JPH11302019A - Production of lithium manganese spinel oxide particulate powder - Google Patents

Production of lithium manganese spinel oxide particulate powder

Info

Publication number
JPH11302019A
JPH11302019A JP10131391A JP13139198A JPH11302019A JP H11302019 A JPH11302019 A JP H11302019A JP 10131391 A JP10131391 A JP 10131391A JP 13139198 A JP13139198 A JP 13139198A JP H11302019 A JPH11302019 A JP H11302019A
Authority
JP
Japan
Prior art keywords
lithium
spinel oxide
powder
manganese spinel
lithium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10131391A
Other languages
Japanese (ja)
Other versions
JP4066510B2 (en
Inventor
Tatsuya Nakamura
龍哉 中村
Akihisa Kajiyama
亮尚 梶山
Hiroshi Takahama
弘 高浜
Mitsuaki Hataya
光昭 畑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP13139198A priority Critical patent/JP4066510B2/en
Publication of JPH11302019A publication Critical patent/JPH11302019A/en
Application granted granted Critical
Publication of JP4066510B2 publication Critical patent/JP4066510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce lithium manganese spinel oxide capable of being fired in a short time, having a narrow particle size distribution, uniform in particle size and useful as a material for a positive electrode active material. SOLUTION: Dimanganese trioxide particulate powder having >=50 m<2> /g BET specific surface area is mixed with a lithium compd. in an Li to Mn molar ratio of 0.50-0.60, 1-30 wt.% water is added to the powdery mixture and the water-contg. powdery mixture is compression-molded to obtain a molding having >=1.5 g/cc molding density. This molding is fired in an oxygen-contg. gas and comminuted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
スピネル酸化物粒子粉末の製造法に関し、更に詳しく
は、短時間で焼成でき、粒度が揃った、特にリチウム電
池の正極活物質として有用なリチウムマンガンスピネル
酸化物粒子粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lithium manganese spinel oxide particles, and more particularly, to lithium manganese which can be fired in a short time and has a uniform particle size, and is particularly useful as a positive electrode active material for lithium batteries. The present invention relates to a method for producing spinel oxide particles.

【0002】[0002]

【従来の技術】近年、パーソナルコンピューター、携帯
電話等のポータブル機器の開発に伴って、その電源とし
ての電池の需要が高まっている。特に、リチウム電池
は、リチウムが原子量が小さく、かつ、イオン化エネル
ギーが大きい物質であることに起因して、起電力が高
く、高エネルギー密度化が可能な電池が期待できること
から各方面で盛んに研究が行われている。リチウム電池
に用いられる正極活物質としては、4V程度の高電圧を
発生させることが可能なリチウムコバルト酸化物(Li
CoO2 )、リチウムニッケル酸化物(LiNi
2 )、リチウムマンガンスピネル酸化物(Li1+X
2-X 4 )等複合酸化物の研究が盛んに行われてい
る。これらの化合物は、コバルト、ニッケル、マンガン
を含む酸化物原料粉末とリチウム化合物粉末とを混合
し、500℃以上の高温で焼成することにより得られて
いる。
2. Description of the Related Art In recent years, with the development of portable devices such as personal computers and mobile phones, demand for batteries as power sources has been increasing. In particular, lithium batteries have been actively studied in various fields because lithium is a substance with a small atomic weight and a large ionization energy, and a battery with high electromotive force and high energy density can be expected. Has been done. As a positive electrode active material used for a lithium battery, lithium cobalt oxide (Li) capable of generating a high voltage of about 4 V is used.
CoO 2 ), lithium nickel oxide (LiNi
O 2 ), lithium manganese spinel oxide (Li 1 + X M
Study of n 2-X O 4) or the like composite oxide has been actively conducted. These compounds are obtained by mixing an oxide raw material powder containing cobalt, nickel, and manganese with a lithium compound powder and firing at a high temperature of 500 ° C. or higher.

