JP4524862B2 - Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method - Google Patents

Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method Download PDF

Info

Publication number
JP4524862B2
JP4524862B2 JP2000164870A JP2000164870A JP4524862B2 JP 4524862 B2 JP4524862 B2 JP 4524862B2 JP 2000164870 A JP2000164870 A JP 2000164870A JP 2000164870 A JP2000164870 A JP 2000164870A JP 4524862 B2 JP4524862 B2 JP 4524862B2
Authority
JP
Japan
Prior art keywords
lead
laminated rubber
strut
struts
bearing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000164870A
Other languages
Japanese (ja)
Other versions
JP2001343040A (en
Inventor
寛行 大越
修一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000164870A priority Critical patent/JP4524862B2/en
Publication of JP2001343040A publication Critical patent/JP2001343040A/en
Application granted granted Critical
Publication of JP4524862B2 publication Critical patent/JP4524862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Springs (AREA)
  • Vibration Dampers (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造物を免震支持するための鉛支柱入り積層ゴム支承体の製造方法及びこの製造方法によって製造された鉛支柱入り積層ゴム支承体で免震支持された構造物に関する。
【0002】
【発明が解決しようとする課題】
鉛支柱入り積層ゴム支承体は、鋼鈑とゴム板とを交互に積層した積層ゴムと、この積層ゴム内に配した鉛支柱(鉛プラグ)とを具備しており、地盤等に設置された基礎と事業用ビル、事務所ビル、集合住宅、橋梁等の構造物との間に介在されて、地震において水平方向に剪断変形して構造物を大きく振動させないようにすると共に、構造物の振動を早期に減衰させるようになっている。
【0003】
斯かる鉛支柱入り積層ゴム支承体は、鋼鈑とゴム板とを交互に積層して未加硫の積層ゴムを準備し、この積層ゴムの積層方向に伸びて鋼鈑とゴム板とを貫通した貫通孔にプラグピン(金型ピン)を挿入し、斯かるプラグピンが挿入された未加硫の積層ゴムを金型内に配置して、鋼鈑とゴム板とが互いに加硫接着するように加圧下で加硫成形し、この加硫成形後にプラグピンを貫通孔から引き抜いて、代わりに当該貫通孔に鉛を圧入して加硫成形後の積層ゴムに鉛支柱を形成するようにして製造されている。
【0004】
ところで上記の製造方法では、プラグピン自体とその挿抜工程とを必要とするために多くの手間と費用がかかり、また、加硫成形後の積層ゴムにおけるその貫通孔に鉛を隙間(空間)が生じないように密に圧入する必要があるために、圧入作業に長時間を要する上にその作業が極めて困難である。
【0005】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、プラグピンの代わりに鉛支柱を用いることができ、而して、プラグピンとその挿抜工程とを省き得て、しかも、鉛の圧入作業時間を短縮できると共に、隙間なしに鉛支柱を貫通孔に配置することができる積層ゴム支承体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明による鋼鈑とゴム板とを交互に積層した積層ゴム内に鉛支柱を配した積層ゴム支承体の第一の態様の製造方法は、鋼鈑とゴム板とが交互に積層されていると共に、これら鋼鈑とゴム板との積層方向に伸びた貫通孔を有すると共に、この貫通孔に鉛支柱が配された未加硫の鉛支柱入り積層ゴムを準備する段階と、この未加硫の鉛支柱入り積層ゴムに積層方向の圧縮力を加えながら積層ゴムを加硫成形する段階と、加硫成形後の積層ゴムの端面から突出した鉛支柱を積層ゴムの貫通孔に押し込む段階とを具備している。
【0007】
第一の態様の積層ゴム支承体の製造方法によれば、貫通孔に鉛支柱が配された未加硫の積層ゴムに加硫成形を施すために、鉛支柱をプラグピンの代わりに用いることができ、而して、プラグピンとその挿抜工程とを省き得る上に、加硫成形後に縮んだ積層ゴムの端面から突出した鉛支柱を加圧して当該加硫成形後の積層ゴムの貫通孔に押し込むために、鉛の圧入作業時間を短縮でき、しかも、隙間なしに鉛支柱を貫通孔に配置することができる。
【0008】
本発明の積層ゴム支承体の製造方法は、好ましい例では、その第二の態様の製造方法のように、(例えば先に立設されて準備された)鉛支柱の周りに鋼鈑とゴム板とを交互に積層して未加硫の鉛支柱入り積層ゴムを準備するが、本発明は必ずしもこれに限定されず、例えば鋼鈑とゴム板とを交互に積層した後に、鋼鈑とゴム板とで形成される貫通孔に鉛支柱を挿入して未加硫の鉛支柱入り積層ゴムを準備してもよい。
