JP4066510B2 - Method for producing lithium manganese spinel oxide particle powder - Google Patents

Method for producing lithium manganese spinel oxide particle powder Download PDF

Info

Publication number
JP4066510B2
JP4066510B2 JP13139198A JP13139198A JP4066510B2 JP 4066510 B2 JP4066510 B2 JP 4066510B2 JP 13139198 A JP13139198 A JP 13139198A JP 13139198 A JP13139198 A JP 13139198A JP 4066510 B2 JP4066510 B2 JP 4066510B2
Authority
JP
Japan
Prior art keywords
lithium
powder
spinel oxide
manganese spinel
lithium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13139198A
Other languages
Japanese (ja)
Other versions
JPH11302019A (en
Inventor
龍哉 中村
亮尚 梶山
弘 高浜
光昭 畑谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP13139198A priority Critical patent/JP4066510B2/en
Publication of JPH11302019A publication Critical patent/JPH11302019A/en
Application granted granted Critical
Publication of JP4066510B2 publication Critical patent/JP4066510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムマンガンスピネル酸化物粒子粉末の製造法に関し、更に詳しくは、短時間で焼成でき、粒度が揃った、特にリチウム電池の正極活物質として有用なリチウムマンガンスピネル酸化物粒子粉末の製造法に関するものである。
【0002】
【従来の技術】
近年、パーソナルコンピューター、携帯電話等のポータブル機器の開発に伴って、その電源としての電池の需要が高まっている。特に、リチウム電池は、リチウムが原子量が小さく、かつ、イオン化エネルギーが大きい物質であることに起因して、起電力が高く、高エネルギー密度化が可能な電池が期待できることから各方面で盛んに研究が行われている。
リチウム電池に用いられる正極活物質としては、4V程度の高電圧を発生させることが可能なリチウムコバルト酸化物(LiCoO2 )、リチウムニッケル酸化物(LiNiO2 )、リチウムマンガンスピネル酸化物(Li1+X Mn2-X 4 )等複合酸化物の研究が盛んに行われている。これらの化合物は、コバルト、ニッケル、マンガンを含む酸化物原料粉末とリチウム化合物粉末とを混合し、500℃以上の高温で焼成することにより得られている。
【0003】
しかしながら、この高温焼成法においては、固相反応時の酸化コバルト、酸化ニッケル、酸化マンガン粒子粉末の反応性が低いため、長時間焼成することが必要であり、この高温での長時間焼成によりリチウムが蒸発する。そのため、Liが欠損して組成が変化し易く、安定した品質のリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガンスピネル酸化物が得られにくいという問題がある。
【0004】
また、これらの複合酸化物は、その粉末をバインダー中に分散させて、銅などの金属板に塗布し乾燥させて電池の正極として用いられているが、高温で長時間焼成して生成した複合酸化物は、粉末粒子同士が強固に融着しているので、正極活物質として使用するのに十分な粉末とするためには強力な粉砕が必要となり、エネルギーコストが高くなるばかりでなく、粉砕の媒体が磨耗して複合酸化物粉末中に混入するなどの問題点が指摘されている。