【0003】しかしながら、この高温焼成法において
は、固相反応時の酸化コバルト、酸化ニッケル、酸化マ
ンガン粒子粉末の反応性が低いため、長時間焼成するこ
とが必要であり、この高温での長時間焼成によりリチウ
ムが蒸発する。そのため、Liが欠損して組成が変化し
易く、安定した品質のリチウムコバルト酸化物、リチウ
ムニッケル酸化物、リチウムマンガンスピネル酸化物が
得られにくいという問題がある。
However, in this high-temperature sintering method, since the reactivity of the cobalt oxide, nickel oxide, and manganese oxide particles during the solid phase reaction is low, it is necessary to perform calcination for a long time. Lithium evaporates by baking. For this reason, there is a problem that Li is deficient, the composition is easily changed, and it is difficult to obtain stable quality lithium cobalt oxide, lithium nickel oxide, and lithium manganese spinel oxide.

【0004】また、これらの複合酸化物は、その粉末を
バインダー中に分散させて、銅などの金属板に塗布し乾
燥させて電池の正極として用いられているが、高温で長
時間焼成して生成した複合酸化物は、粉末粒子同士が強
固に融着しているので、正極活物質として使用するのに
十分な粉末とするためには強力な粉砕が必要となり、エ
ネルギーコストが高くなるばかりでなく、粉砕の媒体が
磨耗して複合酸化物粉末中に混入するなどの問題点が指
摘されている。
In addition, these composite oxides are used as a positive electrode of a battery by dispersing the powder in a binder, applying the powder to a metal plate such as copper, and drying it. Since the resulting composite oxide has powder particles fused together strongly, it is necessary to perform strong pulverization in order to obtain a powder sufficient for use as a positive electrode active material, which only increases the energy cost. However, problems have been pointed out, such as the grinding media being worn and being mixed into the composite oxide powder.

【0005】さらには、これらの正極活物質粉末は上記
の如くバインダー中に分散させて、銅などの金属板に塗
布・乾燥させて電池の正極として用いるものであるが、
塗膜中での粒子粉末の充填度が高い程、電池の容量が高
くなることから、複合酸化物の粒子形、粒度が揃ってい
ることが重要である。
Further, these positive electrode active material powders are dispersed in a binder as described above, applied to a metal plate such as copper, dried and used as a positive electrode of a battery.
The higher the filling degree of the particle powder in the coating film, the higher the capacity of the battery. Therefore, it is important that the composite oxides have uniform particle shapes and particle sizes.

【0006】以上のような背景から、短時間で焼成でき
るとともに、粒度分布が狭く、粒度が揃った、正極活物
質用材料粉末として有用なリチウムマンガンスピネル酸
化物の製造法が求められている。
In view of the above background, there is a need for a method for producing a lithium manganese spinel oxide which can be fired in a short time, has a narrow particle size distribution, and has a uniform particle size, and is useful as a material powder for a positive electrode active material.

【0007】[0007]

【発明が解決しようとする課題】本発明は、比較的低温
でかつ短時間の焼成反応によって、粒度分布が狭く、粒
度の揃った、リチウム電池の正極活物質として有用なリ
チウムマンガンスピネル酸化物の製造法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention relates to a lithium manganese spinel oxide having a narrow particle size distribution and uniform particle size, which is useful as a positive electrode active material for a lithium battery, by a firing reaction at a relatively low temperature and for a short time. It aims to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、BET
比表面積が50m2/g以上である三酸化二マンガン粒子
粉末とリチウム化合物とをLi/Mn(モル比)が0.
50〜0.60の範囲内で混合し、該混合粉末に対して
1〜30重量%の水分を添加し、該水分含有混合粉末を
圧縮成型して成型密度1.5g/cc以上の成型体を得、
該成型体を酸素含有ガス中にて焼成した後粉砕すること
を特徴とするリチウムマンガンスピネル酸化物粒子粉末
の製造法を内容とする。尚、本発明において、BET比
表面積は窒素吸着法により測定した値である。
That is, the present invention provides a BET
Limanganese trioxide particles having a specific surface area of at least 50 m 2 / g and a lithium compound having a Li / Mn (molar ratio) of 0.
The mixture is mixed within a range of 50 to 0.60, 1 to 30% by weight of water is added to the mixed powder, and the water-containing mixed powder is compression-molded to obtain a molded article having a molding density of 1.5 g / cc or more. Get
A method for producing lithium manganese spinel oxide particles is characterized in that the molded body is fired in an oxygen-containing gas and then pulverized. In the present invention, the BET specific surface area is a value measured by a nitrogen adsorption method.