【0009】
第二の態様の製造方法のようにして未加硫の鉛支柱入り積層ゴムを準備すると、鉛支柱を鋼鈑とゴム板との積層作業における案内体として利用でき、鋼鈑とゴム板との位置合わせを大幅に削減でき、未加硫の鉛支柱入り積層ゴムの準備を容易且つ迅速に行うことができる。
【0010】
本発明の製造方法に用いられる鉛支柱は、好ましくは、その第三の態様の製造方法のように、当該鉛支柱が配されない未加硫の積層ゴムの加硫成形後の貫通孔の容積の1.000倍以上から1.025倍以下、又はその第四の態様の製造方法のように、その容積の1.000倍以上から1.020倍以下の体積を有している。
【0011】
第三又は第四の態様のような鉛支柱を用いれば、加硫成形後の積層ゴム内への鉛支柱の加圧押し込みを比較的容易に短時間で行うことができる上に、押し込みにより積層ゴムを破損するような事態を回避でき、しかも、鉛支柱の押し込み後に、鉛支柱を積層ゴムに適当な量だけ食い込ませることができて、地震に基づく積層ゴム支承体の繰り返し剪断変形に際して鉛支柱と積層ゴムとの間に隙間が生じるのを避けることができる。
【0012】
なお、鉛支柱は、上記のように1.000倍以上の体積を有していればよいのであるが、好ましくは、本発明の第五の態様の製造方法のように、前記容積の1.015倍以上の体積を有している。また、鉛支柱は、前記容積の1.025倍以上の体積を有していてもよいが、押し込みによる積層ゴムの破損の確実な回避のためには、前記容積の1.200倍以下、好ましくは1.150倍以下の体積を有するものが望ましい。
【0013】
本発明の製造方法においては、その第六の態様のように、加硫成形時に、面圧40kgf/cm〜100kgf/cmの積層方向の圧縮力を未加硫の鉛支柱入り積層ゴムに加えるのが好ましく、また、その第七の態様のように、加硫成形時に、鉛支柱の一部が鋼鈑間のゴム板に孕み出すように、未加硫の鉛支柱入り積層ゴムに積層方向の圧縮力を加えるのが好ましい。
【0014】
更に、本発明の製造方法においては、その第八の態様のように、積層ゴムの加硫成形を金型内に配置して行い、この加硫成形を、その第九の態様のように、積層ゴムを150℃程度に加熱して行うのがよい。
【0015】
本発明の製造方法において、加硫成形後における積層ゴムの貫通孔への鉛支柱の押し込みは、その第十の態様のように、積層ゴムの端面と鉛支柱の端面とが面一になるまで行うのが好ましく、準備される未加硫の積層ゴムとしては、本発明の第十一の態様のように、二枚の厚肉鋼鈑と少なくとも一枚、通常、複数枚の薄肉鋼鈑とからなる鋼鈑とゴム板とが交互に積層されていると共に、厚肉鋼鈑が積層方向の両端に配されているものが好ましいが、本発明は必ずしもこれに限定されない。
【0016】
更に、本発明の製造方法において、加硫成形後における積層ゴムの貫通孔への鉛支柱の押し込みは、その第十二の態様のように、加硫成形後であって、鉛支柱入り積層ゴムを常温下で常温になるまで冷却した後に行うのが好ましい。
【0017】
本発明の製造方法により製造された鉛支柱入り積層ゴム支承体は、好ましくは、事業用ビル、事務所ビル、集合住宅、橋梁等の構造物を免震支持するために、これら構造物と基礎との間に介在される。
【0018】
【発明の実施の形態】
次に本発明及びその実施の形態を、図を参照して更に詳細に説明する。なお、本発明はこれら実施の形態に何等限定されないのである。
【0019】
本例の積層ゴム支承体の製造方法は、先ず、図1に示すように、下金型11上に、円柱状の4本(図1から図6には2本のみを示す)の鉛支柱12を立設する。
【0020】
鉛支柱12の立設後、当該鉛支柱12の周りに二枚の厚肉鋼鈑1及び2と複数枚の薄肉鋼鈑3とからなる鋼鈑4とゴム板5とを、厚肉鋼鈑1及び2が積層方向Hの両端に配され、これら鋼鈑4とゴム板5との積層方向Hに伸びて鋼鈑4とゴム板5とを貫通すると共に、鉛支柱12が配された円柱状の4個の貫通孔6(図1から図6には2個のみを示す)が形成されるように、交互に積層して未加硫の鉛支柱12入り積層ゴム7を準備する。
【0021】
下金型11上に立設する各鉛支柱12は、貫通孔6の直径rと同径か、稍それよりも小径であって、鉛支柱12が配されない未加硫の積層ゴム7を加硫成形した場合において縮小された貫通孔6の容積の例えば1.015倍の体積を有している。斯かる鉛支柱12を用いた場合には、未加硫の積層ゴム7の各貫通孔6において、鉛支柱12の上端面上に隙間(空間)13が生じ得る。
【0022】
なお、鋼鈑4とゴム板5との外周面を覆う円筒状の被覆層8(図4等参照)を一体的に形成するために、これら鋼鈑4とゴム板5との外周面に薄いゴム帯9を巻き付けてもよいが、斯かるゴム帯9を巻き付けることなしに、後述の加硫成形時におけるゴム板5の塑性流動により斯かる被覆層8を形成するようにしてもよい。
【0023】
積層ゴム7は、4個の貫通孔付の鋼鈑4とゴム板5とを個別に準備して、これらを下金型11上に交互に順次積層し、その後、必要に応じてゴム帯9を鋼鈑4とゴム板5との外周面に巻き付けることによって形成される。
【0024】
次に、鉛支柱12入りの未加硫の積層ゴム7上に上金型14を配置し、斯かる上金型14を配置した後の図1に示す組み合わせ体21を図2に示す金型22内に配置する。金型22は、金型基台25と、基台25上に載置されて位置決めされていると共に、截頭円錐外面26を有する円筒状の金型本体27と、截頭円錐外面26に相補的な形状の截頭円錐内面28を有する円筒状の金型拘束体29と、円盤状の金型押さえ蓋体30とを具備している。金型22では、油圧ラムなどにより金型押さえ蓋体30を上方から金型基台25に向かって押圧して金型22内に配置された組み合わせ体21を加圧するようになっている。