【0005】
さらには、これらの正極活物質粉末は上記の如くバインダー中に分散させて、銅などの金属板に塗布・乾燥させて電池の正極として用いるものであるが、塗膜中での粒子粉末の充填度が高い程、電池の容量が高くなることから、複合酸化物の粒子形、粒度が揃っていることが重要である。
【0006】
以上のような背景から、短時間で焼成できるとともに、粒度分布が狭く、粒度が揃った、正極活物質用材料粉末として有用なリチウムマンガンスピネル酸化物の製造法が求められている。
【0007】
【発明が解決しようとする課題】
本発明は、比較的低温でかつ短時間の焼成反応によって、粒度分布が狭く、粒度の揃った、リチウム電池の正極活物質として有用なリチウムマンガンスピネル酸化物の製造法を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち、本発明は、BET比表面積が50m2/g以上である三酸化二マンガン粒子粉末とリチウム化合物とをLi/Mn(モル比)が0.50〜0.60の範囲内で混合し、該混合粉末に対して1〜30重量%の水分を添加し、該水分含有混合粉末を圧縮成型して成型密度1.5g/cc以上の成型体を得、該成型体を酸素含有ガス中にて焼成した後粉砕することを特徴とするリチウムマンガンスピネル酸化物粒子粉末の製造法を内容とする。
尚、本発明において、BET比表面積は窒素吸着法により測定した値である。
【0009】
【発明の実施の形態】
本発明に用いられる三酸化二マンガン(Mn2 3 )粒子粉末は、BET比表面積が50m2/g以上であることが必要である。
BET比表面積が50m2/g未満では、目的とするリチウムマンガンスピネル酸化物の他に正極活性物質でない原料の三酸化二マンガンが残存する。BET比表面積の上限は特に制限されないが、取り扱い上の観点から100m2/g程度が好ましい。また、三酸化二マンガン粒子粉末は粒度の均斉なものが好ましい。
【0010】
本発明におけるBET比表面積50m2/g以上で、粒度分布の均斉な三酸化二マンガン粒子粉末は、マンガン塩水溶液と中和以上の過剰なアルカリ水溶液を混合して得られるマンガン(II)水酸化物の懸濁液を加熱しながら、酸素含有ガス、例えば空気を通気して、マンガンイオンを酸化することで沈澱生成させ、濾別・水洗・乾燥する方法、炭酸マンガンを酸素含有ガス、例えば空気中で400〜850℃程度で加熱し熱分解する方法等により得ることができるが、前者の方法で得られるものが粒度が微細で反応性に富む点で好都合である。
【0011】
本発明に用いられるリチウム化合物としては、炭酸リチウム、酸化リチウム、水酸化リチウム、水酸化リチウム1水和物等が挙げられ、これらは単独または2種以上組み合わせて用いることができる。
【0012】
本発明におけるリチウム化合物と三酸化二マンガンの混合比は、リチウムとマンガンとのモル比(Li/Mn)で0.50〜0.60の範囲である。リチウムが上記範囲よりも不足する場合は、リチウムマンガンスピネル酸化物の他に正極活物質でない原料の三酸化二マンガンが残存し、この三酸化二マンガンを除去することが極めて困難であるため、この三酸化二マンガンを含む粉末を用いて正極を構成した場合は、良好な電池特性、即ち、リチウムイオン導電性を有する電解液中での電気化学的活性が得られにくい。一方、リチウムが上記範囲よりも過剰な場合は、リチウムマンガンスピネル酸化物の他に正極活物質でない物質、例えば炭酸リチウム、或いはLi2 MnO3 が存在し、これらの炭酸リチウム、Li2 MnO3 も除去することが極めて困難であるため、これらを含む粉末を用いて正極を構成した場合、同様に良好な電池特性、電気化学的活性が得られにくい。
【0013】
次に、三酸化二マンガン粒子粉末とリチウム化合物との混合粉末に対して1〜30重量%、好ましくは10〜25重量%の水分を添加して、この水分を含有させた混合粉末を押出成形機、ローラーコンパクター、ディスクペレッター等により圧縮成型し、成型密度1.5g/cc以上、好ましくは2〜5g/ccの成型体を作成した後に、酸素含有ガス、例えば空気中にて焼成する。
【0014】
