JPH1129986A - Laminated rubber bearing body and its manufacture - Google Patents

Laminated rubber bearing body and its manufacture

Info

Publication number
JPH1129986A
JPH1129986A JP18537997A JP18537997A JPH1129986A JP H1129986 A JPH1129986 A JP H1129986A JP 18537997 A JP18537997 A JP 18537997A JP 18537997 A JP18537997 A JP 18537997A JP H1129986 A JPH1129986 A JP H1129986A
Authority
JP
Japan
Prior art keywords
damper member
hollow portion
seismic isolation
cavity
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18537997A
Other languages
Japanese (ja)
Inventor
Tatsuji Matsumoto
達治 松本
Fumio Sekido
文雄 関堂
Akemi Kawanabe
あけみ 川那辺
Teruo Sasaki
輝男 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP18537997A priority Critical patent/JPH1129986A/en
Publication of JPH1129986A publication Critical patent/JPH1129986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a laminated rubber bearing body to exhibit a high- performance damping characteristic by surely restraining slip between a damper member and a base isolating member. SOLUTION: A laminated rubber bearing body has, between supports secured to a structure, a base isolating member 5 in which deformable parts 10 made of rubber and deformation-resistant parts 11 made of a hard material are laminated alternately and which is provided with a cavity part 13 forming a hollow part closed by the spports, and has a damper member 6 disposed in the hollow part. The damper member 6 is closely filled into the hollow part, and the volume VL of the damper member 6 sealed inside the cavity part 13 is greater than 1.0 times but not greater than 1.05 times the volume VA of the cavity part 13 before the damper member 6 has been sealed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば地震、機械
振動、或いは交通振動等により、構造物、各種機器類及
び美術工芸品類等に入力される振動の加速度を低減させ
る免震・防震支承に使用される積層ゴム支承体およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation / seismic isolation bearing for reducing the acceleration of vibrations input to structures, various devices, arts and crafts, etc. due to, for example, earthquakes, mechanical vibrations, or traffic vibrations. The present invention relates to a laminated rubber bearing used and a method for producing the same.

【0002】[0002]

【従来の技術】例えば、建築物、橋、タンク等の構造
物、及び電子計算機、医療機器、保安機器、精密製造機
器、分析解析機器等の機器類、或いは美術工芸品類など
に加わる振動の加速度を低減する免震・防震支承体とし
て、例えば特開昭62−225666号公報、実開昭4
−46247号公報、及び実用新案登録第302144
7号公報に記載される如き積層ゴム支承体が知られてい
る。
2. Description of the Related Art Acceleration of vibration applied to structures such as buildings, bridges, tanks, etc., and devices such as electronic computers, medical devices, security devices, precision manufacturing devices, analytical and analytical devices, and arts and crafts. For example, Japanese Patent Application Laid-Open No. 62-225666,
-46247, and Utility Model Registration No. 302144
There is known a laminated rubber bearing body as described in Japanese Patent Application Laid-Open No. 7-107.

【0003】このような積層ゴム支承体aは、例えば図
11に略示するように、鋼板などの硬質板b1とゴム板
b2とを交互に積層した免震部材bと、この免震部材b
に形成した中空部cに封入される鉛プラグ等のダンパー
部材dとを具えており、前記免震部材bによって、構造
物等の重量を支持するとともに基礎から構造物等へ作用
する作用力を緩衝している。他方、ダンパー部材dは、
前記作用力が免震部材bにより緩衝された後に生ずる構
造物の振動エネルギーを吸収して構造物自体の振動を減
衰させる効果を有する。
As shown schematically in FIG. 11, for example, such a laminated rubber bearing body a includes a seismic isolation member b in which hard plates b1 such as steel plates and rubber plates b2 are alternately laminated, and a seismic isolation member b
And a damper member d such as a lead plug enclosed in a hollow portion c formed in the hollow portion c. The seismic isolation member b supports the weight of the structure and the like, and acts on the structure and the like from the foundation. Buffered. On the other hand, the damper member d
This has the effect of absorbing the vibration energy of the structure generated after the acting force is buffered by the seismic isolation member b, thereby attenuating the vibration of the structure itself.

【0004】[0004]

【発明が解決しようとする課題】しかし、このようなダ
ンパー部材dを封入した構造の積層ゴム支承体aでは、
封入前における前記中空部cの体積と、封入されるダン
パー部材dの体積との比率d/cが、積層ゴム支承体a
の減衰性能に大きく関与することとなる。すなわち、中
空部cの体積に満たない体積のダンパー部材dを封入し
た時には、免震部材bの内周面とダンパー部材の外周面
との間や、ダンパー部材dの上下端面と支持板eとの間
に隙間が発生することとなり、免震部材bの剪断変形が
ダンパー部材dに正確に伝達されず、減衰性能を著しく
低下させる。
However, in the laminated rubber support a having such a structure in which the damper member d is enclosed,
The ratio d / c of the volume of the hollow portion c before the encapsulation and the volume of the damper member d to be encapsulated is the laminated rubber support a
Greatly affects the damping performance of the device. That is, when the damper member d having a volume less than the volume of the hollow portion c is sealed, the gap between the inner peripheral surface of the seismic isolation member b and the outer peripheral surface of the damper member, and the upper and lower end surfaces of the damper member d and the support plate e are not included. A gap is generated between them, and the shear deformation of the seismic isolation member b is not accurately transmitted to the damper member d, and the damping performance is significantly reduced.

【0005】しかしながら、中空部cの体積とダンパー
部材dの体積とが等しく、前記隙間が発生しない場合に
おいても、免震部材bの剪断変形時、前記免震部材bと
ダンパー部材dとの間に滑りが発生し伝達ロスを招くな
ど所望の減衰性能が得られ難いことが判明した。
[0005] However, even when the volume of the hollow portion c is equal to the volume of the damper member d and the gap does not occur, even when the seismic isolation member b is sheared and deformed, the distance between the seismic isolation member b and the damper member d is reduced. It was found that it was difficult to obtain the desired damping performance, for example, slippage occurred and transmission loss was caused.

【0006】従って、本発明者は、封入前における中空
部cの体積よりむしろ大きい体積のダンパー部材dを封
入させ、このダンパー部材dの一部を免震部材bの内周
面における硬質板b1間に食い込ませることによって、
免震部材bとの滑りを確実に抑制し、高性能の減衰特性
を発揮しうることを究明し得た。
Accordingly, the present inventor encloses a damper member d having a larger volume than the volume of the hollow portion c before encapsulation, and partially disposes the damper member d on the hard plate b1 on the inner peripheral surface of the seismic isolation member b. By letting you bite in between,
It has been found that slippage with the seismic isolation member b can be reliably suppressed and high-performance damping characteristics can be exhibited.