【0025】
組み合わせ体21の金型22内への配置後、図3に示すように、油圧ラムなどにより金型押さえ蓋体30を押圧して、金型22内に配置された未加硫の鉛支柱12入り積層ゴム7に積層方向Hの圧縮力を加えながら積層ゴム7を加硫成形する。加硫成形時においては、積層ゴム7を150℃程度に加熱すると共に、面圧40kgf/cm〜100kgf/cmの積層方向Hの圧縮力を鉛支柱12入り積層ゴム7に加える。
【0026】
鉛の融点は300℃以上であるので、加硫成形時における積層ゴム7に対する加熱では、鉛支柱12は溶融することなくほぼその形状を保って金型のプラグピンの作用をなす。
【0027】
また、積層ゴム7に積層方向Hの圧縮力が加えられることにより、隙間13が解消してなくなる上に、鉛支柱12の一部が鋼鈑4間のゴム板5に向かって張り出して、図4に示すように、鉛支柱12の外周面が鋼鈑4間において凸面31を呈するようになる。
【0028】
加硫成形後、金型22内から鉛支柱12入り積層ゴム7を取り出し、下金型11及び上金型14を取り外して、図4に示すような加硫成形後の鉛支柱12入り積層ゴム7を得て、これを常温下で常温になるまで冷却する。金型22内から積層ゴム7を取り出した直後は、図4に示すように、積層ゴム7の上端面32と鉛支柱12の上端面33とは面一となっているが、常温雰囲気下での冷却後は、積層ゴム7自体が全体的に縮む結果、図5に示すように、積層ゴム7の上端面32から鉛支柱12の一部が突出するようになる。
【0029】
次に、積層ゴム7の上端面32から突出した鉛支柱12を、油圧ラム等を用いて積層ゴム7内の貫通孔6に押し込み、積層ゴム7の上端面32と鉛支柱12の上端面33とを図6に示すように再び面一にする。
【0030】
この押し込みにより鉛支柱12の一部が鋼鈑4間のゴム板5に向かって更に若干多く孕んで、鉛支柱12の外周面の凸面31が鋼鈑4間に若干多く食い込むようになり、鉛支柱12と積層ゴム7と間に隙間があれば、これが完全に解消されるようになる。
【0031】
なお、積層ゴム7の下端面35から鉛支柱12の一部が突出する場合もあるが、この場合にも同様にして、突出した鉛支柱12を、油圧ラム等を用いて積層ゴム7内の貫通孔6に押し込み、積層ゴム7の下端面35と鉛支柱12の下端面36とを図6に示すように再び面一にする。
【0032】
鉛支柱12の押し込み後、積層ゴム7の上端面32及び下端面35に、図7及び図8に示すように、取り付け板41及び42をボルト43等を介して取り付けて積層ゴム支承体44を形成してもよい。
【0033】
以上の積層ゴム支承体44の製造方法では、貫通孔6に鉛支柱12が配された未加硫の積層ゴム7に加硫成形を加えるために、鉛支柱12をプラグピンの代わりに用いることができ、而して、プラグピンとその挿抜工程とを省き得る上に、加硫成形後に縮んだ積層ゴム7の上端面32から突出した鉛支柱12を加圧して当該加硫成形後の積層ゴム7の貫通孔6に押し込むようにするために、鉛支柱12の圧入作業時間を短縮でき、しかも、隙間なしに鉛支柱12を貫通孔6に配置することができる。
【0034】
また、上記の製造方法では、鉛支柱12の周りに鋼鈑4とゴム板5とを交互に積層して未加硫の鉛支柱12入り積層ゴム7を準備するために、鉛支柱12を鋼鈑4とゴム板5との積層作業における案内体として利用でき、鋼鈑4とゴム板5との位置合わせを大幅に削減でき、未加硫の鉛支柱12入り積層ゴム7の準備を容易且つ迅速に行うことができる。
【0035】
積層ゴム支承体44は、取り付け板41が事業用ビル、事務所ビル、集合住宅、橋梁等の構造物にボルト等を介して取り付けられ、取り付け板42が基礎にアンカーボルト等を介して取り付けられて、構造物と基礎との間に介在され、構造物を免震支持するように用いられる。
【0036】
上記では積層ゴム7を円柱状のものとしたが、角柱状のものでもよく、また、4本の鉛支柱12に代えて一本の鉛支柱12を配するようにしてもよく、更には、中央に一本の大径の鉛支柱12を、この大径の鉛支柱12の周りに当該大径の鉛支柱12を取り囲んで複数本の鉛支柱12を夫々配するようにしてもよい。
【0037】
【発明の効果】
本発明によれば、プラグピンの代わりに鉛支柱を用いることができ、而して、プラグピンとその挿抜工程とを省き得て、しかも、鉛の圧入作業時間を短縮できると共に、隙間なしに鉛支柱を貫通孔に配置することができる鉛支柱入り積層ゴム支承体の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様の好ましい例の初期の工程説明図である。
【図2】図1に示す例の次の工程説明図である。
【図3】図1に示す例の更に次の工程の説明図である。
【図4】図1に示す例の更に次の工程の説明図である。
【図5】図1に示す例の更に次の工程の説明図である。
【図6】図1に示す例の更に次の工程の説明図である。
【図7】本発明の一実施態様の好ましい例で製造された鉛支柱入り積層ゴム支承体の断面説明図である。
【図8】図7に示すVIII−VIII線矢視断面図である。
【符号の説明】
4 鋼鈑
5 ゴム板
6 貫通孔
7 積層ゴム
44 積層ゴム支承体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of a laminated rubber bearing body with lead struts for base-isolating support of the structure and a structure that is seismically supported by a laminated rubber bearing body with lead struts manufactured by this manufacturing method.