【0009】[0009]

【発明の実施の形態】本発明に用いられる三酸化二マン
ガン(Mn2 3 )粒子粉末は、BET比表面積が50
m2/g以上であることが必要である。BET比表面積が
50m2/g未満では、目的とするリチウムマンガンスピ
ネル酸化物の他に正極活性物質でない原料の三酸化二マ
ンガンが残存する。BET比表面積の上限は特に制限さ
れないが、取り扱い上の観点から100m2/g程度が好
ましい。また、三酸化二マンガン粒子粉末は粒度の均斉
なものが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The dimanganese trioxide (Mn 2 O 3 ) particles used in the present invention have a BET specific surface area of 50.
It is necessary to be at least m 2 / g. When the BET specific surface area is less than 50 m 2 / g, dimanganese trioxide, a raw material that is not a positive electrode active material, remains in addition to the target lithium manganese spinel oxide. Although the upper limit of the BET specific surface area is not particularly limited, it is preferably about 100 m 2 / g from the viewpoint of handling. The dimanganese trioxide particles preferably have a uniform particle size.

【0010】本発明におけるBET比表面積50m2/g
以上で、粒度分布の均斉な三酸化二マンガン粒子粉末
は、マンガン塩水溶液と中和以上の過剰なアルカリ水溶
液を混合して得られるマンガン(II)水酸化物の懸濁液
を加熱しながら、酸素含有ガス、例えば空気を通気し
て、マンガンイオンを酸化することで沈澱生成させ、濾
別・水洗・乾燥する方法、炭酸マンガンを酸素含有ガ
ス、例えば空気中で400〜850℃程度で加熱し熱分
解する方法等により得ることができるが、前者の方法で
得られるものが粒度が微細で反応性に富む点で好都合で
ある。
In the present invention, the BET specific surface area is 50 m 2 / g.
As described above, the dimanganese trioxide particles having a uniform particle size distribution are obtained by heating a manganese (II) hydroxide suspension obtained by mixing an aqueous manganese salt solution and an excess aqueous alkali solution that is neutralized or more. Oxygen-containing gas, such as air, is passed through to oxidize manganese ions to form a precipitate, which is filtered, washed and dried, and manganese carbonate is heated in an oxygen-containing gas, such as air, at about 400 to 850 ° C. It can be obtained by a method such as thermal decomposition, but the one obtained by the former method is advantageous in that the particle size is fine and the reactivity is high.

【0011】本発明に用いられるリチウム化合物として
は、炭酸リチウム、酸化リチウム、水酸化リチウム、水
酸化リチウム1水和物等が挙げられ、これらは単独また
は2種以上組み合わせて用いることができる。
The lithium compound used in the present invention includes lithium carbonate, lithium oxide, lithium hydroxide, lithium hydroxide monohydrate and the like, and these can be used alone or in combination of two or more.

【0012】本発明におけるリチウム化合物と三酸化二
マンガンの混合比は、リチウムとマンガンとのモル比
(Li/Mn)で0.50〜0.60の範囲である。リ
チウムが上記範囲よりも不足する場合は、リチウムマン
ガンスピネル酸化物の他に正極活物質でない原料の三酸
化二マンガンが残存し、この三酸化二マンガンを除去す
ることが極めて困難であるため、この三酸化二マンガン
を含む粉末を用いて正極を構成した場合は、良好な電池
特性、即ち、リチウムイオン導電性を有する電解液中で
の電気化学的活性が得られにくい。一方、リチウムが上
記範囲よりも過剰な場合は、リチウムマンガンスピネル
酸化物の他に正極活物質でない物質、例えば炭酸リチウ
ム、或いはLi2 MnO3 が存在し、これらの炭酸リチ
ウム、Li2 MnO3 も除去することが極めて困難であ
るため、これらを含む粉末を用いて正極を構成した場
合、同様に良好な電池特性、電気化学的活性が得られに
くい。
The mixing ratio of the lithium compound to dimanganese trioxide in the present invention is in the range of 0.50 to 0.60 in terms of the molar ratio of lithium to manganese (Li / Mn). If lithium is less than the above range, dimanganese trioxide, a raw material that is not a positive electrode active material, remains in addition to the lithium manganese spinel oxide, and it is extremely difficult to remove the dimanganese trioxide. When the positive electrode is formed using a powder containing dimanganese trioxide, it is difficult to obtain good battery characteristics, that is, electrochemical activity in an electrolyte having lithium ion conductivity. On the other hand, when lithium is in excess of the above range, there are substances other than the lithium manganese spinel oxide that are not the positive electrode active material, for example, lithium carbonate or Li 2 MnO 3 , and these lithium carbonates and Li 2 MnO 3 are also present. Since it is extremely difficult to remove, when a positive electrode is formed using a powder containing these, similarly, it is difficult to obtain good battery characteristics and electrochemical activity.

