JP2002143859A - Anti-fouling method and device for underwater structure - Google Patents

Anti-fouling method and device for underwater structure

Info

Publication number
JP2002143859A
JP2002143859A JP2000339814A JP2000339814A JP2002143859A JP 2002143859 A JP2002143859 A JP 2002143859A JP 2000339814 A JP2000339814 A JP 2000339814A JP 2000339814 A JP2000339814 A JP 2000339814A JP 2002143859 A JP2002143859 A JP 2002143859A
Authority
JP
Japan
Prior art keywords
antifouling
potential
negative
corrosion
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000339814A
Other languages
Japanese (ja)
Inventor
Tadashi Matsunaga
是 松永
Kotaro Yoshida
耕太郎 吉田
Toyoo Ando
豊男 安藤
Yoshiyuki Kawase
義行 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Anti Corrosion Co Ltd
Original Assignee
Nittetsu Anti Corrosion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Anti Corrosion Co Ltd filed Critical Nittetsu Anti Corrosion Co Ltd
Priority to JP2000339814A priority Critical patent/JP2002143859A/en
Publication of JP2002143859A publication Critical patent/JP2002143859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means exhibiting satisfactory sterilization effect and capable of suppressing the corrosion of a corrosion resistant metal in the electrochemical control for microorganism on the surface of underwater structure made of the corrosion resistant metal. SOLUTION: The anti-fouling method of the surface of the underwater structure is performed by forming the anti-fouling surface of the underwater structure from the corrosion resistant metallic material and applying alternately and periodically positive potential and negative potential on the anti-fouling surface. The applying time of negative potential applied on the anti-fouling surface is controlled to be longer than that of the positive potential, that is, to be 2-20 times of that of the positive potential. The positive potential applied on the anti-fouling surface is controlled to be <=+1.5 V vs. SCE and the negative potential is controlled to be -0.1 to -1.0 V vs. SCE. The cycle of applying the positive potential and the negative potential on the anti-fouling surface is controlled to be <=60 min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中にある構造物
表面への水生生物の付着を、電気化学的に制御する水中
構造物の防汚方法と防汚装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifouling method and an antifouling apparatus for an underwater structure, which electrochemically controls the attachment of aquatic organisms to the surface of the structure in water.

【0002】[0002]

【従来の技術】海洋ステーションや桟橋、発電所の冷却
用配管、船底などの海中構造物表面への海洋生物の付着
は、配管の閉塞、航行速度の低下、エネルギー効率の低
下等を引き起こし、腐食の原因ともなることから問題と
なっている。
2. Description of the Related Art Attachment of marine organisms to the surface of marine structures such as marine stations, piers, cooling pipes of power plants, and ship bottoms causes blockage of pipes, lowers navigation speed, lowers energy efficiency, and causes corrosion. This is a problem because it also causes

【0003】従来から、かかる海洋生物の付着を防止す
るために、殺菌性の塩素系化合物を水中に注入したり、
付着を防止しようとする面(防汚面)に有機スズ化合物
を含有する塗料を塗布する方法が多く用いられてきた。
しかし、これらの方法は環境汚染や生態系への影響が懸
念されるため、かかる環境問題のない海洋生物の付着防
止方法について、種々の検討がなされている。
[0003] Conventionally, in order to prevent such marine organisms from adhering, a bactericidal chlorine compound is injected into water,
A method of applying a paint containing an organotin compound to a surface where the adhesion is to be prevented (antifouling surface) has been often used.
However, since these methods are concerned with environmental pollution and influence on ecosystems, various methods for preventing marine organisms from adhering without such environmental problems have been studied.

【0004】水生生物の付着の機構は、まず水中構造物
表面にグラム陰性細菌が吸着されて増殖し、これを栄養
源として微生物によるバイオフィルムが形成され、この
フィルム上に大型の水生生物である藻類、貝類、フジツ
ボ類が付着することが知られている。
The mechanism of adhesion of aquatic organisms is as follows. Gram-negative bacteria are first adsorbed on the surface of an underwater structure and proliferate, and a biofilm is formed by microorganisms using the gram-negative bacteria as a nutrient source. Large aquatic organisms are formed on the film. It is known that algae, shellfish and barnacles adhere.

【0005】そのため本発明者らは、防汚面を殺菌する
ことにより、海洋生物の付着防止が可能なことに着眼
し、導電性を有する防汚面に数V以下の正負の電位を印
加する水中微生物の制御方法を先に提案した(特開平4
−341392号公報など)。
Therefore, the present inventors have focused on the fact that it is possible to prevent the adhesion of marine organisms by sterilizing the antifouling surface, and apply a positive or negative potential of several volts or less to the conductive antifouling surface. A method for controlling microbes in water was previously proposed (Japanese Unexamined Patent Publication No.
-341392).