[0002]
[Problems to be solved by the invention]
The laminated rubber bearing body with lead struts includes laminated rubber in which steel plates and rubber plates are alternately laminated, and lead struts (lead plugs) arranged in the laminated rubber, and is installed on the ground or the like. It is interposed between the foundation and structures such as business buildings, office buildings, apartment houses, bridges, etc., and prevents horizontal vibration in the structure due to shear deformation in the horizontal direction, and vibration of the structure. Is to be attenuated early.
[0003]
In such a laminated rubber bearing body with lead struts, an unvulcanized laminated rubber is prepared by alternately laminating steel plates and rubber plates, and extends in the laminating direction of the laminated rubber and penetrates the steel plates and rubber plates. Plug pins (mold pins) are inserted into the through-holes, and the unvulcanized laminated rubber with such plug pins inserted is placed in the mold so that the steel plate and the rubber plate are vulcanized and bonded to each other. It is manufactured by vulcanization molding under pressure, and after this vulcanization molding, the plug pin is pulled out from the through-hole, and instead lead is press-fitted into the through-hole to form a lead strut in the vulcanized laminated rubber. ing.
[0004]
By the way, the above manufacturing method requires a lot of labor and cost because it requires the plug pin itself and its insertion / extraction process, and lead is formed in the through hole in the laminated rubber after vulcanization molding. Therefore, it is necessary to press-fit closely so that the press-fit operation takes a long time and is extremely difficult.
[0005]
The present invention has been made in view of the above points, and the object of the present invention is to use a lead column instead of a plug pin, thus omitting the plug pin and its insertion / extraction step, And it is providing the manufacturing method of the laminated rubber bearing body which can arrange | position a lead support | pillar to a through-hole, without shortening lead press-fitting work time.
[0006]
[Means for Solving the Problems]
The manufacturing method of the 1st aspect of the lamination | stacking rubber bearing body which has arrange | positioned the lead | read | reed support | pillar in the lamination | stacking rubber | gum which laminated | stacked the steel sheet and the rubber board by this invention alternately, the steel sheet and the rubber board are laminated | stacked alternately. And a step of preparing unvulcanized laminated rubber containing lead struts having a through hole extending in the laminating direction of the steel plate and the rubber plate, and a lead strut disposed in the through hole, and the unvulcanized rubber Vulcanizing and molding the laminated rubber while applying a compressive force in the laminating direction to the laminated rubber containing the lead strut, and pushing the lead strut protruding from the end face of the laminated rubber after vulcanization into the through hole of the laminated rubber It has.
[0007]
According to the manufacturing method of the laminated rubber bearing body of the first aspect, in order to vulcanize the unvulcanized laminated rubber in which the lead struts are arranged in the through holes, the lead struts can be used instead of the plug pins. Thus, the plug pin and its insertion / extraction step can be omitted, and the lead struts protruding from the end face of the laminated rubber shrunk after vulcanization molding are pressed into the through holes of the laminated rubber after the vulcanization molding. Therefore, the lead press-in operation time can be shortened, and the lead strut can be arranged in the through hole without a gap.
[0008]
In a preferred example, the method for producing a laminated rubber bearing according to the present invention is a steel plate and a rubber plate around a lead strut (for example, prepared in advance by standing) like the production method of the second aspect. Is prepared by alternately laminating and laminating unvulcanized lead-supported laminated rubber, but the present invention is not necessarily limited to this. For example, after alternately laminating steel plates and rubber plates, steel plates and rubber plates A lead strut may be inserted into the through-hole formed by the above and a laminated rubber containing an unvulcanized lead strut may be prepared.
[0009]
When a laminated rubber containing unvulcanized lead struts is prepared as in the manufacturing method of the second aspect, the lead struts can be used as a guide body in the laminating work of the steel sheet and the rubber plate. Positioning can be greatly reduced, and preparation of laminated rubber containing unvulcanized lead struts can be performed easily and quickly.
[0010]
The lead strut used in the production method of the present invention preferably has a through-hole volume after vulcanization molding of an unvulcanized laminated rubber where the lead strut is not disposed, as in the production method of the third aspect. It has a volume of 1.000 times or more and 1.020 times or less of the volume, as in the production method of the fourth aspect thereof.
[0011]
If the lead struts as in the third or fourth aspect are used, the pressure strut of the lead struts into the laminated rubber after vulcanization can be relatively easily performed in a short time, and the layers can be laminated by pressing. The situation where the rubber is damaged can be avoided, and after the lead strut is pushed in, the lead strut can be bitten into the laminated rubber by an appropriate amount. It is possible to avoid a gap between the rubber and the laminated rubber.
[0012]
The lead struts only have to have a volume of 1.000 times or more as described above, but preferably, the lead struts have a volume of 1.000 or more as in the manufacturing method according to the fifth aspect of the present invention. It has a volume of 015 times or more. Further, the lead strut may have a volume of 1.025 times or more of the volume, but in order to surely avoid the damage of the laminated rubber due to the pushing, it is preferably 1.200 times or less of the volume. Preferably has a volume of 1.150 times or less.
[0013]
In the production method of the present invention, as the sixth embodiment, when the vulcanization molding, the compressive force in the stacking direction of the surface pressure 40kgf / cm 2 ~100kgf / cm 2 unvulcanized lead strut Rubber In addition, as in the seventh aspect, it is laminated on unvulcanized laminated rubber containing lead struts so that a part of the lead struts squeezes into the rubber plate between the steel plates during vulcanization molding. It is preferable to apply a compressive force in the direction.