【0013】次に、三酸化二マンガン粒子粉末とリチウ
ム化合物との混合粉末に対して1〜30重量%、好まし
くは10〜25重量%の水分を添加して、この水分を含
有させた混合粉末を押出成形機、ローラーコンパクタ
ー、ディスクペレッター等により圧縮成型し、成型密度
1.5g/cc以上、好ましくは2〜5g/ccの成型体を
作成した後に、酸素含有ガス、例えば空気中にて焼成す
る。
Next, 1 to 30% by weight, preferably 10 to 25% by weight of water is added to the mixed powder of the dimanganese trioxide particles and the lithium compound, and the mixed powder containing the water is added. Is subjected to compression molding using an extruder, a roller compactor, a disk pelleter or the like to form a molded body having a molding density of 1.5 g / cc or more, preferably 2 to 5 g / cc. Bake.

【0014】混合粉末に対して水分の量が1重量%未満
であると、成型体の強度が十分に得られないためハンド
リングしにくい上に、成型体中での圧縮密度にバラツキ
が生じるため、これが原因となって焼成後に粉砕して得
られるリチウムマンガンスピネル酸化物粒子粉末の粒度
分布が広くなってしまう。一方、水分が30重量%を越
えると水溶性のリチウム化合物が流出しやすくなり、そ
の結果、組成が変化し、リチウムマンガンスピネル酸化
物粒子粉末の品質の安定性に欠ける。
If the amount of water is less than 1% by weight with respect to the mixed powder, it is difficult to handle the molded body because the strength is not sufficiently obtained, and the compressed density in the molded body varies. As a result, the particle size distribution of the lithium manganese spinel oxide particles obtained by pulverizing after firing becomes wide. On the other hand, if the water content exceeds 30% by weight, the water-soluble lithium compound tends to flow out, resulting in a change in the composition and a lack of stability of the quality of the lithium manganese spinel oxide particles.

【0015】また、成型密度が1.5g/cc未満の成型
体を焼成した場合には、リチウムマンガンスピネル酸化
物の粒成長が十分でないため、塗布膜としたときの膜中
の充填度が十分なものが得られない。成型密度の上限は
特に制限されないが、余り大きくなると製造が困難とな
るので通常5g/cc、好ましくは3g/cc程度が適当で
ある。
Further, when a molded body having a molding density of less than 1.5 g / cc is fired, the degree of filling of the coating film is not sufficient because the lithium manganese spinel oxide has insufficient grain growth. Cannot be obtained. The upper limit of the molding density is not particularly limited. However, if it is too large, the production becomes difficult. Therefore, it is usually 5 g / cc, preferably about 3 g / cc.

【0016】本発明における混合粉末の焼成温度は、通
常500〜800℃、好ましくは600〜750℃の範
囲であり、その焼成時間は通常2〜20時間、好ましく
は5〜10時間である。焼成した成型体は粉砕して粒子
粉末とされる。粉砕方法は特に制限されず、通常の粉砕
方法が用いられる。上記の如くして得られるリチウムマ
ンガンスピネル酸化物はLi1+x Mn2-x4 で表さ
れ、xは電池特性の点から0〜0.1の範囲が好適であ
る。
The firing temperature of the mixed powder in the present invention is usually in the range of 500 to 800 ° C., preferably 600 to 750 ° C., and the firing time is usually 2 to 20 hours, preferably 5 to 10 hours. The fired molded body is pulverized into particle powder. The grinding method is not particularly limited, and a usual grinding method is used. Lithium manganese spinel oxide obtained in the above manner is represented by Li 1 + x Mn 2-x O 4, x is preferably in the range of 0 to 0.1 in terms of battery characteristics.