【0007】他方、ダンパー部材dの一部を硬質板b1
間に食い込ませるためには、封入時にダンパー部材dを
圧縮し半径方向に膨張させる必要があるが、高い圧縮圧
力或いは早い圧縮速度での圧縮は、局部的な応力を発生
させるなど不均一な膨張を招き、減衰性能を減じる他、
強度、耐久性を損ねるなどの問題もある。
On the other hand, a part of the damper member d is replaced with a hard plate b1.
It is necessary to compress the damper member d and expand in the radial direction at the time of encapsulation in order to penetrate into the gap, but compression at a high compression pressure or at a high compression speed causes uneven expansion such as generation of local stress. In addition to reducing the damping performance,
There are also problems such as impairing strength and durability.

【0008】そこで本発明は、ダンパー部材の空洞部に
封入される体積VLを、封入される前の無負荷状態での
免震部材の空洞部の体積VAの1.0倍〜1.05倍以
下とすることを基本として、ダンパー部材と免震部材と
の間の滑りを確実に抑制でき、高性能の減衰特性を発揮
しうる積層ゴム支承体およびその製造方法の提供を目的
としている。
Accordingly, the present invention is to reduce the volume VL enclosed in the cavity of the damper member to 1.0 to 1.05 times the volume VA of the cavity of the seismic isolation member in an unloaded state before being enclosed. It is an object of the present invention to provide a laminated rubber bearing body capable of reliably suppressing slippage between a damper member and a seismic isolation member and exhibiting high-performance damping characteristics, and a method of manufacturing the same.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本願の第1発明は、2つの構造体の間に介在しその
間を免震する積層ゴム支承体であって、 前記構造体に
固定される支持具間に、ゴム材からなるシート状の変形
部と硬質材からなるシート状の耐変形部とを交互に積層
した免震用の積層基体に、その変形部、耐変形部を通り
しかも前記支持具によって閉止される中空部を形成する
空洞部を設けた免震部材、及び前記中空部に配される振
動エネルギー吸収用のダンパー部材を具えるとともに、
前記ダンパー部材は前記中空部に密に充填され、しかも
ダンパー部材の前記空洞部に封入される体積VLを、前
記ダンパー部材が封入される前の無負荷状態での免震部
材の空洞部の体積VAの1.0倍より大かつ1.05倍
以下としたことを特徴としたものであります。
In order to achieve the above object, a first invention of the present application is a laminated rubber bearing that is interposed between two structures and seismically isolated therebetween. Between the fixed supports, a deformed portion and a deformable portion are formed on a seismic isolation laminated base in which a sheet-shaped deformed portion made of a rubber material and a sheet-shaped deformable portion made of a hard material are alternately laminated. A seismic isolation member provided with a hollow portion that forms a hollow portion that is closed by the support tool, and a damper member for absorbing vibration energy disposed in the hollow portion,
The damper member is densely filled in the hollow portion, and the volume VL sealed in the hollow portion of the damper member is reduced by the volume of the hollow portion of the seismic isolation member in a no-load state before the damper member is sealed. It is characterized by being greater than 1.0 times VA and less than 1.05 times VA.

【0010】なお前記ダンパー部材の封入前において、
前記空洞部とダンパー部材とを、断面略相似形としかつ
ダンパー部材の直径を、空洞部の直径の0.9倍以上か
つ1.0倍よりも小とすることが、免震部材の内周面に
傷等の損傷を招くことなく、ダンパー部材を封入でき、
強度及び耐久性の低下を抑制しうるため好ましい。
Before the damper member is sealed,
It is preferable that the hollow portion and the damper member have substantially similar cross sections and the diameter of the damper member is 0.9 times or more and smaller than 1.0 times the diameter of the hollow portion. The damper member can be enclosed without causing damage such as scratches on the surface,
It is preferable because a decrease in strength and durability can be suppressed.

【0011】又前記支持具の少なくとも一方を、基板と
この基板に遊嵌されるセンターキャップとで形成し、し
かもダンパー部材を充填する際、このセンターキャップ
の押下げによって加圧及びその後の応力緩和の2以上の
サイクルを繰り返しながら徐々に圧縮することが、免震
部材の耐変形部に変形を招くことなく、ダンパー部材
を、その全長に亘って半径方向に均一に膨張させながら
封入することができ、封入精度を高めて減衰性能の向上
を確実に達成させるとともに、強度及び耐久性の低下防
止を行いうるため好ましい。
At least one of the supports is formed of a substrate and a center cap that is loosely fitted to the substrate, and when filling the damper member, the center cap is pressed down to reduce the pressure and the subsequent stress relief. By gradually compressing while repeating the two or more cycles, it is possible to seal the damper member while uniformly expanding in the radial direction over the entire length thereof without causing deformation of the deformation-resistant portion of the seismic isolation member. This is preferable because it is possible to improve the damping performance by increasing the encapsulation accuracy, and to prevent the strength and durability from decreasing.

【0012】又前記ダンパー部材を、少なくとも前記空
洞部に配される部分において、連続した一体品とするこ
とが、減衰性能の向上効果をさらに確実化しうるうえで
好ましい。
In addition, it is preferable that the damper member is formed as a continuous and integrated product at least in a portion disposed in the hollow portion, in order to further ensure the effect of improving the damping performance.

【0013】又本願の第2発明は、構造体に固定される
支持具間に、ゴム材からなるシート状の変形部と硬質材
からなるシート状の耐変形部とを交互に積層した免震用
の積層基体に、その変形部、耐変形部を通りしかも前記
支持具によって閉止される中空部を形成する空洞部を設
けた免震部材、及び前記中空部に配される振動エネルギ
ー吸収用のダンパー部材を具える積層ゴム支承体の製造
方法であって、前記ダンパー部材の前記空洞部内への充
填は、無負荷状態における免震部材の空洞部の体積VA
の1.0倍以上かつ1.05倍以下の体積VLを有する
ダンパー部材を用い、このダンパー部材のみに荷重を負
荷することにより該ダンパー部材を前記空洞部内に圧入
することを特徴としています。
Further, the second invention of the present application is a seismic isolation device in which a sheet-shaped deformed portion made of a rubber material and a sheet-shaped deformable portion made of a hard material are alternately stacked between supports fixed to a structure. A seismic isolation member provided with a hollow portion that forms a hollow portion that passes through the deformed portion, the deformable portion, and is closed by the support member, and a vibration energy absorbing device that is disposed in the hollow portion. A method of manufacturing a laminated rubber bearing body including a damper member, wherein the filling of the damper member into the hollow portion is performed by reducing the volume VA of the hollow portion of the seismic isolation member in a no-load state.
It is characterized by using a damper member having a volume VL of 1.0 times or more and 1.05 times or less of the above, and press-fitting the damper member into the cavity by applying a load only to the damper member.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を、図
示例とともに説明する。図1、2において積層ゴム支承
体1は、例えば基礎である下の構造体2Bと建築物等で
ある上の構造物2Aとにそれぞれ固定される上下の支持
具3A、3B間に、免震部材5とダンパー部材6とを設
けている。
Embodiments of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, a laminated rubber bearing 1 is, for example, a seismic isolation between upper and lower supports 3A and 3B fixed to a lower structure 2B as a foundation and an upper structure 2A such as a building. A member 5 and a damper member 6 are provided.