[0014]
Furthermore, in the production method of the present invention, as in the eighth aspect, vulcanization molding of the laminated rubber is performed in a mold, and this vulcanization molding is performed as in the ninth aspect. The laminated rubber is preferably heated to about 150 ° C.
[0015]
In the manufacturing method of the present invention, the lead strut is pushed into the through hole of the laminated rubber after vulcanization until the end face of the laminated rubber and the end face of the lead strut are flush with each other as in the tenth aspect. Preferably, as the unvulcanized laminated rubber to be prepared, as in the eleventh aspect of the present invention, two thick steel plates and at least one, usually a plurality of thin steel plates It is preferable that the steel plates and the rubber plates are alternately stacked and the thick steel plates are arranged at both ends in the stacking direction, but the present invention is not necessarily limited thereto.
[0016]
Furthermore, in the manufacturing method of the present invention, the lead struts are pushed into the through-holes of the laminated rubber after vulcanization molding, after the vulcanization molding as in the twelfth aspect, and the laminated rubber containing lead struts. It is preferable to carry out after cooling to room temperature at room temperature.
[0017]
The laminated rubber bearing body with lead struts manufactured by the manufacturing method of the present invention is preferably used in order to provide seismic isolation support for structures such as business buildings, office buildings, apartment houses, and bridges. It is interposed between.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention and its embodiments will be described in more detail with reference to the drawings. The present invention is not limited to these embodiments.
[0019]
First, as shown in FIG. 1, the method of manufacturing the laminated rubber bearing body of this example has four columnar lead columns (only two are shown in FIGS. 1 to 6) on the lower mold 11. 12 is erected.
[0020]
After the lead strut 12 is erected, a steel plate 4 and a rubber plate 5 comprising two thick steel plates 1 and 2 and a plurality of thin-walled steel plates 3 are placed around the lead post 12 with a thick steel plate. 1 and 2 are arranged at both ends in the laminating direction H, extend in the laminating direction H between the steel plate 4 and the rubber plate 5, penetrate the steel plate 4 and the rubber plate 5, and are provided with lead columns 12 The laminated rubber 7 containing the unvulcanized lead struts 12 is prepared by alternately laminating so that four columnar through holes 6 (only two are shown in FIGS. 1 to 6) are formed.
[0021]
Each lead strut 12 standing on the lower mold 11 has the same diameter as the diameter r of the through-hole 6 or a diameter smaller than that, and adds unvulcanized laminated rubber 7 on which the lead strut 12 is not disposed. In the case of the sulfur molding, the volume of the reduced through hole 6 is, for example, 1.015 times the volume. When such a lead strut 12 is used, a gap (space) 13 may be formed on the upper end surface of the lead strut 12 in each through hole 6 of the unvulcanized laminated rubber 7.
[0022]
In addition, in order to integrally form a cylindrical covering layer 8 (see FIG. 4 and the like) that covers the outer peripheral surfaces of the steel plate 4 and the rubber plate 5, the outer peripheral surfaces of the steel plate 4 and the rubber plate 5 are thin. Although the rubber band 9 may be wound, the covering layer 8 may be formed by plastic flow of the rubber plate 5 at the time of vulcanization molding described later without winding the rubber band 9.
[0023]
The laminated rubber 7 is prepared by individually preparing four steel plates 4 with through-holes and a rubber plate 5, and alternately laminating them on the lower mold 11 and then, if necessary, a rubber band 9 Is wound around the outer peripheral surface of the steel plate 4 and the rubber plate 5.
[0024]
Next, the upper mold 14 is arranged on the unvulcanized laminated rubber 7 containing the lead struts 12, and the combination body 21 shown in FIG. 1 after the upper mold 14 is arranged is shown in FIG. 22 is arranged. The mold 22 is complementary to the mold base 25, a cylindrical mold body 27 having a frustoconical outer surface 26, and mounted on the base 25 for positioning. A cylindrical mold restraining body 29 having a truncated conical inner surface 28 and a disk-shaped mold pressing lid 30 are provided. In the mold 22, the combined body 21 arranged in the mold 22 is pressed by pressing the mold pressing lid 30 from above with the hydraulic ram or the like toward the mold base 25.
[0025]
After the combination 21 is placed in the mold 22, as shown in FIG. 3, the mold holding lid 30 is pressed by a hydraulic ram or the like, and the unvulcanized lead strut 12 placed in the mold 22. The laminated rubber 7 is vulcanized while applying a compressive force in the laminating direction H to the laminated laminated rubber 7. At the time of vulcanization molding, the laminated rubber 7 is heated to about 150 ° C., and a compressive force in the lamination direction H with a surface pressure of 40 kgf / cm 2 to 100 kgf / cm 2 is applied to the laminated rubber 7 containing the lead struts 12.
[0026]
Since the melting point of lead is 300 ° C. or higher, the heating of the laminated rubber 7 at the time of vulcanization molding causes the lead strut 12 to maintain its shape without melting and to act as a mold plug pin.
[0027]
Further, the compressive force in the laminating direction H is applied to the laminated rubber 7, so that the gap 13 is not eliminated and a part of the lead strut 12 protrudes toward the rubber plate 5 between the steel plates 4. As shown in FIG. 4, the outer peripheral surface of the lead strut 12 exhibits a convex surface 31 between the steel plates 4.