【0017】[0017]

【作用】本発明において最も重要な点は、BET比表面
積が50m2/g以上である三酸化二マンガン粒子粉末を
マンガン原料として用いて、これとリチウム化合物とを
混合し、この混合粉末に対して1〜30重量%の水分を
含有させて、この混合粉末を押出成形機、ローラーコン
パクター、ディスクペレッター等により圧縮成型して成
型密度1.5g/cc以上の成型体を作成し、その後、酸
素含有ガス中にて焼成することにより、短時間でその反
応が完結し、しかる後に粉砕することにより目的とする
粒度分布の揃ったリチウムマンガンスピネル酸化物を生
成させることができるという事実である。
The most important point in the present invention is that dimanganese trioxide particles having a BET specific surface area of 50 m 2 / g or more are used as a manganese raw material, and then mixed with a lithium compound. Then, the mixed powder is compression-molded by an extruder, a roller compactor, a disk pelleter or the like to prepare a molded body having a molding density of 1.5 g / cc or more. The fact is that the firing is completed in an oxygen-containing gas, the reaction is completed in a short time, and the lithium manganese spinel oxide having a uniform particle size distribution can be produced by crushing.

【0018】一般に焼成時の固相反応は、原料粉末粒子
同士の接点での相互拡散によって進行するものと考えら
れている。本発明者らは、リチウム化合物と三酸化二マ
ンガンの場合、リチウムの融点が三酸化二マンガンの融
点より大幅に低く、リチウムの拡散の方がマンガンの拡
散よりも容易であり、主にリチウムが三酸化二マンガン
粒子の中へ拡散することで反応が進行するものと考えて
いる。この考えに基ずけば、リチウム化合物の粒子を小
さくするよりも、三酸化二マンガン粒子を微細にした方
が反応が完結するのに必要なリチウムの拡散距離が短く
てすむため、短時間でその反応が完結するものと思われ
る。そこで、BET比表面積が50m2/g以上である三
酸化二マンガン粒子粉末をマンガン原料として用いる
と、焼成時にリチウムとの反応が速やかに進行(即ち、
マンガン原料の反応性が向上)し、短時間でその反応が
完結するものと考えられる。
It is generally considered that the solid phase reaction during firing proceeds by mutual diffusion at the contact point between the raw material powder particles. The present inventors have found that, in the case of a lithium compound and dimanganese trioxide, the melting point of lithium is significantly lower than the melting point of dimanganese trioxide, and diffusion of lithium is easier than diffusion of manganese. It is thought that the reaction proceeds by diffusing into dimanganese trioxide particles. Based on this idea, making the dimanganese trioxide particles finer requires a shorter diffusion distance of lithium to complete the reaction than making the lithium compound particles smaller. The reaction seems to be complete. Therefore, when dimanganese trioxide particles having a BET specific surface area of 50 m 2 / g or more are used as a manganese raw material, the reaction with lithium proceeds rapidly during firing (ie,
It is considered that the reactivity of the manganese raw material is improved) and the reaction is completed in a short time.

【0019】また、原料粉末の粒度が微細であり反応性
に富んでいることと、混合粉末に対して1〜30重量%
の水分を含有させて、この混合粉末を圧縮成型して成型
密度1.5g/cc以上の成型体を作成することにより、
粒度分布の揃ったリチウムマンガンスピネル酸化物粒子
が生成するものと考えられる。圧縮成型の際に、水分を
含まないドライの粉末では粒子粉末が滑りにくく、従っ
て系全体に圧縮圧力が均一に伝達しにくいため、圧縮密
度のバラツキが生じる。これに対し、系内に特定量の水
分を含ませることで粒子粉末が滑りやすくなり、系全体
に圧縮圧力が均一に伝達し均一な成型体ができるため
に、それを焼成し、粉砕して得られるリチウムマンガン
スピネル酸化物粒子の粒度分布が揃ったものとなるもの
と考えられる。
Further, the raw material powder has a fine particle size and is highly reactive, and 1 to 30% by weight based on the mixed powder.
By compressing and molding this mixed powder to produce a molded body having a molding density of 1.5 g / cc or more.
It is considered that lithium manganese spinel oxide particles having a uniform particle size distribution are formed. At the time of compression molding, dry powder containing no water causes the particle powder to be less slippery, and thus it is difficult to uniformly transmit the compression pressure to the entire system, and therefore, the compression density varies. On the other hand, by containing a specific amount of water in the system, the particle powder becomes slippery, and the compression pressure is uniformly transmitted to the entire system to form a uniform molded body. It is considered that the obtained lithium manganese spinel oxide particles have a uniform particle size distribution.