混合粉末に対して水分の量が1重量%未満であると、成型体の強度が十分に得られないためハンドリングしにくい上に、成型体中での圧縮密度にバラツキが生じるため、これが原因となって焼成後に粉砕して得られるリチウムマンガンスピネル酸化物粒子粉末の粒度分布が広くなってしまう。一方、水分が30重量%を越えると水溶性のリチウム化合物が流出しやすくなり、その結果、組成が変化し、リチウムマンガンスピネル酸化物粒子粉末の品質の安定性に欠ける。
【0015】
また、成型密度が1.5g/cc未満の成型体を焼成した場合には、リチウムマンガンスピネル酸化物の粒成長が十分でないため、塗布膜としたときの膜中の充填度が十分なものが得られない。成型密度の上限は特に制限されないが、余り大きくなると製造が困難となるので通常5g/cc、好ましくは3g/cc程度が適当である。
【0016】
本発明における混合粉末の焼成温度は、通常500〜800℃、好ましくは600〜750℃の範囲であり、その焼成時間は通常2〜20時間、好ましくは5〜10時間である。
焼成した成型体は粉砕して粒子粉末とされる。粉砕方法は特に制限されず、通常の粉砕方法が用いられる。
上記の如くして得られるリチウムマンガンスピネル酸化物はLi1+x Mn2-x 4 で表され、xは電池特性の点から0〜0.1の範囲が好適である。
【0017】
【作用】
本発明において最も重要な点は、BET比表面積が50m2/g以上である三酸化二マンガン粒子粉末をマンガン原料として用いて、これとリチウム化合物とを混合し、この混合粉末に対して1〜30重量%の水分を含有させて、この混合粉末を押出成形機、ローラーコンパクター、ディスクペレッター等により圧縮成型して成型密度1.5g/cc以上の成型体を作成し、その後、酸素含有ガス中にて焼成することにより、短時間でその反応が完結し、しかる後に粉砕することにより目的とする粒度分布の揃ったリチウムマンガンスピネル酸化物を生成させることができるという事実である。
【0018】
一般に焼成時の固相反応は、原料粉末粒子同士の接点での相互拡散によって進行するものと考えられている。本発明者らは、リチウム化合物と三酸化二マンガンの場合、リチウムの融点が三酸化二マンガンの融点より大幅に低く、リチウムの拡散の方がマンガンの拡散よりも容易であり、主にリチウムが三酸化二マンガン粒子の中へ拡散することで反応が進行するものと考えている。この考えに基ずけば、リチウム化合物の粒子を小さくするよりも、三酸化二マンガン粒子を微細にした方が反応が完結するのに必要なリチウムの拡散距離が短くてすむため、短時間でその反応が完結するものと思われる。そこで、BET比表面積が50m2/g以上である三酸化二マンガン粒子粉末をマンガン原料として用いると、焼成時にリチウムとの反応が速やかに進行(即ち、マンガン原料の反応性が向上)し、短時間でその反応が完結するものと考えられる。
【0019】
また、原料粉末の粒度が微細であり反応性に富んでいることと、混合粉末に対して1〜30重量%の水分を含有させて、この混合粉末を圧縮成型して成型密度1.5g/cc以上の成型体を作成することにより、粒度分布の揃ったリチウムマンガンスピネル酸化物粒子が生成するものと考えられる。圧縮成型の際に、水分を含まないドライの粉末では粒子粉末が滑りにくく、従って系全体に圧縮圧力が均一に伝達しにくいため、圧縮密度のバラツキが生じる。これに対し、系内に特定量の水分を含ませることで粒子粉末が滑りやすくなり、系全体に圧縮圧力が均一に伝達し均一な成型体ができるために、それを焼成し、粉砕して得られるリチウムマンガンスピネル酸化物粒子の粒度分布が揃ったものとなるものと考えられる。
【0020】
【実施例】
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
なお、反応生成物である粒子粉末の同定及びその結晶構造の解析は、X線回折(RIGAKU, Mn-filtered Fe-Kα, 40kV and 20mA)により調べた。また、粒子の形態は走査型電子顕微鏡により観察した。
【0021】
実施例1
マンガン原料粉末として、BET比表面積50m2/g以上の三酸化二マンガン粒子粉末(γ−Mn2 3 )30.95gと水酸化リチウム1水和物(LiOH・H2 O)9.05g(Li/Mnモル比=0.55)を機械的に混合し、得られた混合粉末に対して5重量%の水分を噴霧した。この粉末をローラーコンパクターにて圧縮成型し、成型密度2.2g/ccの成型体を作成した。この成型体を電気炉に入れて650℃に加熱し、空気中で10時間焼成した。得られた粉末を乳鉢にて粉砕して黒色粉末を得た。