[0028]
After the vulcanization molding, the laminated rubber 7 containing the lead struts 12 is taken out from the mold 22, the lower mold 11 and the upper mold 14 are removed, and the laminated rubber containing the lead struts 12 after vulcanization molding as shown in FIG. 7 is obtained and cooled to room temperature at room temperature. Immediately after the laminated rubber 7 is taken out from the mold 22, as shown in FIG. 4, the upper end surface 32 of the laminated rubber 7 and the upper end surface 33 of the lead strut 12 are flush with each other. After the cooling, the laminated rubber 7 itself shrinks as a whole, and as a result, a part of the lead strut 12 protrudes from the upper end surface 32 of the laminated rubber 7 as shown in FIG.
[0029]
Next, the lead strut 12 protruding from the upper end surface 32 of the laminated rubber 7 is pushed into the through hole 6 in the laminated rubber 7 using a hydraulic ram or the like, and the upper end surface 32 of the laminated rubber 7 and the upper end surface 33 of the lead strut 12 are. Are made flush again as shown in FIG.
[0030]
As a result of this pressing, a part of the lead strut 12 is slightly swollen toward the rubber plate 5 between the steel plates 4, and the convex surface 31 on the outer peripheral surface of the lead strut 12 bites into the steel plate 4 a little. If there is a gap between the support column 12 and the laminated rubber 7, this is completely eliminated.
[0031]
In some cases, a part of the lead strut 12 protrudes from the lower end surface 35 of the laminated rubber 7. In this case as well, the protruding lead strut 12 is similarly placed in the laminated rubber 7 using a hydraulic ram or the like. It pushes into the through-hole 6, and makes the lower end surface 35 of the laminated rubber 7 and the lower end surface 36 of the lead strut 12 flush with each other as shown in FIG.
[0032]
After the lead strut 12 is pushed in, the mounting plates 41 and 42 are attached to the upper end surface 32 and the lower end surface 35 of the laminated rubber 7 through bolts 43 and the like as shown in FIGS. It may be formed.
[0033]
In the manufacturing method of the laminated rubber bearing 44 described above, the lead strut 12 is used in place of the plug pin in order to add vulcanization molding to the unvulcanized laminated rubber 7 in which the lead strut 12 is arranged in the through hole 6. Thus, the plug pin and its insertion / extraction step can be omitted, and the lead strut 12 protruding from the upper end surface 32 of the laminated rubber 7 shrunk after vulcanization molding is pressurized to apply the laminated rubber 7 after the vulcanization molding. Therefore, it is possible to reduce the press-fitting work time of the lead struts 12 and to arrange the lead struts 12 in the through holes 6 without any gaps.
[0034]
Further, in the above manufacturing method, in order to prepare the laminated rubber 7 containing the unvulcanized lead struts 12 by alternately laminating the steel plates 4 and the rubber plates 5 around the lead struts 12, the lead struts 12 are made of steel. It can be used as a guide body in the laminating operation of the steel plate 4 and the rubber plate 5, can greatly reduce the alignment between the steel plate 4 and the rubber plate 5, and can easily prepare the laminated rubber 7 containing the unvulcanized lead strut 12 and Can be done quickly.
[0035]
In the laminated rubber bearing body 44, the mounting plate 41 is attached to a structure such as a business building, office building, apartment house, or bridge via a bolt or the like, and the mounting plate 42 is attached to the foundation via an anchor bolt or the like. It is interposed between the structure and the foundation, and is used to support the structure with seismic isolation.
[0036]
In the above, the laminated rubber 7 has a cylindrical shape, but may have a prismatic shape, may be provided with a single lead strut 12 instead of the four lead struts 12, A single large-diameter lead strut 12 may be disposed in the center, and a plurality of lead struts 12 may be disposed around the large-diameter lead strut 12 so as to surround the large-diameter lead strut 12.
[0037]
【The invention's effect】
According to the present invention, a lead strut can be used in place of the plug pin, so that the plug pin and its insertion / extraction step can be omitted, and the lead press-in operation time can be reduced, and the lead strut can be eliminated without a gap. Can be provided in the through hole, and a method for producing a laminated rubber bearing body with a lead strut can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an initial stage of a preferable example of one embodiment of the present invention.
FIG. 2 is a drawing explaining the next step of the example shown in FIG.
3 is an explanatory diagram of a further next step of the example shown in FIG. 1. FIG.
4 is an explanatory diagram of a further next step of the example shown in FIG. 1. FIG.
5 is an explanatory diagram of a further next step of the example shown in FIG. 1. FIG.
6 is an explanatory diagram of a further next step of the example shown in FIG. 1. FIG.
FIG. 7 is a cross-sectional explanatory view of a laminated rubber bearing body with lead struts manufactured in a preferred example of one embodiment of the present invention.
8 is a cross-sectional view taken along line VIII-VIII shown in FIG.