【0015】前記支持具3A、3Bは、その少なくとも
一方、本例では、上下の支持具3A、3Bを、各構造物
2A、2Bにボルトなどの固定金具を用いて固定される
板状の基板7と、この基板7の中心孔8に遊嵌されるこ
とにより該中心孔8を閉止するセンターキャップ9とで
形成している。なお中心孔8は、前記センターキャップ
9が嵌り込む大径部分8aの内側に、段差面8bを介し
て小径部分8cを設けている。
At least one of the supports 3A and 3B is a plate-like substrate in which the upper and lower supports 3A and 3B are fixed to the respective structures 2A and 2B using fixing fittings such as bolts. 7 and a center cap 9 for loosely fitting the center hole 8 of the substrate 7 to close the center hole 8. The center hole 8 is provided with a small-diameter portion 8c via a step surface 8b inside a large-diameter portion 8a into which the center cap 9 is fitted.

【0016】又前記免震部材5は、ゴム材からなるシー
ト状の変形部10と硬質材からなるシート状の耐変形部
11とを交互に積層した免震用の積層基体12からな
り、この積層基体12には、前記変形部10と耐変形部
11とを貫通して上下にのびることにより前記中心孔8
に連通する空洞部13が形成される。該空洞部13は、
前記小径部分8cと断面略同一形状をなし、この空洞部
13と小径部分8cとによって、ダンパー部材6が充填
される一連の中空部14を形成している。
The seismic isolation member 5 comprises a laminated base 12 for seismic isolation in which a sheet-like deformed portion 10 made of a rubber material and a sheet-shaped deformable portion 11 made of a hard material are alternately laminated. The laminated base 12 extends vertically through the deformable portion 10 and the deformation-resistant portion 11 so that the center hole 8 is formed.
Is formed. The cavity 13 is
The hollow portion 13 and the small diameter portion 8c form a series of hollow portions 14 in which the damper member 6 is filled.

【0017】前記耐変形部11は、例えば鋼板などの剛
性を有する金属製の板体からなり、本例では前記空洞部
形成用の孔部を中心に透設した例えば円板状に形成され
る。又変形部10としては、各種ゴム材料が使用できる
が、機械的強度、弾性率の長期安定性、変形能力の長期
安定性、耐クリープ性などに優れるものが必要であり、
例えば天然ゴム(NR)、クロロプレンゴム(CR)などが好ま
しく使用される。又変形部10の厚さT1は、耐変形部
の厚さT2より大、通常1.3〜2.0程度であって、
本例では、T1=4.2mm,T2=2.5mmのもの
を使用している。
The deformation-resistant portion 11 is made of a rigid metal plate such as a steel plate. In this embodiment, the deformation-resistant portion 11 is formed, for example, in a disk shape through the hole for forming the cavity. . Various rubber materials can be used as the deformed portion 10, but those having excellent mechanical strength, long-term stability of elastic modulus, long-term stability of deformability, and creep resistance are required.
For example, natural rubber (NR), chloroprene rubber (CR) and the like are preferably used. The thickness T1 of the deformable portion 10 is larger than the thickness T2 of the deformable portion, usually about 1.3 to 2.0,
In the present example, T1 = 4.2 mm and T2 = 2.5 mm are used.

【0018】又前記基板7と積層基体12との間、及び
積層基体12の変形部10と耐変形部11との間は、積
層後の前記変形部10のゴム加硫及び/又は接着剤を用
いて一体かつ強固に結合される。なお本例では、前記積
層基体12の外周には、変形部10及び耐変形部11を
被覆することによって、免震部材5を腐食、損傷などか
ら保護する耐候性に優れる例えばゴム製の保護層15を
形成している。
The rubber vulcanization and / or adhesive of the deformed portion 10 after lamination is applied between the substrate 7 and the laminated base 12 and between the deformed portion 10 and the deformation resistant portion 11 of the laminated base 12. It is integrally and firmly connected by using. In this example, the outer periphery of the laminated base 12 is covered with the deformable portion 10 and the deformable portion 11, thereby protecting the seismic isolation member 5 from corrosion, damage, and the like. 15 are formed.

【0019】前記ダンパー部材6は、塑性変形容易な金
属材、例えば鉛からなる直柱状体であり、前記中空部1
4内に、実質的に間隔を有することなく密に充填(封
入)される。
The damper member 6 is a straight columnar body made of a metal material that is easily plastically deformed, for example, lead.
4 is tightly filled (enclosed) with substantially no space.

【0020】この時、ダンパー部材6の前記空洞部13
に封入される体積VLは、ダンパー部材6の封入前にお
ける、無負荷状態での免震部材5の空洞部13の体積V
Aの1.0倍より大かつ1.05倍以下としている。よ
り詳しく説明すると、封入前の無負荷状態における空洞
部13の内周面は、図3(A) に示すように、前記変形部
10の内側面と耐変形部11の内側面とが実質的に整一
した、本例では、横断面円形の直筒状をなし、又この横
断面形状と前記小径部分8cの横断面形状とが一致して
いる。
At this time, the cavity 13 of the damper member 6 is
Is the volume V of the cavity 13 of the seismic isolation member 5 in a no-load state before the damper member 6 is sealed.
A is larger than 1.0 times and 1.05 times or less. More specifically, as shown in FIG. 3 (A), the inner peripheral surface of the cavity 13 in the no-load state before the encapsulation is substantially the inner surface of the deformable portion 10 and the inner surface of the deformable portion 11. In this example, the cross section is in the shape of a straight cylinder having a circular cross section, and the cross sectional shape matches the cross sectional shape of the small diameter portion 8c.