得られた黒色粉末は、図1のX線回折図に示す通り、リチウムマンガンスピネル酸化物(Li1+X Mn2-X 4 )粉末であり、その粒子は図2の走査型電子顕微鏡写真に示すように粒度の揃ったものであった。
【0022】
次に、以上のようにして得られたリチウムマンガンスピネル酸化物の電極活物質としてその電気化学特性をポテンシャルスイープ法により評価した。測定用正極電極として、リチウムマンガンスピネル酸化物に、バインダーとしてポリテトラフルオロエチレン、導電材としてケッチェンブラックをリチウムマンガンスピネル酸化物に対して各々10重量%混合し、この混合物を0.1g秤量し、集電体としてチタンのメッシュに充電し、作用電極とした。負極電極として、金属リチウム箔をステンレス鋼メッシュに充填した。更に参照電極としてはリチウム金属を用いた。過塩素酸リチウム(LiClO4 )を、プロピレンカルボネート、ジメトキシエタンを体積比で1:1に混合した溶媒中に1Mの濃度で溶解させたものを電解質として用いた。
【0023】
以上の測定用正極作用電極、負極、参照電極、電解質を用いて電気化学測定セルを構成した。この電気化学セルを用い、金属リチウム電極基準で2.5〜4.2Vの電位範囲、電流0.5mA/cm2 にて充放電曲線を調べた。このリチウムマンガンスピネル酸化物の電気化学的活性の指標として、この充放電の電気容量を求めたところ、122mA/gであった。
【0024】
実施例2〜5、比較例1〜4
三酸化二マンガン原料粉末の粒度、含有水分量、成型密度、焼成温度、及び焼成時間を表1に示す如く変化させた以外は、前記実施例1と同様にして反応生成物粉末を得た。この時の反応生成条件及び得られた反応生成物の特性を表1に示した。
実施例2〜5で得られた粒子粉末は、いずれもリチウムマンガンスピネル酸化物(Li1+X Mn2-X 4 )と同型の構造を有しており、粒度分布が揃っている粒子からなることが認められた。
一方、比較例1〜2で得られた粒子粉末は、リチウムマンガンスピネル酸化物と三酸化二マンガンとの混合物であった。また、比較例3で得られた粉末は、リチウムマンガンスピネル酸化物と同型の構造を有しているが、粒度分布が均斉でない粒子からなっていた。更に、比較例4で得られた粉末は、リチウムマンガンスピネル酸化物とLi2 MnO3 との混合物であった。
表1には、前記実施例1と同様にして調べた充放電容量も示した。これらの結果より、実施例1〜5で得られたリチウムマンガンスピネル酸化物を用いた場合の充放電容量は、比較例1〜4のものに比べて大きな値を示しており、本発明により、高い電気化学的活性を示すリチウムマンガンスピネル酸化物が得られることがわかる。
【0025】
【表1】

Figure 0004066510
【0026】
【発明の効果】
本発明によれば、短時間の焼成によって粒度の揃ったリチウムマンガンスピネル酸化物粒子粉末を提供することが可能である。また、本発明により得られるリチウムマンガンスピネル酸化物粒子粉末は、リチウム電池の正極活物質として作用し、起電力が高く、高エネルギー密度化が可能なリチウム電池の正極活物質用材料として有用である。
【図面の簡単な説明】
【図1】実施例1で得られたリチウムマンガンスピネル酸化物粒子粉末のX線回折図である。
【図2】実施例1で得られたリチウムマンガンスピネル酸化物の走査型電子顕微鏡写真(10000倍)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing lithium manganese spinel oxide particle powder, and more particularly, to produce lithium manganese spinel oxide particle powder that can be fired in a short time and has a uniform particle size, particularly useful as a positive electrode active material for a lithium battery. It is about the law.