【0006】この方法を実際の水中構造物に適用するに
当っては、防汚面を構成する導電性材料として、如何な
る材料を選択するかが問題となる。そのため本発明者ら
はすでに、バインダー樹脂と導電性充填剤からなる導電
性組成物(特開平8−302247号公報など)や、接
水面に金属窒化物、金属炭化物、金属ホウ化物、金属ケ
イ化物の何れかの導電性膜を施してなる防汚用部材(特
開平10−158863号公報など)を提案している。
In applying this method to an actual underwater structure, what kind of material is to be selected as a conductive material constituting the stainproof surface is a problem. Therefore, the present inventors have already made a conductive composition (for example, JP-A-8-302247) comprising a binder resin and a conductive filler, or a metal nitride, a metal carbide, a metal boride, a metal silicide (For example, Japanese Patent Application Laid-Open No. H10-158863).

【0007】また、本発明者らは、接水面に金属窒化物
からなる溶射皮膜を形成してなる防汚用部材(特開平1
1−61373号公報など)や、接水面がバルブ金属か
らなる防汚用部材(特開平10−195682号公報な
ど)を提案している。
Further, the present inventors have proposed an antifouling member having a sprayed coating made of a metal nitride formed on a water-contacting surface (Japanese Patent Application Laid-Open No.
No. 1-61373) and an antifouling member whose water contact surface is made of valve metal (Japanese Patent Application Laid-Open No. 10-195682).

【0008】[0008]

【発明が解決しようとする課題】上述した各種の防汚面
を構成する材料は、材料自体が高価であったり、その製
作や施工に手間がかかるため、いずれもコスト高になる
ことが問題である。とくに防汚面の面積が大きい場合に
は、如何にこれを安価に形成するかが重要な課題にな
る。
The materials constituting the above-described various antifouling surfaces are expensive in themselves, and the production and construction thereof are troublesome. is there. In particular, when the area of the antifouling surface is large, how to form the antifouling surface at low cost is an important issue.

【0009】一般に、水中構造物の表面は、防食を目的
として、耐食性金属を用いるか又は耐食性金属で被覆す
ることが多い。したがって、この耐食性金属自体に電位
を印加して、上述のような水中微生物の制御を行うこと
ができれば、水生生物の付着防止に要する費用を大幅に
節減することができる。
In general, the surface of an underwater structure is often made of a corrosion-resistant metal or coated with a corrosion-resistant metal for the purpose of corrosion protection. Therefore, if an electric potential can be applied to the corrosion-resistant metal itself to control the above-mentioned underwater microorganisms, the cost required for preventing the adhesion of aquatic organisms can be greatly reduced.

【0010】しかしながら、本発明者らの知見によれ
ば、グラム陰性細菌等の水中微生物の殺菌には正電位を
印加する必要があり、正電位の印加は、不動態膜が形成
される場合を除き、金属材料の腐食を加速させる結果と
なる。
However, according to the findings of the present inventors, it is necessary to apply a positive potential to kill bacteria in water such as Gram-negative bacteria. Excluding the consequence of accelerating the corrosion of the metallic material.

【0011】そこで本発明は、耐食性金属からなる水中
構造物表面の微生物を電気化学的に制御するに際して、
適正な電位印加条件を選択して、十分な殺菌効果を有し
かつ耐食性金属の腐食を抑制しうる手段を提供すること
を目的とする。
Therefore, the present invention provides a method for electrochemically controlling microorganisms on the surface of an underwater structure made of a corrosion-resistant metal.
It is an object of the present invention to provide a means which has a sufficient sterilizing effect and can suppress corrosion of a corrosion-resistant metal by selecting an appropriate potential application condition.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
の本発明の水中構造物の防汚方法は、水中構造物の防汚
面を耐食性金属材料により構成し、該防汚面に0V vs.
SCE以上の正電位と0V vs.SCE未満の負電位を交
互に周期的に印加することを特徴とする水中構造物の防
汚方法である。
According to the present invention, there is provided an antifouling method for an underwater structure, wherein the antifouling surface of the underwater structure is made of a corrosion-resistant metal material, and a 0 V vs. .
This is an antifouling method for underwater structures, characterized by alternately and periodically applying a positive potential of SCE or more and a negative potential of 0 V vs. less than SCE.

【0013】上記の防汚方法において、前記防汚面に印
加する負電位の印加時間は、正電位の印加時間より長く
することが好ましい。また、負電位の印加時間を、正電
位の印加時間の2〜20倍にすることが好ましい。
In the above antifouling method, it is preferable that the application time of the negative potential applied to the antifouling surface is longer than the application time of the positive potential. Further, it is preferable that the application time of the negative potential is set to 2 to 20 times the application time of the positive potential.

【0014】また、上記の防汚方法においては、前記防
汚面に印加する正電位を+1.5Vvs.SCE以下、負
電位を−0.1〜−1.0V vs.SCEにすることが好
ましい。
In the antifouling method described above, it is preferable that the positive potential applied to the antifouling surface is +1.5 V vs. SCE or less, and the negative potential is -0.1 to -1.0 V vs. SCE. .

【0015】さらに、上記の防汚方法においては、前記
防汚面に印加する正電位と負電位の周期は、60分以下
であることが好ましい。上記の防汚方法において、前記
耐食性金属材料はステンレス鋼であってもよい。
Further, in the above antifouling method, the period of the positive potential and the negative potential applied to the antifouling surface is preferably 60 minutes or less. In the above antifouling method, the corrosion-resistant metal material may be stainless steel.

【0016】本発明の水中構造物の防汚装置は、上記の
いずれかの防汚方法に用いられる装置であって、耐食性
金属材料からなる防汚面と水中に浸漬した対極との間に
電位を印加する直流電源装置と、前記防汚面に印加する
電位を正負交互の所定の周期的パターンに制御する電位
制御装置を有してなる水中構造物の防汚装置である。
The antifouling apparatus for an underwater structure according to the present invention is an apparatus used in any of the above antifouling methods, wherein an electric potential is applied between an antifouling surface made of a corrosion-resistant metal material and a counter electrode immersed in water. And a potential control device for controlling the potential applied to the antifouling surface in a predetermined periodic pattern of alternating positive and negative.

【0017】また、上記の防汚装置にさらに参照極を配
し、この参照極と前記防汚面との間の電位を正負交互の
所定の周期的パターンに制御することを特徴とする水中
構造物の防汚装置である。
An underwater structure characterized by further providing a reference electrode in the above-described antifouling device and controlling a potential between the reference electrode and the antifouling surface in a predetermined periodic pattern of alternating positive and negative. An antifouling device for objects.

【0018】[0018]

【発明の実施の形態】図1及び図2は、本発明の水中構
造物の防汚装置の構成の例を示す模式図である。図1の
例では、水中構造物1の表面に耐食性金属層2が形成さ
れ、これと水中の対極3との間に、直流電源装置4から
電位が印加される。印加される電位は、電位制御装置
(関数発生器)5により所定のパターンに制御される。
1 and 2 are schematic diagrams showing an example of the configuration of an antifouling device for an underwater structure according to the present invention. In the example of FIG. 1, a corrosion-resistant metal layer 2 is formed on the surface of an underwater structure 1, and a potential is applied between the underwater structure 1 and a counter electrode 3 in the water from a DC power supply 4. The applied potential is controlled by a potential control device (function generator) 5 in a predetermined pattern.

【0019】図2の例では、図1の構成に加えて、参照
極6を有する3電極方式になっている。参照極6には、
基準電位を与えるもの、例えば飽和カロメル電極を用い
て、これと耐食性金属層2との間の電位を所定のパター
ンに制御することにより、耐食性金属層2の電位をより
正確に制御することができる。
In the example shown in FIG. 2, a three-electrode system having a reference electrode 6 in addition to the configuration shown in FIG. The reference pole 6
The potential of the corrosion-resistant metal layer 2 can be more accurately controlled by controlling the potential between the electrode and the corrosion-resistant metal layer 2 to a predetermined pattern by using a reference potential, for example, a saturated calomel electrode. .

【0020】本発明者らはすでに、各種の導電性材料の
電極において、0.4V vs.SCE以上の正電位の印加
で殺菌が可能なこと、及び0〜−0.8V vs.SCEの
負電位の印加で、電極から菌体が離脱することを知見し
ているが、ステンレス鋼のような耐食性金属の電極にお
いても、同様の殺菌・菌体離脱効果があることが確認さ
れた。
The present inventors have already confirmed that sterilization can be performed by applying a positive potential of 0.4 V vs. SCE or more to electrodes made of various conductive materials, and that negative electrodes of 0 to -0.8 V vs. SCE can be obtained. It has been found that cells are detached from the electrode by applying an electric potential. However, it was confirmed that the same sterilization and cell detachment effect can be obtained with an electrode made of a corrosion-resistant metal such as stainless steel.

【0021】しかしながら、後記実施例に示すように、
1.0V vs.SCE程度の正電位を長時間(例えば15
分以上)印加すると、Cr、Fe等が溶出すること見出
された。また、正負交互の電位を印加した場合には、正
電位のみ印加した場合に比して、Cr、Fe等の溶出量
が著しく減少することが見出された。したがって、本発
明においては、図3に示すような、正負交互の電位を耐
食性金属層2に印加する。
However, as will be described in the following embodiment,
A positive potential of about 1.0 V vs. SCE is applied for a long time (for example,
It was found that Cr, Fe, etc., elute when applied. In addition, it was found that when the positive and negative alternating potentials were applied, the amount of elution of Cr, Fe, and the like was significantly reduced as compared with the case where only the positive potential was applied. Therefore, in the present invention, positive and negative alternating potentials are applied to the corrosion-resistant metal layer 2 as shown in FIG.

【0022】本発明においては、負電位の印加時間t2
を、正電位の印加時間t1より長くすることが好まし
い。その理由は、t2>t1にしても、t2≦t1の場合と
同等の殺菌効果を維持することができ、かつ後記実施例
に示すように、t2>t1にした方が、Cr、Fe等の溶
出量がより減少するためである。
In the present invention, the negative potential application time t 2
Is preferably longer than the positive potential application time t 1 . The reason is that, even when t 2 > t 1 , the same bactericidal effect as in the case of t 2 ≦ t 1 can be maintained, and as shown in Examples described later, it is better to set t 2 > t 1. , Cr, Fe and the like are further reduced.

【0023】また、t2/t1の比は、2〜20であるこ
とが好ましい。この比が2未満では、上述のような金属
イオンの溶出を抑制する効果が十分でなく、この比が2
0を越えると、正電位の印加時間が短か過ぎて殺菌効果
が不十分になるためである。なお、より好ましくは、上
記の比を3〜10とする。
The ratio of t 2 / t 1 is preferably 2 to 20. If this ratio is less than 2, the effect of suppressing the elution of metal ions as described above is not sufficient, and this ratio is 2
If it exceeds 0, the application time of the positive potential is too short and the bactericidal effect becomes insufficient. In addition, more preferably, the above ratio is 3 to 10.

【0024】また本発明においては、正電位を+1.5
V vs.SCE以下とし、かつ負電位を−0.1〜−1.
0V vs.SCEとすることが好ましい。正電位がこの値
を越えると、電極からの金属の溶出量が増大し、かつ塩
素が発生するおそれがあるためである。
In the present invention, the positive potential is set to +1.5
V vs. SCE or less, and the negative potential is -0.1 to -1.
It is preferable to be 0 V vs. SCE. If the positive potential exceeds this value, the amount of metal eluted from the electrode increases, and chlorine may be generated.

【0025】また、負電位が−0.1V vs.SCEより
高い(負の値が小さい)と菌体離脱の効果が不十分にな
り、負電位が−1.0V vs.SCEより低い(負の値が
大きい)と、水素の発生やこれにより電極周辺のpHが
変化するおそれがあるためである。より好ましい電位範
囲は、正電位が0.6〜1.2V vs.SCE、負電位が
−0.4〜−0.8V vs.SCEである。
When the negative potential is higher than -0.1 V vs. SCE (the negative value is small), the effect of cell detachment becomes insufficient, and the negative potential is lower than -1.0 V vs. SCE (negative value). Is large), there is a possibility that the generation of hydrogen and the pH around the electrode may change due to this. More preferable potential ranges are a positive potential of 0.6 to 1.2 V vs. SCE and a negative potential of -0.4 to -0.8 V vs. SCE.

【0026】なお、本発明における電位パターンは、必
ずしも図3のような完全なステップ状である必要はな
く、台形状、鋸歯状又は正弦波状等のパターンであって
もよい。この場合は、正電位の最高値と負電位の最低値
が上記の範囲内に入っていればよい。
It should be noted that the potential pattern in the present invention does not necessarily have to be a complete step shape as shown in FIG. 3, but may be a trapezoidal, saw-tooth or sinusoidal pattern. In this case, it is sufficient that the maximum value of the positive potential and the minimum value of the negative potential fall within the above range.

【0027】さらに本発明においては、正電位と負電位
の印加周期(正負の1周期)を60分以内にすることが
好ましい。本発明者らの知見によれば、電位レベルが同
一でも、周期が短いほど金属の溶出量が少なくなる傾向
が認められ、周期が60分以下では、周期が60分を越
える場合に比して、Cr、Fe等の溶出量が低下するた
めである。
Further, in the present invention, it is preferable that the application period (one positive and negative period) of the positive potential and the negative potential is set within 60 minutes. According to the findings of the present inventors, even when the potential level is the same, a tendency is observed that the shorter the period, the shorter the period, the smaller the amount of metal eluted, and when the period is 60 minutes or less, compared to the case where the period exceeds 60 minutes. , Cr, Fe, etc., because the amount of elution decreases.