【0021】他方、封入後にあっては、VL>VA で
あることによって、ダンパー部材6は、空洞部13の内
周面を押圧し、図3(B) に示すように、前記体積の差
(VL−VA)に相当する量のダンパー部材6が、軟質
となる変形部10に食い込むことになる。このダンパー
部材6の食い込み部分6aは、波線状の輪郭線をなすと
ともに、硬質の耐変形部11間で挟まれて拘束されるた
め、封入後の空洞部13とダンパー部材6との間の滑り
が確実に抑制され、免震部材5の剪断変形がダンパー部
材6に伝達ロスを招くことなく正確に伝えられることに
より、減衰性能を大巾に向上できる。
On the other hand, after the encapsulation, since VL> VA, the damper member 6 presses the inner peripheral surface of the hollow portion 13, and as shown in FIG. The amount of the damper member 6 corresponding to (VL-VA) bites into the soft deformable portion 10. The biting portion 6a of the damper member 6 has a wavy contour and is restrained by being sandwiched between the hard deformation-resistant portions 11, so that the slippage between the hollow portion 13 and the damper member 6 after sealing is performed. Is reliably suppressed, and the shearing deformation of the seismic isolation member 5 is accurately transmitted to the damper member 6 without causing a transmission loss, so that the damping performance can be greatly improved.

【0022】なお前記ダンパー部材6の体積VLが、封
入前の空洞部13の体積VAの1.0倍以下の時には、
前記食い込みが発生しないため、図4に略示するよう
に、免震部材5とダンパー部材6との伝達ロスが増大し
て、減衰性能を大きく低下させる。逆に1.05倍を越
えると、減衰性能は高く維持されるものの、ダンパー部
材6の食い込み量が過大となって、変形部10と耐変形
部11との間の接着剥離を誘発させるとともに、耐変形
部材11に曲がり、捻れ等の変形を招き、強度、耐久性
を減じるとともに、免震部材5における振動緩衝効果を
低下させる。従って、体積VLの上限は、体積VAの
1.040倍以下、さらには1.035倍以下が好まし
く、又下限は、体積VAの1.010倍以上、さらには
1.020倍以上が好ましい。
When the volume VL of the damper member 6 is equal to or less than 1.0 times the volume VA of the cavity 13 before sealing,
Since the bite does not occur, as schematically shown in FIG. 4, the transmission loss between the seismic isolation member 5 and the damper member 6 increases, and the damping performance is greatly reduced. On the other hand, when it exceeds 1.05 times, although the damping performance is maintained high, the amount of penetration of the damper member 6 becomes excessive and induces the adhesion peeling between the deformed portion 10 and the deformable portion 11, and This causes the deformation-resistant member 11 to bend and deform, such as torsion, thereby reducing strength and durability, and lowering the vibration damping effect of the seismic isolation member 5. Therefore, the upper limit of the volume VL is preferably 1.040 times or less, more preferably 1.035 times or less of the volume VA, and the lower limit is preferably 1.010 times or more, more preferably 1.020 times or more of the volume VA.

【0023】又ダンパー部材6を耐変形部11間に食い
込ませるためには、封入時、ダンパー部材6を長さ方向
に圧縮して半径方向に膨張させることが必要となる。す
なわち、ダンパー部材6の封入は、図5に示すように、
予めセンターキャップ9の固着によって透孔8の一端
(例えば下端)を閉止した積層基体12を、加圧機Mの
下部ヘッドM1上に載置するとともに、この中空部14
内に、ダンパー部材6を挿入する。この挿入される圧縮
前のダンパー部材6は、その断面形状を、圧縮前の空洞
部13の断面形状と略相似形とした直柱体をなし、かつ
圧縮前のダンパー部材6の直径Dを、圧縮前の空洞部1
3の直径DRの0.9倍以上かつ1.0倍よりも小とし
ている。これによって、空洞部13の内周面に損傷を与
えることなく容易に挿入できる。なおダンパー部材6等
の断面形状は、本例の如き円形以外に、例えば4角形、
5角形等の多角形を含む非円形であっても良く、この
時、断面における最大巾を以て直径と呼ぶ。なお圧縮前
のダンパー部材6には、挿入容易とするために、その一
端又は両端に、面取り部を形成しても良いが、封入後も
この面取り部が残存するため、面取り部を設ける場合に
は、C5.0mm以下とすることが好ましい。
In order to make the damper member 6 bite between the deformable portions 11, it is necessary to compress the damper member 6 in the length direction and expand it in the radial direction at the time of sealing. That is, the sealing of the damper member 6 is performed as shown in FIG.
The laminated base 12 whose one end (for example, the lower end) of the through hole 8 is previously closed by fixing the center cap 9 is placed on the lower head M1 of the pressing machine M, and
The damper member 6 is inserted therein. The inserted non-compressed damper member 6 has a straight columnar shape whose cross-sectional shape is substantially similar to the cross-sectional shape of the hollow portion 13 before compression, and has a diameter D of the non-compressed damper member 6. Cavity 1 before compression
The diameter DR is 0.9 times or more and smaller than 1.0 times the diameter DR of No. 3. Thereby, it can be easily inserted without damaging the inner peripheral surface of the cavity 13. The cross-sectional shape of the damper member 6 and the like is not limited to a circle as in this example, but may be, for example,
It may be a non-circle including a polygon such as a pentagon, and at this time, the maximum width in the cross section is called a diameter. In addition, in order to facilitate insertion, the chamfered portion may be formed at one end or both ends of the damper member 6 before compression. However, since the chamfered portion remains even after sealing, when the chamfered portion is provided. Is preferably C5.0 mm or less.

【0024】なお、前記直径Dが直径DRの1.0倍以
上では、挿入時、空洞部13の内周面においてダンパー
部材6が変形部10を削るなどの損傷を招き、この損傷
が核となって変形部10と耐変形部11との剥離を誘発
するなど強度、耐久性を低下させる。又0.9倍未満の
時には、圧縮によりダンパー部材6を半径方向に膨張さ
せる率が不必要に増大するため、圧縮行程の作業性を著
しく阻害し、又均一な膨張を得られ難くする。従って、
前記直径Dは、直径DRより0.5〜1.0mmの範囲
で小とするのが好ましい。
If the diameter D is not less than 1.0 times the diameter DR, the damper member 6 may damage the deformed portion 10 on the inner peripheral surface of the cavity 13 at the time of insertion. As a result, the strength and durability are reduced, such as inducing delamination of the deformed portion 10 and the deformable portion 11. When the ratio is less than 0.9, the rate of expanding the damper member 6 in the radial direction by compression is unnecessarily increased, so that the workability in the compression stroke is significantly impaired, and uniform expansion is hardly obtained. Therefore,
The diameter D is preferably smaller than the diameter DR in the range of 0.5 to 1.0 mm.