【0020】[0020]

【実施例】以下、本発明を実施例に基づいて更に詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。なお、反応生成物である粒子粉末の同定及
びその結晶構造の解析は、X線回折(RIGAKU, Mn-filte
red Fe-Kα, 40kV and 20mA)により調べた。また、粒子
の形態は走査型電子顕微鏡により観察した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The identification of the reaction product particle powder and the analysis of its crystal structure were performed by X-ray diffraction (RIGAKU, Mn-filte
red Fe-Kα, 40 kV and 20 mA). The morphology of the particles was observed with a scanning electron microscope.

【0021】実施例1 マンガン原料粉末として、BET比表面積50m2/g以
上の三酸化二マンガン粒子粉末(γ−Mn2 3 )3
0.95gと水酸化リチウム1水和物(LiOH・H2
O)9.05g(Li/Mnモル比=0.55)を機械
的に混合し、得られた混合粉末に対して5重量%の水分
を噴霧した。この粉末をローラーコンパクターにて圧縮
成型し、成型密度2.2g/ccの成型体を作成した。こ
の成型体を電気炉に入れて650℃に加熱し、空気中で
10時間焼成した。得られた粉末を乳鉢にて粉砕して黒
色粉末を得た。得られた黒色粉末は、図1のX線回折図
に示す通り、リチウムマンガンスピネル酸化物(Li
1+X Mn2-X 4 )粉末であり、その粒子は図2の走査
型電子顕微鏡写真に示すように粒度の揃ったものであっ
た。
Example 1 Dimanganese trioxide particle powder (γ-Mn 2 O 3 ) 3 having a BET specific surface area of 50 m 2 / g or more was used as a manganese raw material powder.
0.95 g and lithium hydroxide monohydrate (LiOH.H 2
O) 9.05 g (Li / Mn molar ratio = 0.55) was mechanically mixed, and 5% by weight of water was sprayed on the obtained mixed powder. This powder was compression-molded with a roller compactor to prepare a molded body having a molding density of 2.2 g / cc. The molded body was placed in an electric furnace, heated to 650 ° C., and fired in air for 10 hours. The obtained powder was ground in a mortar to obtain a black powder. As shown in the X-ray diffraction diagram of FIG. 1, the obtained black powder was made of lithium manganese spinel oxide (Li
1 + X Mn 2-X O 4 ) powder, and the particles were uniform in particle size as shown in the scanning electron micrograph of FIG.

【0022】次に、以上のようにして得られたリチウム
マンガンスピネル酸化物の電極活物質としてその電気化
学特性をポテンシャルスイープ法により評価した。測定
用正極電極として、リチウムマンガンスピネル酸化物
に、バインダーとしてポリテトラフルオロエチレン、導
電材としてケッチェンブラックをリチウムマンガンスピ
ネル酸化物に対して各々10重量%混合し、この混合物
を0.1g秤量し、集電体としてチタンのメッシュに充
電し、作用電極とした。負極電極として、金属リチウム
箔をステンレス鋼メッシュに充填した。更に参照電極と
してはリチウム金属を用いた。過塩素酸リチウム(Li
ClO4 )を、プロピレンカルボネート、ジメトキシエ
タンを体積比で1:1に混合した溶媒中に1Mの濃度で
溶解させたものを電解質として用いた。
Next, the electrochemical properties of the lithium manganese spinel oxide obtained as described above as an electrode active material were evaluated by a potential sweep method. Lithium manganese spinel oxide as a positive electrode for measurement, polytetrafluoroethylene as a binder, and ketjen black as a conductive material were mixed at 10% by weight with respect to the lithium manganese spinel oxide, and 0.1 g of this mixture was weighed. Then, the titanium mesh was charged as a current collector to form a working electrode. As a negative electrode, a metal lithium foil was filled in a stainless steel mesh. Further, lithium metal was used as a reference electrode. Lithium perchlorate (Li
A solution obtained by dissolving ClO 4 ) at a concentration of 1 M in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1 was used as an electrolyte.