【0028】本発明において、耐食性金属材料とは、水
中において、水生生物の付着が問題となる期間、例えば
数か月から数年間に、必要十分な耐食性を示す金属又は
合金をいう。対象となる金属又は合金の範囲は、水中の
腐食環境により大幅に相違するから一概には規定できな
い。しかし、海水中での耐食性という観点からは、ステ
ンレス鋼とくに耐海水ステンレス鋼やチタン等が主な対
象となる。
In the present invention, the term "corrosion-resistant metal material" refers to a metal or an alloy which exhibits necessary and sufficient corrosion resistance in water for a period during which the attachment of aquatic organisms becomes a problem, for example, for several months to several years. The range of the target metal or alloy cannot be specified unconditionally because it greatly differs depending on the corrosive environment in water. However, from the viewpoint of corrosion resistance in seawater, stainless steel, particularly seawater-resistant stainless steel, titanium, and the like are the main targets.

【0029】また、水中構造物自体が耐食性金属からな
るものであってもよく、その表面のみが耐食性金属から
なるもの、例えばメッキ鋼材、クラッド鋼材等であって
もよい。さらに、鋼、コンクリート、プラスチック等の
材料の表面を耐食性金属薄板で被覆したものであっても
よい。
The underwater structure itself may be made of a corrosion-resistant metal, or only the surface thereof may be made of a corrosion-resistant metal, such as a plated steel material or a clad steel material. Furthermore, the surface of a material such as steel, concrete, or plastic may be covered with a corrosion-resistant metal sheet.

【0030】また、対極を構成する材料は、導電性と水
中での耐食性を有するものであればよく、耐食性金属や
これを被覆した材料、導電性プラスチック等を用いるこ
とができる。その形状も、板状、筒状、メッシュ状、線
状等水中構造物の形状に対応して適宜選定すればよい。
The material constituting the counter electrode may be any material having conductivity and corrosion resistance in water, and may be a corrosion-resistant metal, a material coated with the metal, a conductive plastic, or the like. The shape may be appropriately selected according to the shape of the underwater structure such as a plate, a tube, a mesh, and a line.

【0031】本発明の防汚方法は、発電所、化学プラン
トや船舶等の冷却水の取水管、船舶の推進系、海洋ステ
ーション、桟橋、海洋パイプライン、浮標や漁網等の耐
食性金属材料又は耐食性金属被覆材料を用いた部位に簡
便に適用することができ、重金属等の溶出を抑制しつつ
海洋生物の付着を防止することができる。
The antifouling method of the present invention relates to a corrosion-resistant metallic material or corrosion-resistant material such as a cooling water intake pipe for a power plant, a chemical plant or a ship, a ship propulsion system, a marine station, a pier, a marine pipeline, a buoy or a fishing net. It can be easily applied to a site using a metal coating material, and can prevent marine organisms from adhering while suppressing elution of heavy metals and the like.

【0032】[0032]

【実施例】ステンレス鋼を作用極として、水中で正負の
電位を印加し、電位の印加条件と殺菌効果及び金属溶出
量との関係を調査した。用いた実験装置を模式的に図4
に示す。この実験装置は、滅菌海水50mlを貯溜した
試験槽10内に、作用極11、対極12及び参照極13
を浸漬してなるもので、これらの3極はポテンショスタ
ット14に連結され、関数発生器15により、所定のパ
ターンで作用極11に電位を印加しうるよう構成されて
いる。
EXAMPLES Using stainless steel as a working electrode, positive and negative potentials were applied in water, and the relationship between the potential application conditions, the bactericidal effect, and the amount of metal elution was investigated. FIG. 4 schematically shows the experimental apparatus used.
Shown in This experimental apparatus includes a working electrode 11, a counter electrode 12 and a reference electrode 13 in a test tank 10 storing 50 ml of sterilized seawater.
These three poles are connected to a potentiostat 14 so that a function generator 15 can apply a potential to the working electrode 11 in a predetermined pattern.

【0033】作用極には、20×50mm、厚み0.6
mmの耐海水ステンレス鋼板(YUS270:20%C
r−18%Ni−6%Mo−0.7%Cu−0.2%
N)を用い、対極には白金板、参照極には飽和カロメル
電極を用いた。
The working electrode has a size of 20 × 50 mm and a thickness of 0.6.
mm seawater-resistant stainless steel sheet (YUS270: 20% C
r-18% Ni-6% Mo-0.7% Cu-0.2%
N), a platinum plate was used as a counter electrode, and a saturated calomel electrode was used as a reference electrode.