【0025】又挿入されたダンパー部材6上には、上の
センターキャップ9が配され、これにより加圧機Mの上
部ヘッドM2の下降に伴うセンターキャップ9の押し下
げとともに、ダンパー部材6を圧縮する。言い換える
と、下部ヘッドM1上に載置される免震部材5には圧縮
力を負荷せず、無負荷状態を保ちつつ前記ダンパ部材6
のみに圧縮力を作用させ中空部14内に圧入する。
On the inserted damper member 6, an upper center cap 9 is arranged, which presses down the center cap 9 as the upper head M2 of the press machine M descends and compresses the damper member 6. In other words, no compressive force is applied to the seismic isolation member 5 placed on the lower head M1, and the damper member 6
A compressive force is applied only to this, and press-fits into the hollow portion 14.

【0026】この圧入方法によれば、中空部14の容積
を変化させることなく常に一定のものとし、ダンパー部
材6のみを圧縮変形させているため、均一な充填が行え
支承体の性能を安定化しうる。又この圧入方法によれ
ば、センターキャップ9のみの荷重負荷でよいので、装
置を小型化できかつエネルギーを節減しうるとともに、
コストダウンにも大きく貢献できる。なお従来法では、
積層ゴム支承体自体を荷重負荷し、ダンパー部材を封入
していたため、大がかりな専用の荷重負荷装置を要して
いた。
According to this press-fitting method, since the volume of the hollow portion 14 is always kept constant without changing, and only the damper member 6 is compressed and deformed, uniform filling can be performed and the performance of the support body can be stabilized. sell. Further, according to this press-fitting method, the load can be applied only to the center cap 9, so that the apparatus can be downsized and energy can be saved.
It can greatly contribute to cost reduction. In the conventional method,
Since the laminated rubber support itself was loaded and the damper member was sealed, a large-scale dedicated load-loading device was required.

【0027】又前記圧入では、前記ダンパー部材6の圧
縮歪(縦歪)を半径方向への膨張(横歪)に、全長に亘
って略均一に変換することが必要であり、従って、本例
では、最終充填圧力に至る間に、加圧及びその後の応力
緩和の2以上のサイクルを繰り返し、徐々に圧縮してい
る。より詳しくは、前記センターキャップ9が基板7内
に嵌り合い前記段差8bに当接する固定位置までの間の
圧縮を、例えば複数段階に分けて行うものであり、図6
(A) に略示するように、初期(第1)の強制加圧によっ
て所定長さの圧縮を行う第1の加圧ステップ16Aの
後、この圧縮高さを維持する第1の応力緩和ステップ1
7Aを行い、内部応力が緩和されて縦歪が横歪に変換さ
れるまで待機する。
In the press-fitting, it is necessary to convert the compression strain (longitudinal strain) of the damper member 6 into the radial expansion (lateral strain) substantially uniformly over the entire length. In this method, two or more cycles of pressurization and subsequent stress relaxation are repeated until the final filling pressure is reached, and the material is gradually compressed. More specifically, the compression between the center cap 9 and the fixed position where the center cap 9 is fitted into the substrate 7 and abuts on the step 8b is performed in, for example, a plurality of steps.
As schematically shown in (A), after a first pressurizing step 16A in which a predetermined length of compression is performed by an initial (first) forced pressurization, a first stress relaxation step in which this compression height is maintained 1
Perform 7A and wait until the internal stress is relaxed and the longitudinal strain is converted to a transverse strain.

【0028】この加圧ステップ16と応力緩和ステップ
17とからなるサイクルを2以上、例えば3サイクル行
い、最終(第3)の加圧ステップ16Cにより前記セン
ターキャップ9が固定位置に配された後の最終(第3)
の応力緩和ステップ17Cにより、応力緩和が平衡状態
に達しているかを確認する。この確認は、圧力降下が1
分間に0であることによって行う。なお各加圧ステップ
16においても前記応力緩和の速度を考慮し、圧縮速度
を充分に低速(例えば1500kgf/cm2 ・sec 以
下)で行うことが好ましく、又最終充填圧力は、160
0kgf/cm2 以下とすることが好ましい。なお圧縮速
度が2000kgf/cm2 ・sec を越えると、中空部1
4の上端近傍にダンパー部材6のかしめ状部分が形成さ
れ易く、圧縮を不均一化する恐れがある。又最終充填圧
力が2000kgf/cm2 より大の時、積層基体12の
耐変形部に曲がり、捻れ等の変形を招く。
The cycle consisting of the pressing step 16 and the stress relaxing step 17 is performed two or more times, for example, three cycles, and after the center cap 9 is arranged at the fixed position by the final (third) pressing step 16C. Final (third)
The stress relaxation step 17C confirms whether the stress relaxation has reached an equilibrium state. This check confirms that the pressure drop is 1
Performed by being 0 per minute. In each pressing step 16, it is preferable that the compression speed is sufficiently low (for example, 1500 kgf / cm 2 · sec or less) in consideration of the stress relaxation speed, and the final filling pressure is 160
Preferably, the pressure is 0 kgf / cm 2 or less. If the compression speed exceeds 2000 kgf / cm 2 · sec, the hollow part 1
A caulked portion of the damper member 6 is likely to be formed near the upper end of 4, and there is a possibility that the compression may be uneven. When the final filling pressure is more than 2000 kgf / cm 2 , the laminated base 12 bends in the deformation-resistant portion, causing deformation such as twisting.

【0029】又固定位置のセンターキャップ9と基板7
との間を溶接によって固定し、中空部14上端を閉じる
ことによってダンパー部材6を封入する。なおセンター
キャップ9には、図8に拡大して示すように、その外端
に、このセンターキャップ9の高さの10〜30%の高
さの面取り19が施され、この面取り19と基板7との
間の溝状部20に溶接材21が入り込むことによって、
確実に固定し、封入圧力によってセンターキャップ9が
押し上がるのを確実に防止する。
The fixed position of the center cap 9 and the substrate 7
Is fixed by welding, and the upper end of the hollow portion 14 is closed to enclose the damper member 6. As shown in FIG. 8, the center cap 9 is provided with a chamfer 19 at an outer end thereof at a height of 10 to 30% of the height of the center cap 9. The welding material 21 enters the groove 20 between
The center cap 9 is securely fixed to prevent the center cap 9 from being pushed up by the sealing pressure.

【0030】又前記ダンパー部材6が、指定の減衰性能
を発揮するためには、前記ダンパー部材6は、前記封入
状態において少なくとも前記空洞部13に配される部分
が、連続した一体品であることが必要である。言い換え
れば、小径部分8cに配される部分では、ダンパー部材
6は、薄板状の部材片に分割されていても良く、この部
材片の追加によって、ダンパー部材6の封入量である体
積の調節が可能となる。
In order for the damper member 6 to exhibit the specified damping performance, the damper member 6 must be a continuous and integral part at least at the portion disposed in the cavity 13 in the sealed state. is necessary. In other words, in the portion arranged in the small diameter portion 8c, the damper member 6 may be divided into thin plate-shaped member pieces, and by adding this member piece, adjustment of the volume, which is the sealing amount of the damper member 6, can be achieved. It becomes possible.