[0002]
[Prior art]
In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as a power source has increased. In particular, lithium batteries are actively researched in various fields because lithium is a substance with a low atomic weight and high ionization energy, and a battery with high electromotive force and high energy density can be expected. Has been done.
As the positive electrode active material used for the lithium battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese spinel oxide (Li 1+ ) capable of generating a high voltage of about 4V are used. studies of X Mn 2-X O 4) or the like composite oxide has been actively conducted. These compounds are obtained by mixing an oxide raw material powder containing cobalt, nickel, and manganese and a lithium compound powder, and firing at a high temperature of 500 ° C. or higher.
[0003]
However, in this high-temperature firing method, since the reactivity of the cobalt oxide, nickel oxide, and manganese oxide particles during the solid-phase reaction is low, it is necessary to fire for a long time. Evaporates. Therefore, there is a problem that Li is deficient and the composition easily changes, and it is difficult to obtain lithium cobalt oxide, lithium nickel oxide, and lithium manganese spinel oxide of stable quality.
[0004]
In addition, these composite oxides are dispersed in a binder, applied to a metal plate such as copper and dried to be used as a positive electrode of a battery. Since the oxide particles are firmly fused to each other, strong crushing is required to make the powder sufficient for use as the positive electrode active material, which not only increases the energy cost but also crushes. It has been pointed out that the medium is worn and mixed into the composite oxide powder.
[0005]
Furthermore, these positive electrode active material powders are dispersed in a binder as described above, applied to a metal plate such as copper and dried to be used as a positive electrode of a battery. The higher the degree, the higher the capacity of the battery. Therefore, it is important that the composite oxide has a uniform particle shape and particle size.
[0006]
In view of the above background, there is a demand for a method for producing a lithium manganese spinel oxide useful as a positive electrode active material powder that can be fired in a short time, has a narrow particle size distribution, and has a uniform particle size.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a lithium manganese spinel oxide useful as a positive electrode active material of a lithium battery having a narrow particle size distribution and uniform particle size by a firing reaction at a relatively low temperature for a short time. To do.
[0008]
[Means for Solving the Problems]
That is, in the present invention, a manganese trioxide particle powder having a BET specific surface area of 50 m 2 / g or more and a lithium compound are mixed within a range of Li / Mn (molar ratio) of 0.50 to 0.60, 1 to 30% by weight of water is added to the mixed powder, and the water-containing mixed powder is compression molded to obtain a molded body having a molding density of 1.5 g / cc or more, and the molded body is placed in an oxygen-containing gas. The method comprises producing a lithium manganese spinel oxide particle powder characterized by pulverizing after firing.
In the present invention, the BET specific surface area is a value measured by a nitrogen adsorption method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The dimanganese trioxide (Mn 2 O 3 ) particle powder used in the present invention needs to have a BET specific surface area of 50 m 2 / g or more.
When the BET specific surface area is less than 50 m 2 / g, in addition to the target lithium manganese spinel oxide, raw material dimanganese trioxide that is not a positive electrode active material remains. The upper limit of the BET specific surface area is not particularly limited, but is preferably about 100 m 2 / g from the viewpoint of handling. Further, the manganese dioxide trioxide powder preferably has a uniform particle size.
[0010]
The manganese trioxide powder having a BET specific surface area of 50 m 2 / g or more and a uniform particle size distribution in the present invention is obtained by mixing a manganese salt aqueous solution and an excess alkaline aqueous solution of neutralization or more. A method in which an oxygen-containing gas, for example, air is ventilated while a suspension of the product is heated to oxidize manganese ions to form precipitates, which is filtered, washed, and dried. Manganese carbonate is converted to an oxygen-containing gas, for example, air. Among them, it can be obtained by a method of heating at about 400 to 850 ° C. and thermally decomposing, but the former method is advantageous in that the particle size is fine and the reactivity is high.
[0011]
Examples of the lithium compound used in the present invention include lithium carbonate, lithium oxide, lithium hydroxide, lithium hydroxide monohydrate and the like, and these can be used alone or in combination of two or more.