【0034】殺菌効果の調査は、以下の如くに行った。
海洋細菌ビブリオ・アルギノリチクス(Vibrio alginoly
ticus)の1.0×106cells/mlの菌体懸濁液中に、作
用極を浸漬して菌体を付着させ、これを直ちに試験槽内
にセットして、30分間所定の条件で電位を印加した
後、作用極表面の菌体を回収して、コロニー法(25
℃、24時間)で生菌数を評価した。
The bactericidal effect was investigated as follows.
The marine bacterium Vibrio alginoly
ticus), the working electrode is immersed in a cell suspension of 1.0 × 10 6 cells / ml, and the cells are allowed to adhere. After applying the potential, the cells on the surface of the working electrode were collected and the colony method (25
At 24 ° C. for 24 hours).

【0035】金属溶出量の測定は、試験槽内で作用極に
連続して30日間、所定の条件で電位を印加し、槽内の
海水中のFe,Cr,Niを原子吸光法(フレーム法)
で分析して、それぞれの溶出量を算定した。
The metal elution amount is measured by applying an electric potential under predetermined conditions to the working electrode for 30 days in a test tank and determining Fe, Cr, and Ni in seawater in the tank by an atomic absorption method (flame method). )
And the elution amount of each was calculated.

【0036】本発明の実施例として、下記の2通りの電
位印加条件で実験した。 (1)1.0V vs.SCE:10min/−0.6V vs.S
CE:10min (2)1.0V vs.SCE:10min/−0.6V vs.S
CE:30min また比較例として、1.0V vs.SCEの一定の正電位
を印加した場合と、電位無印加の場合についても実験し
た。これらの実験結果をまとめて表1に示す。
As examples of the present invention, experiments were conducted under the following two potential application conditions. (1) 1.0 V vs. SCE: 10 min / -0.6 V vs. S
CE: 10 min (2) 1.0 V vs. SCE: 10 min / -0.6 V vs. S
CE: 30 min Further, as comparative examples, experiments were performed when a constant positive potential of 1.0 V vs. SCE was applied and when no potential was applied. Table 1 summarizes the results of these experiments.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に見られるように、30分後の生菌数
は、実施例1、2及び比較例1ともに、ほぼ0になって
おり、正負交互の電位を印加した場合にも、一定の正電
位の場合と同等の殺菌効果が得られることが確められ
た。
As can be seen from Table 1, the viable cell count after 30 minutes is almost 0 in both Examples 1 and 2 and Comparative Example 1, and is constant even when positive and negative alternating potentials are applied. It was confirmed that a bactericidal effect equivalent to the case of the positive potential was obtained.

【0039】また、Fe,Cr及びNiの溶出量は、一
定の正電位の場合(比較例1)では著しく大きいが、正
負交互の電位印加により顕著に減少することが確められ
た。また、負電位の印加時間の長い実施例2の方が、正
負の印加時間の等しい実施例1よりも、Crの溶出量が
少くなることが明らかになった。
Further, it was confirmed that the elution amounts of Fe, Cr and Ni were remarkably large in the case of a constant positive potential (Comparative Example 1), but were significantly reduced by the application of the positive and negative alternating potentials. It was also found that Example 2 having a longer negative potential application time had a smaller Cr elution amount than Example 1 having the same positive and negative application times.

【0040】つぎに、上記の実験装置で上記と同じ作用
極を用い、正負交互の印加周期を60msec、60sec、
60分の3段階に変えて、電位印加周期のCr溶出量に
及ぼす影響を調査した。これら3条件のいずれも、負電
位の印加時間を正電位の印加時間の5倍とした。また、
比較例として、電位無印加の場合のCr溶出量も測定し
た。
Next, using the same working electrode as described above in the above experimental apparatus, the positive and negative alternating application cycles were set to 60 msec, 60 sec,
The effect of the potential application cycle on the amount of Cr eluted was investigated in three steps of 60 minutes. In each of these three conditions, the application time of the negative potential was set to five times the application time of the positive potential. Also,
As a comparative example, the amount of Cr eluted when no potential was applied was also measured.

【0041】表1の場合と同じく、30日間連続して所
定のパターンで電位を印加した後(比較例は無印加)、
試験槽内の海水中のCr溶出量を原子吸光法で測定した
結果を表2に示す。
As in the case of Table 1, after applying a potential in a predetermined pattern for 30 consecutive days (no application in the comparative example),
Table 2 shows the results of measuring the amount of Cr eluted in seawater in the test tank by the atomic absorption method.

【0042】[0042]

【表2】 [Table 2]

【0043】表2に見られるように、電位の印加周期は
60msecから60分の範囲内では、Cr溶出量はき
わめて少なく、60分を越えると溶出量が増加する傾向
があるので、60分以下の印加周期が望ましいことが明
らかになった。
As can be seen from Table 2, when the potential application cycle is in the range of 60 msec to 60 minutes, the amount of Cr eluted is extremely small, and when it exceeds 60 minutes, the amount of elution tends to increase. It has been found that the application cycle of is desirable.

【0044】[0044]

【発明の効果】本発明の防汚方法によれば、水中構造物
表面が耐食性金属からなる場合又は耐食性金属の被覆を
有する場合に、これに直接電位を印加して、重金属等の
溶出を防止しつつ十分な殺菌効果を得ることができ、防
汚面の腐食を抑制して水生生物の付着を防止することが
できる。したがって、防汚面に高価な導電性材料を用い
る必要がなく、水生生物の付着防止のコストを節減する
ことができる。
According to the antifouling method of the present invention, when the surface of an underwater structure is made of a corrosion-resistant metal or has a coating of a corrosion-resistant metal, a potential is directly applied to the surface to prevent elution of heavy metals and the like. Thus, a sufficient bactericidal effect can be obtained while preventing corrosion of the antifouling surface, thereby preventing aquatic organisms from adhering. Therefore, it is not necessary to use an expensive conductive material for the antifouling surface, and it is possible to reduce the cost of preventing aquatic organisms from attaching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水中構造物の防汚装置の構成の例を示
す模式図である。
FIG. 1 is a schematic view showing an example of the configuration of an antifouling device for an underwater structure according to the present invention.

【図2】本発明の水中構造物の防汚装置の構成の他の例
を示す模式図である。
FIG. 2 is a schematic view showing another example of the configuration of the antifouling device for an underwater structure according to the present invention.

【図3】本発明における防汚面への電位印加パターンの
例を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a potential application pattern to an antifouling surface in the present invention.

【図4】実施例で用いた実験装置の模式図である。FIG. 4 is a schematic diagram of an experimental apparatus used in an example.

【符号の説明】[Explanation of symbols]

1 水中構造物 2 耐食性金属層 3 対極 4 直流電源装置 5 電位制御装置 6 参照極 10 試験槽 11 作用極 12 対極 13 参照極 14 ポテンショスタット 15 関数発生器 16 攪拌装置 17 攪拌棒 t1 正電位印加時間 t2 負電位印加時間1 underwater structure 2 corrosion resistant metal layer 3 counter electrode 4 direct-current power supply 5 potential control device 6 reference electrode 10 the test chamber 11 the working electrode 12 counter electrode 13 reference electrode 14 potentiostat 15 function generator 16 stirrer 17 stir bar t 1 positive potential applied time t 2 negative potential application time