[Explanation of symbols]
4 Steel plate 5 Rubber plate 6 Through hole 7 Laminated rubber 44 Laminated rubber bearing

Claims (12)

鋼鈑とゴム板とを交互に積層した積層ゴム内に鉛支柱を配した鉛支柱入り積層ゴム支承体の製造方法であって、鋼鈑とゴム板とが交互に積層されていると共に、これら鋼鈑とゴム板との積層方向に伸びた貫通孔を有すると共に、この貫通孔に鉛支柱が配された未加硫の鉛支柱入り積層ゴムを準備する段階と、この未加硫の鉛支柱入り積層ゴムに積層方向の圧縮力を加えながら積層ゴムを加硫成形する段階と、加硫成形後、鉛支柱入り積層ゴムを常温下で常温になるまで冷却して、この冷却後に、鉛支柱の一部が鋼鈑間のゴム板に孕み出すように、加硫成形後の積層ゴムの端面から突出した鉛支柱を積層ゴムの貫通孔に押し込む段階とを具備した鉛支柱入り積層ゴム支承体の製造方法。  A method of manufacturing a laminated rubber bearing body with lead struts in which a lead strut is arranged in a laminated rubber in which steel sheets and rubber plates are alternately laminated, wherein the steel sheets and rubber plates are alternately laminated. A step of preparing a laminated rubber containing an unvulcanized lead strut having a through hole extending in the laminating direction of the steel plate and the rubber plate, and a lead strut disposed in the through hole, and the unvulcanized lead strut Vulcanization molding of the laminated rubber while applying compressive force in the laminating direction to the laminated rubber, and after vulcanization, the laminated rubber containing the lead strut is cooled to room temperature at room temperature. Laminated rubber bearing body with lead struts comprising a step of pushing the lead struts protruding from the end faces of the laminated rubber after vulcanization molding into the through holes of the laminated rubber so that a part of the steel sheet protrudes into the rubber plate between the steel plates Manufacturing method. 鉛支柱の周りに鋼鈑とゴム板とを交互に積層して未加硫の鉛支柱入り積層ゴムを準備する請求項1に記載の鉛支柱入り積層ゴム支承体の製造方法。  The method for producing a laminated rubber bearing body with lead struts according to claim 1, wherein steel sheets and rubber plates are alternately laminated around the lead struts to prepare unvulcanized laminated rubber bearing lead struts. 鉛支柱は、当該鉛支柱が配されない未加硫の積層ゴムの加硫成形後の貫通孔の容積の1.000倍以上から1.025倍以下の体積を有している請求項1又は2に記載の鉛支柱入り積層ゴム支承体の製造方法。  The lead strut has a volume that is not less than 1.000 times and not more than 1.025 times the volume of a through-hole after vulcanization molding of an unvulcanized laminated rubber in which the lead strut is not disposed. A method for producing a laminated rubber bearing body with lead struts as described in 1. 鉛支柱は、当該鉛支柱が配されない未加硫の積層ゴムの加硫成形後の貫通孔の容積の1.000倍以上から1.020倍以下の体積を有している請求項1又は2に記載の鉛支柱入り積層ゴム支承体の製造方法。  The lead strut has a volume that is not less than 1.000 times and not more than 1.020 times the volume of a through hole after vulcanization molding of an unvulcanized laminated rubber in which the lead strut is not disposed. A method for producing a laminated rubber bearing body with lead struts as described in 1. 鉛支柱は、当該鉛支柱が配されない未加硫の積層ゴムの加硫成形後の貫通孔の容積の1.015倍以上から1.020倍以下の体積を有している請求項1又は2に記載の鉛支柱入り積層ゴム支承体の製造方法。  The lead strut has a volume that is not less than 1.015 times and not more than 1.020 times the volume of a through-hole after vulcanization molding of an unvulcanized laminated rubber in which the lead strut is not disposed. A method for producing a laminated rubber bearing body with lead struts as described in 1. 加硫成形時に、面圧40kgf/cm〜100kgf/cmの積層方向の圧縮力を未加硫の鉛支柱入り積層ゴムに加える請求項1から5のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。6. A lead strut containing the lead strut according to claim 1, wherein a compressive force in the laminating direction with a surface pressure of 40 kgf / cm 2 to 100 kgf / cm 2 is applied to the unvulcanized lead strut-containing laminated rubber during vulcanization molding. Manufacturing method of laminated rubber bearing. 加硫成形時に、鉛支柱の一部が鋼鈑間のゴム板に孕み出すように、未加硫の鉛支柱入り積層ゴムに積層方向の圧縮力を加える請求項1から6のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。  The compressive force in the laminating direction is applied to the unvulcanized laminated rubber containing lead struts so that a part of the lead struts protrudes into the rubber plate between the steel plates during vulcanization molding. A method for producing a laminated rubber bearing body with lead struts as described in 1. 金型内に配置して積層ゴムの加硫成形を行う請求項1から7のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。  The method for producing a laminated rubber bearing body with lead struts according to any one of claims 1 to 7, wherein the laminated rubber is vulcanized and molded in a mold. 積層ゴムを150℃程度に加熱して加硫成形を行う請求項1から8のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。  The method for producing a laminated rubber bearing body with lead struts according to any one of claims 1 to 8, wherein the laminated rubber is heated to about 150 ° C for vulcanization molding. 積層ゴムの端面と鉛支柱の端面とが面一になるまで、加硫成形後の積層ゴムの端面から突出した鉛支柱を積層ゴムの貫通孔に押し込む請求項1から9のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。  The lead strut protruding from the end face of the laminated rubber after vulcanization is pushed into the through hole of the laminated rubber until the end face of the laminated rubber and the end face of the lead strut are flush with each other. The manufacturing method of the laminated rubber bearing body containing the lead support | pillar of description. 二枚の厚肉鋼鈑と少なくとも一枚の薄肉鋼鈑とからなる鋼鈑とゴム板とが交互に積層されていると共に、厚肉鋼鈑が積層方向の両端に配されている未加硫の積層ゴムを準備する請求項1から10のいずれか一項に記載の鉛支柱入り積層ゴム支承体の製造方法。  Unvulcanized steel plates and rubber plates consisting of two thick steel plates and at least one thin steel plate are alternately laminated, and thick steel plates are arranged at both ends in the stacking direction. The manufacturing method of the laminated rubber bearing body with a lead support | pillar as described in any one of Claim 1 to 10 which prepares this laminated rubber. 請求項1から11のいずれか一項に記載の製造方法で製造された鉛支柱入り積層ゴム支承体により免震支持された事業用ビル、事務所ビル、集合住宅、橋梁等の構造物。  A structure such as a business building, an office building, an apartment house, a bridge, etc., which is supported by a seismic isolation by a laminated rubber bearing body with lead struts manufactured by the manufacturing method according to any one of claims 1 to 11.