【0031】ここで、封入前における、空洞部13の体
積をVA、空洞部13の直径をDR、空洞部13の高さ
をHLとしたとき、 VA=π・DR2 ・HL/4 … 式(1) で表される。すなわち、VAは、積層ゴム基体12の形
成時の寸法によって決定される。 又封入後に空洞部1
3に封入されるダンパー部材6の体積VLは、封入時の
ダンパー部材6の有効直径をDo としたとき、 VL=(1.0〜1.05)・VA … 式(2) で表される。すなわちダンパー部材6の食い込み量VL
−VAを(0〜0.05)・VAの範囲で設定すること
によって、有効直径Do が決定される。又前記空洞部1
3に封入されるダンパー部材6の、封入前における直径
をD、長さをh’、ダンパー部材6のポアソン比(縦歪
/横歪)をνとしたとき、 ν={(Do −D)/Do }/{(h’−HL)/HL} … 式(3) で表される。なおダンパー部材6の材料を設定したと
き、例えば鉛にあってはポアソン比νは、0.44であ
り、又直径Dを前記DRの0.9倍〜1.0倍の範囲で
選択することにより、この選択値に応じて前記式(1) 〜
(3) によって、高さh’等の寸法が設定できる。なお、
材料となるダンパー部材6の全体積は、前記体積VLに
加えて、前記小径部分8cに充填される体積V V=π・DR2 ・(h1+h2)/4 が必要である。従って、実質的には、材料となるダンパ
ー部材6の全長hは、h’+DR2 ・(h1+h2)/
D2 となる。ここでh1、h2は、それぞれ、小径部分
8cの長さである。
Here, assuming that the volume of the cavity 13 before filling is VA, the diameter of the cavity 13 is DR, and the height of the cavity 13 is HL, VA = π · DR 2 · HL / 4. It is represented by (1). That is, VA is determined by the dimensions when the laminated rubber base 12 is formed. In addition, cavity 1 after encapsulation
The volume VL of the damper member 6 enclosed in 3 is represented by VL = (1.0 to 1.05) · VA, where Do is the effective diameter of the damper member 6 when enclosed. . That is, the bite amount VL of the damper member 6
By setting -VA in the range of (0-0.05) .VA, the effective diameter Do is determined. The cavity 1
Assuming that the diameter of the damper member 6 sealed in 3 before the sealing is D, the length is h ′, and the Poisson's ratio (longitudinal strain / lateral strain) of the damper member 6 is ν, ν = {(Do−D) / Do} / {(h′−HL) / HL}... When the material of the damper member 6 is set, for example, in the case of lead, the Poisson's ratio ν is 0.44, and the diameter D is selected in the range of 0.9 to 1.0 times the DR. According to the above formulas (1) to
According to (3), dimensions such as the height h ′ can be set. In addition,
The total volume of the damper member 6 which is a material needs to be the volume V V = π · DR 2 · (h1 + h2) / 4 filled in the small diameter portion 8c in addition to the volume VL. Therefore, substantially, the total length h of the damper member 6 as a material is h ′ + DR 2 · (h1 + h2) /
D2. Here, h1 and h2 are the lengths of the small diameter portion 8c, respectively.

【0032】なお、前記中空部14の内周面には、図9
(A) に示すように、微小振動緩衝用の内ゴム層22を形
成してもよい。この時にも同様に、ダンパー部材6は、
図9(B) の如く、封入後、耐変形部11間で半径方向に
食い込む食い込み部6aを波状に形成する。
The inner peripheral surface of the hollow portion 14 is
As shown in (A), an inner rubber layer 22 for buffering minute vibrations may be formed. At this time, similarly, the damper member 6
As shown in FIG. 9 (B), after enclosing, the biting portion 6a which bites in the radial direction between the deformation resistant portions 11 is formed in a wavy shape.

【0033】[0033]

【実施例】図1、2に示す構造をなす、積層ゴム支承体
を表1の仕様に基づき試作するとともに、各試作品を解
体し、ダンパー部材における食い込み部の形成の有無を
確認した。なお実施例1〜4及び比較例1〜3の積層ゴ
ム支承体の寸法は、φ240mm(外径)×110mm
(高さ)で有り、又実施例5〜9の積層ゴム支承体の寸
法は、φ600mm(外径)×250mm(高さ)であ
った。
EXAMPLES A laminated rubber bearing having the structure shown in FIGS. 1 and 2 was prototyped based on the specifications shown in Table 1, and each prototype was dismantled to confirm whether or not a biting portion was formed in the damper member. The dimensions of the laminated rubber supports of Examples 1 to 4 and Comparative Examples 1 to 3 are φ240 mm (outer diameter) × 110 mm.
(Height), and the dimensions of the laminated rubber supports of Examples 5 to 9 were φ600 mm (outer diameter) × 250 mm (height).

【0034】[0034]

【表1】 [Table 1]

【0035】表1の如く、実施例1〜9の積層ゴム支承
体は、ダンパー部材の周面に、波状の食い込み部が形成
され、免震部材との伝達ロスが抑制されているのがわか
る。
As shown in Table 1, in the laminated rubber bearings of Examples 1 to 9, it can be seen that the wavy digging portion is formed on the peripheral surface of the damper member, and the transmission loss with the seismic isolation member is suppressed. .

【0036】又実施例1の積層ゴム支承体に横方向力
(水平方向力)Fが生じた場合の、この横方向力Fと横
変位(水平方向変位)δとの関係を図10に、実線で示
すとともに、比VL/VAが1.0とした比較例3にお
ける横方向力Fと横変位(水平方向変位)δとの関係を
破線で示す。なお曲線内の面積が大なほど、振動エネル
ギーの吸収効果が高いことを意味し、実施例1が比較例
3より減衰性能に優れているのがわかる。
FIG. 10 shows the relationship between the lateral force (horizontal force) δ and the lateral displacement (horizontal displacement) δ when a lateral force (horizontal force) F is generated in the laminated rubber bearing member of the first embodiment. In addition to the solid line, the relationship between the lateral force F and the lateral displacement (horizontal displacement) δ in Comparative Example 3 in which the ratio VL / VA is 1.0 is indicated by a broken line. It is to be noted that the larger the area in the curve, the higher the effect of absorbing vibration energy, and it can be seen that Example 1 is superior to Comparative Example 3 in damping performance.

【0037】又なお実施例1〜4、及び比較例1〜3の
作成時における加圧工程を図6(A)〜(F) に示す。図6
(A) 〜(F) に示す如く、比VL/VAが大きくなるほ
ど、応力緩和時間が長くなり、圧縮行程に長い時間が必
要であることがわかる。又応力緩和による相対的な圧力
降下量は、図7に示すように、又比VL/VAが大きく
なるほど、入力された強制圧力値に対する圧力降下が大
きくなっている。
FIGS. 6 (A) to 6 (F) show the pressurizing steps during the production of Examples 1-4 and Comparative Examples 1-3. FIG.
As shown in (A) to (F), it can be seen that as the ratio VL / VA increases, the stress relaxation time becomes longer, and a longer time is required for the compression stroke. As shown in FIG. 7, the relative pressure drop due to stress relaxation is such that as the ratio VL / VA increases, the pressure drop with respect to the input forced pressure value increases.

【0038】[0038]

【発明の効果】叙上の如く第1発明の積層ゴム支承体
は、ダンパー部材の空洞部に封入される体積VLを、封
入前の空洞部の体積VAの1.0倍〜1.05倍以下と
しているため、ダンパー部材と免震部材との間の滑りを
確実に抑制でき、高性能の減衰特性を発揮できる。
As described above, in the laminated rubber bearing of the first invention, the volume VL sealed in the cavity of the damper member is 1.0 to 1.05 times the volume VA of the cavity before sealing. Because of the following, slip between the damper member and the seismic isolation member can be reliably suppressed, and high-performance damping characteristics can be exhibited.

【0039】又第2発明の積層ゴム支承体の製造方法
は、ダンパー部材の充填に際し、免震部材に圧縮力を負
荷しない無負荷状態を保ちつつ、ダンパ部材のみに圧縮
力を作用させて中空部内に圧入するため、装置を小型化
できかつエネルギーを節減しうるとともに、コストダウ
ンにも大きく貢献できる。従って、ダンパー部材の体積
VLを、前記空洞部の体積VAの1.0倍としたときに
も、装置の小型化等の前記効果を奏しうる。
In the method of manufacturing a laminated rubber bearing according to the second aspect of the present invention, when the damper member is filled, the hollow member is formed by applying a compressive force only to the damper member while maintaining a non-load state where no compressive force is applied to the seismic isolation member. Since the device is press-fitted into the unit, the size of the device can be reduced, energy can be saved, and cost can be greatly reduced. Therefore, even when the volume VL of the damper member is set to 1.0 times the volume VA of the hollow portion, the above-described effects such as miniaturization of the device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の積層ゴム支承体を示す断面
図である。
FIG. 1 is a sectional view showing a laminated rubber bearing according to one embodiment of the present invention.

【図2】その平面図である。FIG. 2 is a plan view thereof.

【図3】(A) は封入前における免震部材とダンパー部材
との関係を示す断面図、(B) は封入後における免震部材
とダンパー部材との関係を示す断面図である。
FIG. 3A is a cross-sectional view showing a relationship between a seismic isolation member and a damper member before sealing, and FIG. 3B is a cross-sectional view showing a relationship between the seismic isolation member and a damper member after sealing.

【図4】比VL/VAと振動エネルギ−吸収性との関係
を示す略図である。
FIG. 4 is a schematic diagram showing the relationship between the ratio VL / VA and vibration energy-absorption.

【図5】ダンパー部材の封入の工程を説明する断面図で
ある。
FIG. 5 is a cross-sectional view illustrating a step of enclosing a damper member.

【図6】(A) 〜(F) は、それぞれ実施例1〜4及び比較
例1〜2の作成時における加圧工程を説明する線図であ
る。
FIGS. 6 (A) to 6 (F) are diagrams illustrating a pressurizing step at the time of preparing Examples 1 to 4 and Comparative Examples 1 and 2, respectively.

【図7】応力緩和による相対的な圧力降下量と比VL/
VAとの関係を示す線図である。
FIG. 7 shows a relative pressure drop due to stress relaxation and a ratio VL /
FIG. 4 is a diagram showing a relationship with VA.

【図8】センターキャップを説明する断面図である。FIG. 8 is a sectional view illustrating a center cap.

【図9】(A) は免震部材の他の実施例における、封入前
の免震部材とダンパー部材との関係を示す断面図、(B)
は封入後の関係を示す断面図である。
FIG. 9A is a cross-sectional view showing the relationship between the seismic isolation member and the damper member before enclosing in another embodiment of the seismic isolation member, FIG.
FIG. 3 is a cross-sectional view showing the relationship after sealing.

【図10】積層ゴム支承体に作用する横方向力Fと横変
位(水平方向変位)δとの関係を示す線図である。
FIG. 10 is a diagram showing a relationship between a lateral force F acting on a laminated rubber bearing body and a lateral displacement (horizontal displacement) δ.

【図11】従来の積層ゴム支承体を説明する断面図であ
る。
FIG. 11 is a cross-sectional view illustrating a conventional laminated rubber bearing.

【符号の説明】[Explanation of symbols]

2A、2B 構造体 3A、3B 支持具 5 免震部材 6 ダンパー部材 7 基板 9 センターキャップ 10 変形部 11 耐変形部 12 積層基体 13 空洞部 14 中空部 2A, 2B Structure 3A, 3B Support 5 Seismic isolation member 6 Damper member 7 Substrate 9 Center cap 10 Deformation part 11 Deformation resistant part 12 Laminated base 13 Cavity part 14 Hollow part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】2つの構造体の間に介在しその間を免震す
る積層ゴム支承体であって、 前記構造体に固定される支持具間に、ゴム材からなるシ
ート状の変形部と硬質材からなるシート状の耐変形部と
を交互に積層した免震用の積層基体に、その変形部、耐
変形部を通りしかも前記支持具によって閉止される中空
部を形成する空洞部を設けた免震部材、及び前記中空部
に配される振動エネルギー吸収用のダンパー部材を具え
るとともに、 前記ダンパー部材は前記中空部に密に充填され、しかも
ダンパー部材の前記空洞部に封入される体積VLを、前
記ダンパー部材が封入される前の無負荷状態での免震部
材の空洞部の体積VAの1.0倍より大かつ1.05倍
以下としたことを特徴とする積層ゴム支承体。
1. A laminated rubber bearing interposed between two structures and seismically isolated between the two structures, wherein a sheet-shaped deformed portion made of a rubber material and a rigid member are interposed between supports fixed to the structures. A laminated body for seismic isolation, in which sheet-shaped deformation-resistant portions made of a material are alternately stacked, is provided with a cavity portion that passes through the deformation portion and the deformation-resistant portion and forms a hollow portion closed by the support. A seismic isolation member, and a damper member for absorbing vibration energy disposed in the hollow portion, wherein the damper member is densely filled in the hollow portion, and furthermore, has a volume VL sealed in the hollow portion of the damper member. Wherein the volume VA of the hollow portion of the seismic isolation member in a no-load state before the damper member is sealed is greater than 1.0 times and 1.05 times or less.
【請求項2】前記空洞部とダンパー部材とは、前記ダン
パー部材の封入前において、断面略相似形であって、ダ
ンパー部材の直径は、空洞部の直径の0.9倍以上かつ
1.0倍よりも小としたことを特徴とする請求項1記載
の積層ゴム支承体。
2. The method according to claim 1, wherein the cavity and the damper member are substantially similar in cross section before the damper member is sealed, and the diameter of the damper member is at least 0.9 times the diameter of the cavity and at least 1.0. 2. The laminated rubber bearing according to claim 1, wherein the thickness is smaller than twice.
【請求項3】前記支持具は、少なくともその一方が基板
と、この基板に遊嵌され前記中空部を閉止するセンター
キャップとからなり、かつ前記ダンパー部材は、前記中
空部に、最終充填圧力に至る間に、センターキャップの
押下げによって加圧及びその後の応力緩和の2以上のサ
イクルを繰り返し、徐々に圧縮されつつ充填されること
を特徴とする請求項1又は2記載の積層ゴム支承体。
3. The supporting tool comprises at least one of a substrate and a center cap which is loosely fitted to the substrate and closes the hollow portion, and the damper member is provided at the hollow portion with a final filling pressure. 3. The laminated rubber bearing body according to claim 1, wherein two or more cycles of pressurization and subsequent stress relaxation are repeated by pressing down the center cap, and gradually compressed and filled.
【請求項4】前記ダンパー部材は、少なくとも前記空洞
部に配される部分において、連続した一体品であること
を特徴とする請求項1、2又は3記載の積層ゴム支承
体。
4. The laminated rubber bearing according to claim 1, wherein the damper member is a continuous and integral product at least at a portion disposed in the hollow portion.
【請求項5】構造体に固定される支持具間に、ゴム材か
らなるシート状の変形部と硬質材からなるシート状の耐
変形部とを交互に積層した免震用の積層基体に、その変
形部、耐変形部を通りしかも前記支持具によって閉止さ
れる中空部を形成する空洞部を設けた免震部材、及び前
記中空部に配される振動エネルギー吸収用のダンパー部
材を具える積層ゴム支承体の製造方法であって、 前記ダンパー部材の前記空洞部内への充填は、無負荷状
態における免震部材の空洞部の体積VAの1.0倍以上
かつ1.05倍以下の体積VLを有するダンパー部材を
用い、このダンパー部材のみに荷重を負荷することによ
り該ダンパー部材を前記空洞部内に圧入することを特徴
とする積層ゴム支承体の製造方法。
5. A laminated base for seismic isolation in which a sheet-like deformed portion made of a rubber material and a sheet-shaped deformable portion made of a hard material are alternately laminated between supports fixed to a structure. A lamination comprising a seismic isolation member provided with a cavity forming a hollow portion passing through the deformable portion, the deformation-resistant portion and closed by the support, and a damper member arranged in the hollow portion for absorbing vibration energy A method of manufacturing a rubber bearing body, wherein the filling of the damper member into the cavity is performed in a volume VL of 1.0 to 1.05 times the volume VA of the cavity of the seismic isolation member in a no-load state. A method of manufacturing a laminated rubber bearing, characterized in that a damper member having the following is used, and a load is applied only to the damper member to press-fit the damper member into the hollow portion.
JP18537997A 1997-07-10 1997-07-10 Laminated rubber bearing body and its manufacture Pending JPH1129986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18537997A JPH1129986A (en) 1997-07-10 1997-07-10 Laminated rubber bearing body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18537997A JPH1129986A (en) 1997-07-10 1997-07-10 Laminated rubber bearing body and its manufacture

Publications (1)

Publication Number Publication Date
JPH1129986A true JPH1129986A (en) 1999-02-02

Family

ID=16169783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18537997A Pending JPH1129986A (en) 1997-07-10 1997-07-10 Laminated rubber bearing body and its manufacture

Country Status (1)

Country Link
JP (1) JPH1129986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2001343040A (en) * 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2005299762A (en) * 2004-04-09 2005-10-27 Sumitomo Metal Mining Co Ltd Manufacturing method for laminated rubber supporting body
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
CN106760840A (en) * 2016-11-30 2017-05-31 中国建筑第八工程局有限公司 Low Yield Point Steel consumes energy and particle energy-consumption damper

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2001343040A (en) * 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP4524862B2 (en) * 2000-06-01 2010-08-18 オイレス工業株式会社 Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method
JP2005299762A (en) * 2004-04-09 2005-10-27 Sumitomo Metal Mining Co Ltd Manufacturing method for laminated rubber supporting body
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
CN106760840A (en) * 2016-11-30 2017-05-31 中国建筑第八工程局有限公司 Low Yield Point Steel consumes energy and particle energy-consumption damper

Similar Documents

Publication Publication Date Title
KR100316196B1 (en) Isolation Device and Isolation System
AU680854B2 (en) Energy absorbers and methods of manufacture
AU620587B2 (en) Improvements in or relating to energy absorbers
NZ201015A (en) Building support:cyclic shear energy absorber
JPH06101740A (en) Lamination rubber support
JPS6117984B2 (en)
JPH11159573A (en) Manufacture of laminated rubber support body
JPH1129986A (en) Laminated rubber bearing body and its manufacture
EP3614017A1 (en) Seismic isolation support device
JP2010190409A (en) Seismic isolation device and building
JP3871393B2 (en) Insulating support device and seismic isolation structure using this support device
JP2006242240A (en) Energy absorbing device
JP4902330B2 (en) Seismic isolation devices and seismic isolation structures
JPH1130275A (en) Laminated rubber support body
JP3114624B2 (en) Seismic isolation device
JP3024562B2 (en) Seismic isolation device
CN210395706U (en) Buckling restraint with low-friction isolation layer
JPS62228729A (en) Vibration energy absorbing device
JP3039846B2 (en) Laminated rubber bearing
JP2001012545A (en) Laminated rubber bearing body
JP3988849B2 (en) Seismic isolation device
JP2006275213A (en) Method of manufacturing energy absorbing device
EP3614016A1 (en) Seismic isolation support device
JP2006009852A (en) Method of manufacturing laminated rubber bearing body, and laminated rubber bearing body
JP2000015740A (en) Rubber steel panel laminate for damping vibration, and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A02