[0012]
The mixing ratio of the lithium compound and dimanganese trioxide in the present invention is in the range of 0.50 to 0.60 in terms of the molar ratio of lithium to manganese (Li / Mn). When lithium is deficient in the above range, since raw material dimanganese trioxide which is not a positive electrode active material remains in addition to lithium manganese spinel oxide, it is extremely difficult to remove this dimanganese trioxide. When a positive electrode is formed using a powder containing dimanganese trioxide, it is difficult to obtain good battery characteristics, that is, electrochemical activity in an electrolytic solution having lithium ion conductivity. On the other hand, when lithium is in excess of the above range, there is a material other than lithium manganese spinel oxide that is not a positive electrode active material, such as lithium carbonate or Li 2 MnO 3 , and these lithium carbonate and Li 2 MnO 3 are also present. Since it is extremely difficult to remove, when a positive electrode is formed using powder containing these, it is difficult to obtain good battery characteristics and electrochemical activity as well.
[0013]
Next, 1 to 30% by weight, preferably 10 to 25% by weight of water is added to the mixed powder of the dimanganese trioxide particles and the lithium compound, and the mixed powder containing this water is extruded. After compression molding with a machine, a roller compactor, a disk pelleter or the like to form a molded body having a molding density of 1.5 g / cc or more, preferably 2 to 5 g / cc, it is fired in an oxygen-containing gas such as air.
[0014]
If the amount of water is less than 1% by weight with respect to the mixed powder, it is difficult to handle because the strength of the molded body is not sufficiently obtained, and the compression density in the molded body varies, which is the cause. Thus, the particle size distribution of the lithium manganese spinel oxide particle powder obtained by pulverization after firing becomes wide. On the other hand, when the water content exceeds 30% by weight, the water-soluble lithium compound is likely to flow out. As a result, the composition changes and the quality of the lithium manganese spinel oxide particle powder is not stable.
[0015]
In addition, when a molded body having a molding density of less than 1.5 g / cc is fired, the lithium manganese spinel oxide does not have sufficient grain growth. I can't get it. The upper limit of the molding density is not particularly limited, but if it becomes too large, it becomes difficult to produce, so usually 5 g / cc, preferably about 3 g / cc is appropriate.
[0016]
The firing temperature of the mixed powder in the present invention is usually in the range of 500 to 800 ° C., preferably 600 to 750 ° C., and the firing time is usually 2 to 20 hours, preferably 5 to 10 hours.
The fired molded body is pulverized into particle powder. The pulverization method is not particularly limited, and a normal pulverization method is used.
The lithium manganese spinel oxide obtained as described above is represented by Li 1 + x Mn 2−x O 4 , and x is preferably in the range of 0 to 0.1 from the viewpoint of battery characteristics.
[0017]
[Action]
In the present invention, the most important point is that a manganese trioxide particle powder having a BET specific surface area of 50 m 2 / g or more is used as a manganese raw material, and this is mixed with a lithium compound. 30% by weight of water is contained, and this mixed powder is compression molded with an extruder, roller compactor, disk pelleter, etc. to produce a molded body having a molding density of 1.5 g / cc or more, and then an oxygen-containing gas The fact that the reaction is completed in a short time by firing inside, and then the desired lithium manganese spinel oxide with uniform particle size distribution can be produced by grinding.
[0018]
In general, the solid phase reaction during firing is considered to proceed by mutual diffusion at the contact points between the raw material powder particles. In the case of lithium compounds and dimanganese trioxide, the present inventors have found that the melting point of lithium is significantly lower than that of dimanganese trioxide, and lithium diffusion is easier than that of manganese. It is thought that the reaction proceeds by diffusing into dimanganese trioxide particles. Based on this idea, the lithium diffusion distance required to complete the reaction is shorter when the manganese dioxide particles are made finer than when the lithium compound particles are made smaller. The reaction seems to be complete. Accordingly, when a manganese trioxide particle powder having a BET specific surface area of 50 m 2 / g or more is used as a manganese raw material, the reaction with lithium proceeds rapidly during firing (ie, the reactivity of the manganese raw material is improved), and the short The reaction is thought to be completed in time.