【0023】以上の測定用正極作用電極、負極、参照電
極、電解質を用いて電気化学測定セルを構成した。この
電気化学セルを用い、金属リチウム電極基準で2.5〜
4.2Vの電位範囲、電流0.5mA/cm2 にて充放電曲
線を調べた。このリチウムマンガンスピネル酸化物の電
気化学的活性の指標として、この充放電の電気容量を求
めたところ、122mA/gであった。
An electrochemical measurement cell was constructed using the above-mentioned positive electrode working electrode for measurement, negative electrode, reference electrode and electrolyte. Using this electrochemical cell, 2.5 to 2.5
The charge / discharge curve was examined in a potential range of 4.2 V and a current of 0.5 mA / cm 2 . When the electric capacity of this charge / discharge was determined as an index of the electrochemical activity of this lithium manganese spinel oxide, it was 122 mA / g.

【0024】実施例2〜5、比較例1〜4 三酸化二マンガン原料粉末の粒度、含有水分量、成型密
度、焼成温度、及び焼成時間を表1に示す如く変化させ
た以外は、前記実施例1と同様にして反応生成物粉末を
得た。この時の反応生成条件及び得られた反応生成物の
特性を表1に示した。実施例2〜5で得られた粒子粉末
は、いずれもリチウムマンガンスピネル酸化物(Li
1+X Mn2-X 4 )と同型の構造を有しており、粒度分
布が揃っている粒子からなることが認められた。一方、
比較例1〜2で得られた粒子粉末は、リチウムマンガン
スピネル酸化物と三酸化二マンガンとの混合物であっ
た。また、比較例3で得られた粉末は、リチウムマンガ
ンスピネル酸化物と同型の構造を有しているが、粒度分
布が均斉でない粒子からなっていた。更に、比較例4で
得られた粉末は、リチウムマンガンスピネル酸化物とL
2 MnO3 との混合物であった。表1には、前記実施
例1と同様にして調べた充放電容量も示した。これらの
結果より、実施例1〜5で得られたリチウムマンガンス
ピネル酸化物を用いた場合の充放電容量は、比較例1〜
4のものに比べて大きな値を示しており、本発明によ
り、高い電気化学的活性を示すリチウムマンガンスピネ
ル酸化物が得られることがわかる。
Examples 2 to 5 and Comparative Examples 1 to 4 The same procedures as described above were carried out except that the particle size, water content, molding density, firing temperature and firing time of the dimanganese trioxide raw material powder were changed as shown in Table 1. A reaction product powder was obtained in the same manner as in Example 1. Table 1 shows the reaction production conditions and the characteristics of the obtained reaction products. The particle powders obtained in Examples 2 to 5 were all lithium manganese spinel oxides (Li
1 + X Mn 2-X O 4 ), and was confirmed to be composed of particles having a uniform particle size distribution. on the other hand,
The particle powders obtained in Comparative Examples 1 and 2 were a mixture of lithium manganese spinel oxide and dimanganese trioxide. The powder obtained in Comparative Example 3 had the same structure as that of the lithium manganese spinel oxide, but was composed of particles having an uneven particle size distribution. Further, the powder obtained in Comparative Example 4 was composed of lithium manganese spinel oxide and L
It was a mixture with i 2 MnO 3 . Table 1 also shows the charge / discharge capacity examined in the same manner as in Example 1. From these results, the charge / discharge capacity when the lithium manganese spinel oxide obtained in Examples 1 to 5 was used was as follows:
The value is larger than that of the sample No. 4, which indicates that the present invention can provide a lithium manganese spinel oxide having high electrochemical activity.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明によれば、短時間の焼成によって
粒度の揃ったリチウムマンガンスピネル酸化物粒子粉末
を提供することが可能である。また、本発明により得ら
れるリチウムマンガンスピネル酸化物粒子粉末は、リチ
ウム電池の正極活物質として作用し、起電力が高く、高
エネルギー密度化が可能なリチウム電池の正極活物質用
材料として有用である。
According to the present invention, it is possible to provide lithium manganese spinel oxide particles having a uniform particle size by firing for a short time. In addition, the lithium manganese spinel oxide particles obtained by the present invention act as a positive electrode active material of a lithium battery, have a high electromotive force, and are useful as a material for a positive electrode active material of a lithium battery capable of increasing energy density. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたリチウムマンガンスピネル
酸化物粒子粉末のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a lithium manganese spinel oxide particle powder obtained in Example 1.