JP2000164870A 2000-06-01 2000-06-01 Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method Expired - Lifetime JP4524862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164870A JP4524862B2 (en) 2000-06-01 2000-06-01 Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164870A JP4524862B2 (en) 2000-06-01 2000-06-01 Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method

Publications (2)

Publication Number Publication Date
JP2001343040A JP2001343040A (en) 2001-12-14
JP4524862B2 true JP4524862B2 (en) 2010-08-18

Family

ID=18668431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164870A Expired - Lifetime JP4524862B2 (en) 2000-06-01 2000-06-01 Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method

Country Status (1)

Country Link
JP (1) JP4524862B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138534B2 (en) * 2003-02-28 2008-08-27 オイレス工業株式会社 Semi-fixing device for seismic isolation structure
JP2007139115A (en) * 2005-11-21 2007-06-07 Kajima Corp Plug-filled laminated rubber bearing
KR101593576B1 (en) 2008-12-26 2016-02-15 재단법인 포항산업과학연구원 Piezoelectric magnetorheological fluid base isolator
JP5680443B2 (en) * 2011-02-25 2015-03-04 株式会社ブリヂストン Method for determining the arrangement of steam holes in laminated rubber
CN103206473B (en) * 2012-01-14 2018-10-23 赵世峰 Improved rubber support
CN105649210A (en) * 2016-04-09 2016-06-08 中国地震局工程力学研究所 Porous lead rubber bearing with high damping capacity and large bearing capacity
KR101822904B1 (en) * 2016-10-27 2018-01-29 (주)큐빅스 Pot support for railroad bridge
CN107881906B (en) * 2017-12-14 2023-07-18 西南交通大学 Bridge anti-seismic steel support
CN108533834B (en) * 2018-05-30 2024-02-06 华南理工大学 Vibration reduction type anti-seismic support and hanger with adjustable supporting rigidity
JP7427578B2 (en) 2020-12-10 2024-02-05 株式会社ブリヂストン Seismic isolation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504254A (en) * 1992-12-04 1996-05-07 インダストリアル リサーチ リミテッド Energy absorbing device and manufacturing method
JPH1129986A (en) * 1997-07-10 1999-02-02 Sumitomo Rubber Ind Ltd Laminated rubber bearing body and its manufacture
JPH11190392A (en) * 1997-12-26 1999-07-13 Showa Electric Wire & Cable Co Ltd Manufacture of laminated rubber supporting body
JP2001012545A (en) * 1999-06-24 2001-01-16 Bridgestone Corp Laminated rubber bearing body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927301B2 (en) * 1989-08-01 1999-07-28 住友ゴム工業株式会社 Surrounding seismic isolation bearing
JPH09151988A (en) * 1995-09-29 1997-06-10 Bridgestone Corp Base isolation construction
JP2000110878A (en) * 1998-10-06 2000-04-18 Bridgestone Corp Manufacture of laminated rubber support body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504254A (en) * 1992-12-04 1996-05-07 インダストリアル リサーチ リミテッド Energy absorbing device and manufacturing method
JPH1129986A (en) * 1997-07-10 1999-02-02 Sumitomo Rubber Ind Ltd Laminated rubber bearing body and its manufacture
JPH11190392A (en) * 1997-12-26 1999-07-13 Showa Electric Wire & Cable Co Ltd Manufacture of laminated rubber supporting body
JP2001012545A (en) * 1999-06-24 2001-01-16 Bridgestone Corp Laminated rubber bearing body

Also Published As

Publication number Publication date
JP2001343040A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP4524862B2 (en) Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method
KR100516582B1 (en) Modular design and manufacture of a stator core
WO2007063369A3 (en) Core plate stack assembly for permanent magnet rotor of rotating machines
JP3803434B2 (en) Installation method of seismic isolation devices in construction of building structures
JP2009008181A (en) Manufacturing method for base isolation device embedded with plug
US4429450A (en) Method of making structural bearings
JP2973329B2 (en) Manufacturing method of laminated rubber body
CN211057776U (en) Precast concrete pile
CN109826485B (en) Prefabricated base of communication tower and prefabrication process thereof
JPH11336836A (en) Laminated rubber support and its manufacture
CN101890815A (en) Preparation method of tetrahedral type lattice laminboard of fiber reinforced composites
JPH1122208A (en) Installation method for base-isolating lamination rubber
JP2010189972A5 (en)
JP5552880B2 (en) Manufacturing method of rubber bearing
JP2000110878A (en) Manufacture of laminated rubber support body
JP2005133947A (en) Manufacturing method of laminated rubber supporting body
JPH11190392A (en) Manufacture of laminated rubber supporting body
CN218836711U (en) Semi-rigid column base connecting device of wood column
JP2001262563A (en) Combined composite steel pipe member with board-like member having high axial load-carrying capacity and method of manufacture
CN213674736U (en) Pin positioner for production and processing of prefabricated laminated slab
JPH10115344A (en) Base isolation layered rubber body and its manufacture and device
JP2979488B2 (en) Manufacturing equipment for laminated rubber
JP3893954B2 (en) Pile head connection structure, connecting structure
JP2767054B2 (en) Method of manufacturing seismic isolation device for buildings
CN115233724B (en) Bearing pile top and bearing platform connecting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4524862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term