[0019]
Further, the raw material powder has a fine particle size and is rich in reactivity, and 1 to 30% by weight of water is contained in the mixed powder, and this mixed powder is compression molded to a molding density of 1.5 g / It is considered that lithium manganese spinel oxide particles having a uniform particle size distribution are produced by forming a molded body of cc or more. At the time of compression molding, dry powder that does not contain moisture makes it difficult for the particle powder to slip, and therefore it is difficult to uniformly transmit the compression pressure to the entire system, resulting in variations in compression density. On the other hand, by containing a specific amount of moisture in the system, the particle powder becomes slippery, and the compression pressure is uniformly transmitted to the entire system to form a uniform molded body. It is considered that the obtained lithium manganese spinel oxide particles have a uniform particle size distribution.
[0020]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited only to these Examples.
The identification of the particle powder as a reaction product and the analysis of the crystal structure were examined by X-ray diffraction (RIGAKU, Mn-filtered Fe-Kα, 40 kV and 20 mA). The morphology of the particles was observed with a scanning electron microscope.
[0021]
Example 1
As manganese raw material powder, 30.95 g of dimanganese trioxide particles (γ-Mn 2 O 3 ) having a BET specific surface area of 50 m 2 / g or more and 9.05 g of lithium hydroxide monohydrate (LiOH · H 2 O) ( Li / Mn molar ratio = 0.55) was mechanically mixed, and 5% by weight of water was sprayed on the obtained mixed powder. This powder was compression molded with a roller compactor to prepare a molded body having a molding density of 2.2 g / cc. This molded body was put into an electric furnace, heated to 650 ° C., and fired in air for 10 hours. The obtained powder was pulverized in a mortar to obtain a black powder.
The obtained black powder is a lithium manganese spinel oxide (Li 1 + X Mn 2−X O 4 ) powder as shown in the X-ray diffraction diagram of FIG. 1, and the particles are scanning electron micrographs of FIG. As shown in FIG.
[0022]
Next, as an electrode active material of the lithium manganese spinel oxide obtained as described above, its electrochemical characteristics were evaluated by a potential sweep method. As a positive electrode for measurement, lithium manganese spinel oxide, polytetrafluoroethylene as a binder, and ketjen black as a conductive material are mixed in an amount of 10% by weight with respect to lithium manganese spinel oxide, and 0.1 g of this mixture is weighed. The titanium mesh was charged as a current collector to obtain a working electrode. As a negative electrode, a metal lithium foil was filled in a stainless steel mesh. Further, lithium metal was used as a reference electrode. A solution obtained by dissolving lithium perchlorate (LiClO 4 ) at a concentration of 1 M in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 1: 1 was used as an electrolyte.
[0023]
An electrochemical measurement cell was constructed using the above-described positive electrode for measurement, negative electrode, reference electrode, and electrolyte. Using this electrochemical cell, a charge / discharge curve was examined in a potential range of 2.5 to 4.2 V with a current of 0.5 mA / cm 2 based on a metal lithium electrode. As an index of the electrochemical activity of the lithium manganese spinel oxide, the charge / discharge capacitance was determined to be 122 mA / g.
[0024]
Examples 2-5, Comparative Examples 1-4
A reaction product powder was obtained in the same manner as in Example 1 except that the particle size, water content, molding density, firing temperature, and firing time of the dimanganese trioxide raw material powder were changed as shown in Table 1. Table 1 shows the reaction product conditions and the characteristics of the obtained reaction product.
The particle powders obtained in Examples 2 to 5 all have the same type of structure as lithium manganese spinel oxide (Li 1 + X Mn 2−X O 4 ), and have a uniform particle size distribution. It was recognized that
On the other hand, the particle powder obtained in Comparative Examples 1 and 2 was a mixture of lithium manganese spinel oxide and dimanganese trioxide. The powder obtained in Comparative Example 3 had the same type structure as the lithium manganese spinel oxide, but consisted of particles with non-uniform particle size distribution. Furthermore, the powder obtained in Comparative Example 4 was a mixture of lithium manganese spinel oxide and Li 2 MnO 3 .