【図2】実施例1で得られたリチウムマンガンスピネル
酸化物の走査型電子顕微鏡写真(10000倍)であ
る。
FIG. 2 is a scanning electron micrograph (× 10000) of the lithium manganese spinel oxide obtained in Example 1.

フロントページの続き (72)発明者 畑谷 光昭 山口県小野田市新沖1丁目1番1号 戸田 工業株式会社小野田開発センター内Continuation of the front page (72) Inventor Mitsuaki Hataya 1-1-1 Shinoki, Onoda-shi, Yamaguchi Prefecture Toda Kogyo Co., Ltd. Onoda Development Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 BET比表面積が50m2/g以上である
三酸化二マンガン粒子粉末とリチウム化合物とをLi/
Mn(モル比)が0.50〜0.60の範囲内で混合
し、該混合粉末に対して1〜30重量%の水分を添加
し、該水分含有混合粉末を圧縮成型して成型密度1.5
g/cc以上の成型体を得、該成型体を酸素含有ガス中に
て焼成した後粉砕することを特徴とするリチウムマンガ
ンスピネル酸化物粒子粉末の製造法。
1. A method according to claim 1, wherein dimanganese trioxide particles having a BET specific surface area of 50 m 2 / g or more and a lithium compound are mixed with Li /
Mn (molar ratio) is mixed within the range of 0.50 to 0.60, 1 to 30% by weight of water is added to the mixed powder, and the water-containing mixed powder is compression-molded to a molding density of 1 .5
A method for producing lithium manganese spinel oxide particles, characterized in that a molded body having a g / cc or more is obtained, and the molded body is baked in an oxygen-containing gas and then pulverized.
JP13139198A 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder Expired - Fee Related JP4066510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13139198A JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13139198A JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Publications (2)

Publication Number Publication Date
JPH11302019A true JPH11302019A (en) 1999-11-02
JP4066510B2 JP4066510B2 (en) 2008-03-26

Family

ID=15056877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13139198A Expired - Fee Related JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Country Status (1)

Country Link
JP (1) JP4066510B2 (en)

Also Published As

Publication number Publication date
JP4066510B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4949561B2 (en) Titanium dioxide powder as lithium ion secondary battery electrode active material production raw material, lithium titanate as lithium ion secondary battery electrode active material, and method for producing the same
US6794036B2 (en) Active material of positive electrode for non-aqueous electrolyte secondary battery and method for preparing the same and non-aqueous electrolyte secondary battery using the same
JP5367719B2 (en) Process for producing electrode active materials for lithium ion batteries
JP4254267B2 (en) Lithium manganese composite oxide granule secondary particles, method for producing the same, and use thereof
KR100490708B1 (en) Process for preparing lithium/nickel/cobalt composite oxide and cathode active material for rechargeable battery
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
EP1491504B1 (en) Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP4986098B2 (en) Positive electrode for non-aqueous lithium secondary battery and non-aqueous lithium secondary battery using the same
JP2000281354A (en) Layer rock salt type oxide particulate powder and its production
JP3894778B2 (en) Lithium titanate and lithium battery using the same
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
JP6586220B2 (en) Lithium metal composite oxide with layer structure
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
US6103213A (en) Process for producing lithium-cobalt oxide
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
KR102636609B1 (en) positive electrode active material
JPH1179751A (en) Production of lithium-nickel oxide particulate powder
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production
JP3429633B2 (en) Method for producing spherical lithium / nickel composite oxide and nonaqueous electrolyte battery using the same as positive electrode
JP4058797B2 (en) Method for producing lithium cobalt oxide particle powder
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
JPH11343120A (en) Production of spinel oxide particulate powder
JPH0676824A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4066510B2 (en) Method for producing lithium manganese spinel oxide particle powder
JP3610439B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees