, and then sintered at 600 ° C. for 10 to 30 minutes to obtain titanium oxide. A sample of a stainless steel material on which a film was formed was prepared. Then, an attempt was made to measure the change in immersion potential before and after irradiation in the same manner as in Example 1, but the measurement was not possible because the titanium oxide film was very brittle and peeled off.
(Comparative Example 2)
In the epoxy resin (Araldite), 3% by mass of titanium oxide ST01 with an average particle diameter of 7 nm made by Ishihara Sangyo Co., Ltd. was added, mixed and dispersed thoroughly, and then applied to the surface of stainless steel similar to Example 1. Then, it was cured at room temperature for 3 days to prepare a sample of a stainless steel material on which an organic coating film in which titanium oxide was dispersed was formed. Then, an attempt was made to measure the change in immersion potential before and after irradiation in the same manner as in Example 1, but the measurement was not possible due to the high insulating properties of the coating.

Claims (7)

表面に、粒子状酸化チタンの分散した無機系ガラス質の被膜が形成された防食性に優れたステンレス鋼材。   A stainless steel material with excellent anticorrosion properties, in which an inorganic glassy film in which particulate titanium oxide is dispersed is formed on the surface. 粒子状酸化チタンの平均粒子径が30nm以下である請求項1に記載の防食性に優れたステンレス鋼材。   2. The stainless steel material having excellent corrosion resistance according to claim 1, wherein the average particle diameter of the particulate titanium oxide is 30 nm or less. 無機系ガラス質の被膜には、Si、Zr、Al、Yから選ばれた少なくとも1種の元素が含有される請求項1または2に記載の防食性に優れたステンレス鋼材。   3. The stainless steel material having excellent anticorrosion properties according to claim 1, wherein the inorganic glassy coating contains at least one element selected from Si, Zr, Al, and Y. 粒子状酸化チタンを分散させた金属アルコキシドを含有する溶液を表面に塗布後、硬化させる防食性に優れたステンレス鋼材の製造方法。   A method for producing a stainless steel material having excellent anticorrosion properties, wherein a solution containing a metal alkoxide in which particulate titanium oxide is dispersed is applied to the surface and then cured. 平均粒子径が30nm以下の粒子状酸化チタンを3質量%以上分散させる請求項4に記載の防食性に優れたステンレス鋼材の製造方法。   5. The method for producing a stainless steel material having excellent corrosion resistance according to claim 4, wherein 3% by mass or more of particulate titanium oxide having an average particle size of 30 nm or less is dispersed. 金属アルコキシドを含有する溶液として、アルキルシリケート、アルミニウムキレート、メチルアシッドホスヘートを含有するアルコール水溶液を用いる請求項4または5に記載の防食性に優れたステンレス鋼材の製造方法。   6. The method for producing a stainless steel material having excellent anticorrosion properties according to claim 4, wherein an alcohol aqueous solution containing an alkyl silicate, an aluminum chelate, or methyl acid phosphate is used as the solution containing the metal alkoxide. 請求項1から3のいずれかに記載の防食性に優れたステンレス鋼材を用いた海洋鋼構造物。   4. A marine steel structure using the stainless steel material having excellent corrosion resistance according to claim 1.
JP2007322686A 2007-12-14 2007-12-14 Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same Pending JP2009144199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322686A JP2009144199A (en) 2007-12-14 2007-12-14 Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322686A JP2009144199A (en) 2007-12-14 2007-12-14 Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same

Publications (1)

Publication Number Publication Date
JP2009144199A true JP2009144199A (en) 2009-07-02

Family

ID=40915148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322686A Pending JP2009144199A (en) 2007-12-14 2007-12-14 Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same

Country Status (1)

Country Link
JP (1) JP2009144199A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149899B1 (en) 2010-10-18 2012-05-31 에스제이아이 주식회사 Tile Coating Composition and Tile Using Thereof
JP2020012188A (en) * 2018-07-20 2020-01-23 株式会社不二機販 Method for treating surface of food contact member
JP2020097757A (en) * 2018-12-17 2020-06-25 株式会社Ihiインフラシステム Passivation treatment method and passivation treatment liquid and passivation treated vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149899B1 (en) 2010-10-18 2012-05-31 에스제이아이 주식회사 Tile Coating Composition and Tile Using Thereof
JP2020012188A (en) * 2018-07-20 2020-01-23 株式会社不二機販 Method for treating surface of food contact member
CN112384112A (en) * 2018-07-20 2021-02-19 株式会社不二机贩 Food contact member and surface treatment method for food contact member
JP2020097757A (en) * 2018-12-17 2020-06-25 株式会社Ihiインフラシステム Passivation treatment method and passivation treatment liquid and passivation treated vessel
JP7299012B2 (en) 2018-12-17 2023-06-27 株式会社Ihiインフラシステム Passivation treatment method, passivation treatment liquid and passivation treatment container

Similar Documents

Publication Publication Date Title
Dey et al. Development of superhydrophobic corrosion resistance coating on mild steel by electrophoretic deposition
Zhao et al. Environmentally-friendly superhydrophobic surface based on Al2O3@ KH560@ SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water
Cai et al. Anticorrosion and scale behaviors of nanostructured ZrO2–TiO2 coatings in simulated geothermal water
Farag et al. The new trends in corrosion control using superhydrophobic surfaces: A review
Jothi et al. Facile fabrication of core–shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications
Yu et al. Preparation and characterization of TiO2/ZnO composite coating on carbon steel surface and its anticorrosive behavior in seawater
CN102491781A (en) Nanometer photocatalysis surface protection material for stones and stone cultural relic and preparation method of same
JP2009144199A (en) Stainless steel having excellent anticorrosion property, method for producing the same, and marine steel structure using the same
Shibli et al. Incorporation of TiO2 in hot dip zinc coating for efficient resistance to biogrowth
JP4245165B2 (en) Anticorrosion coating for metal, anticorrosion coating, composite coating, and metal anticorrosion method
KR101556842B1 (en) Method on Painting for Anticorrosion of Sea Windforce Ironpipe by Metaloxide Sol
Sassi et al. Silicate dip-coat mechanism as an inhibitor against copper dissolution into alkaline chloride media
Hassan et al. Fabrication of stable superhydrophobic bismuth material on the aluminum substrate with high photocatalytic activity
JPS58501089A (en) Method for manufacturing selective absorber of solar energy capture device and obtained selective absorber
Shi et al. Fabrication of silane-based surface coating with Ag/TiO2 hybridization and its anti-corrosion performance on metal surface
Lai et al. Effect of silane coating on the corrosion resistance of TiO2 conversion films
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
JP4090030B2 (en) Photocatalyst-coated metal plate excellent in stain resistance and coating film adhesion and method for producing the same
JP3840517B2 (en) Anticorrosion structure
CN105062251A (en) High-temperature-resistant, anti-rust and anti-corrosive paint
Viomar et al. Improving the Carbon Steel Surface Treatment Process
JP2003328150A (en) Coated metallic sheet having excellent workability, hiding property and photocatalytic activity and production method thereof
JP5410035B2 (en) Photocathode anticorrosive and metal material coated with photocathode anticorrosive
Singh et al. Tetrahydro-dibenzo [a, d] Annulene-5, 11-Dihydrazone and Magnesium Oxide Used to Control the Corrosion of Aluminium in Chloride Ions Environment
JP2004203692A (en) Method for forming titanium oxide film