フロントページの続き (72)発明者 安藤 豊男 東京都千代田区岩本町二丁目11番9号 日 鉄防蝕株式会社内 (72)発明者 川瀬 義行 東京都千代田区岩本町二丁目11番9号 日 鉄防蝕株式会社内 Fターム(参考) 4D061 DA09 DB03 EA02 EB02 EB05 EB30 EB39 GC14 GC15 GC16Continued on the front page. (72) Inventor Toyo Ando 2-9-19-1 Iwamotocho, Chiyoda-ku, Tokyo Nikko Corrosion Protection Co., Ltd. (72) Inventor Yoshiyuki Kawase 2-11-9 Iwamotocho, Chiyoda-ku, Tokyo Nippon Steel F-term in Corrosion Protection Co., Ltd. (reference) 4D061 DA09 DB03 EA02 EB02 EB05 EB30 EB39 GC14 GC15 GC16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水中構造物の防汚面を耐食性金属材料に
より構成し、該防汚面に0V vs.SCE以上の正電位と
0V vs.SCE未満の負電位を交互に周期的に印加する
ことを特徴とする水中構造物の防汚方法。
An antifouling surface of an underwater structure is made of a corrosion-resistant metal material, and a positive potential of 0 V vs. SCE or more and a negative potential of 0 V vs. less than SCE are alternately and periodically applied to the antifouling surface. An antifouling method for underwater structures, characterized in that:
【請求項2】 前記防汚面に印加する負電位の印加時間
を、正電位の印加時間より長くすることを特徴とする請
求項1記載の防汚方法。
2. The antifouling method according to claim 1, wherein the application time of the negative potential applied to the antifouling surface is made longer than the application time of the positive potential.
【請求項3】 前記負電位の印加時間を、正電位の印加
時間の2〜20倍にすることを特徴とする請求項2記載
の防汚方法。
3. The antifouling method according to claim 2, wherein the application time of the negative potential is set to 2 to 20 times the application time of the positive potential.
【請求項4】 前記防汚面に印加する正電位を+1.5
V vs.SCE以下、負電位を−0.1〜−1.0V vs.
SCEにすることを特徴とする請求項1〜3のいずれか
に記載の防汚方法。
4. A positive potential applied to the antifouling surface is +1.5.
V vs. SCE or less, negative potential is -0.1 to -1.0 V vs.
The antifouling method according to any one of claims 1 to 3, wherein the antifouling method is SCE.
【請求項5】 前記防汚面に印加する正電位と負電位の
周期が60分以下である請求項1〜4のいずれかに記載
の防汚方法。
5. The antifouling method according to claim 1, wherein the period of the positive potential and the negative potential applied to the antifouling surface is 60 minutes or less.
【請求項6】 前記耐食性金属材料がステンレス鋼であ
る請求項1〜5のいずれかに記載の防汚方法。
6. The antifouling method according to claim 1, wherein the corrosion-resistant metal material is stainless steel.
【請求項7】 請求項1〜6のいずれかに記載の防汚方
法に用いられる装置であって、耐食性金属材料からなる
防汚面と水中に浸漬した対極との間に電位を印加する直
流電源装置と、前記防汚面に印加する電位を正負交互の
所定の周期的パターンに制御する電位制御装置を有して
なる水中構造物の防汚装置。
7. An apparatus used in the antifouling method according to claim 1, wherein a direct current is applied between an antifouling surface made of a corrosion-resistant metal material and a counter electrode immersed in water. An antifouling device for an underwater structure, comprising: a power supply device; and a potential control device that controls a potential applied to the antifouling surface in a predetermined periodic pattern of alternating positive and negative.
【請求項8】 請求項7記載の防汚装置にさらに参照極
を配し、この参照極と前記防汚面との間の電位を正負交
互の所定の周期的パターンに制御することを特徴とする
水中構造物の防汚装置。
8. The antifouling device according to claim 7, further comprising a reference electrode, wherein the potential between the reference electrode and the antifouling surface is controlled in a predetermined periodic pattern of alternating positive and negative. Antifouling device for underwater structures.
JP2000339814A 2000-11-08 2000-11-08 Anti-fouling method and device for underwater structure Pending JP2002143859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339814A JP2002143859A (en) 2000-11-08 2000-11-08 Anti-fouling method and device for underwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339814A JP2002143859A (en) 2000-11-08 2000-11-08 Anti-fouling method and device for underwater structure

Publications (1)

Publication Number Publication Date
JP2002143859A true JP2002143859A (en) 2002-05-21

Family

ID=18814831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339814A Pending JP2002143859A (en) 2000-11-08 2000-11-08 Anti-fouling method and device for underwater structure

Country Status (1)

Country Link
JP (1) JP2002143859A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008338A (en) * 1998-06-26 2000-01-11 Pentel Kk Antifouling device for underwater structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008338A (en) * 1998-06-26 2000-01-11 Pentel Kk Antifouling device for underwater structure

Similar Documents

Publication Publication Date Title
Wake et al. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium
KR100389446B1 (en) Heat exchanger comprising soil resisting device
JPH10249357A (en) Antifouling method
JP2012197502A (en) Method and device for electrolytic protection of stainless steel
JP2002143859A (en) Anti-fouling method and device for underwater structure
JP4157757B2 (en) Antifouling device
JPH11140677A (en) Method for preventing contamination and local corrosion of wire net made of copper or copper alloy and device therefor
JP4059457B2 (en) Antifouling and anticorrosion equipment for heat exchangers and seawater conduits
JP3491081B2 (en) Electrochemical biological control or antifouling components
JPH11303041A (en) Pollution preventing method for structure in contact with sea water
JP4069060B2 (en) Electrochemical water quality control method and apparatus
JP2007186933A (en) Anti-fouling and corrosion protection device of structure contacting with seawater and anti-fouling and corrosion-proofing method
JP4466412B2 (en) Anti-adhesion and removal control method for chickenpox insects
JP3526469B2 (en) Antifouling method for underwater structures
JP3962846B2 (en) Antifouling method and antifouling device
JP3888756B2 (en) Electrochemical control method, antifouling method and antifouling device for aquatic organisms
JP2000008338A (en) Antifouling device for underwater structure
JPH11244861A (en) Anti-fouling device for underwater structure and electrochemical control method of organism
JP4182636B2 (en) Electrochemical antifouling method and apparatus
JP2004116136A (en) Electronic control bacillus anti-fouling method
JP4923375B2 (en) Electrochemical antifouling method
JP4385546B2 (en) Electrochemical antifouling method
JPH10271942A (en) Member for electrochemical biological control
JP4075263B2 (en) Electrochemical antifouling method and apparatus
JP3697650B2 (en) Electrochemical control method and antifouling method for aquatic organisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100927