Table 1 also shows the charge / discharge capacity examined in the same manner as in Example 1. From these results, the charge / discharge capacity in the case of using the lithium manganese spinel oxide obtained in Examples 1 to 5 shows a larger value than that of Comparative Examples 1 to 4, and according to the present invention, It turns out that the lithium manganese spinel oxide which shows high electrochemical activity is obtained.
[0025]
[Table 1]
Figure 0004066510
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the lithium manganese spinel oxide particle powder with which the particle size was uniform by baking for a short time. In addition, the lithium manganese spinel oxide particle powder obtained by the present invention acts as a positive electrode active material for a lithium battery, has a high electromotive force, and is useful as a material for a positive electrode active material for a lithium battery capable of increasing the energy density. .
[Brief description of the drawings]
1 is an X-ray diffraction pattern of a lithium manganese spinel oxide particle powder obtained in Example 1. FIG.
2 is a scanning electron micrograph (10,000 magnifications) of the lithium manganese spinel oxide obtained in Example 1. FIG.

Claims (1)

BET比表面積が50m2/g以上である三酸化二マンガン粒子粉末とリチウム化合物とをLi/Mn(モル比)が0.50〜0.60の範囲内で混合し、該混合粉末に対して1〜30重量%の水分を添加し、該水分含有混合粉末を圧縮成型して成型密度1.5g/cc以上の成型体を得、該成型体を酸素含有ガス中にて焼成した後粉砕することを特徴とするリチウムマンガンスピネル酸化物粒子粉末の製造法。A manganese dioxide trioxide powder having a BET specific surface area of 50 m 2 / g or more and a lithium compound are mixed within a range of Li / Mn (molar ratio) of 0.50 to 0.60. 1 to 30% by weight of water is added, the moisture-containing mixed powder is compression molded to obtain a molded body having a molding density of 1.5 g / cc or more, and the molded body is fired in an oxygen-containing gas and then pulverized. A process for producing lithium manganese spinel oxide particle powder, characterized in that
JP13139198A 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder Expired - Fee Related JP4066510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13139198A JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13139198A JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Publications (2)

Publication Number Publication Date
JPH11302019A JPH11302019A (en) 1999-11-02
JP4066510B2 true JP4066510B2 (en) 2008-03-26

Family

ID=15056877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13139198A Expired - Fee Related JP4066510B2 (en) 1998-04-23 1998-04-23 Method for producing lithium manganese spinel oxide particle powder

Country Status (1)

Country Link
JP (1) JP4066510B2 (en)

Also Published As

Publication number Publication date
JPH11302019A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
EP0918041A1 (en) Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
KR101589294B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
CA2214199C (en) Lithium secondary battery
JP2000281354A (en) Layer rock salt type oxide particulate powder and its production
US6103213A (en) Process for producing lithium-cobalt oxide
JP2002279985A (en) Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
EP2594529A1 (en) Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
WO2000006496A1 (en) Process for producing spinel type lithium manganate
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP7187896B2 (en) Lithium-nickel composite oxide precursor mixture and method for producing lithium-nickel composite oxide
JP3048352B1 (en) Method for producing lithium manganate
JPH1179751A (en) Production of lithium-nickel oxide particulate powder
JP2000264636A (en) Lithium manganese spinel oxide particle powder and its production
JP4058797B2 (en) Method for producing lithium cobalt oxide particle powder
JP4066510B2 (en) Method for producing lithium manganese spinel oxide particle powder
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
JPH04198028A (en) Lithium manganese double oxide, its production and use
JP3822437B2 (en) Method for producing lithium manganate and lithium battery using the lithium manganate
JPH0676824A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH11343120A (en) Production of spinel oxide particulate powder
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees