JP3988849B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP3988849B2
JP3988849B2 JP03500199A JP3500199A JP3988849B2 JP 3988849 B2 JP3988849 B2 JP 3988849B2 JP 03500199 A JP03500199 A JP 03500199A JP 3500199 A JP3500199 A JP 3500199A JP 3988849 B2 JP3988849 B2 JP 3988849B2
Authority
JP
Japan
Prior art keywords
seismic isolation
elastic body
ratio
lead
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03500199A
Other languages
Japanese (ja)
Other versions
JPH11315884A (en
Inventor
司 岸園
郁夫 下田
ヘンリー ロビンソン ウイリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP03500199A priority Critical patent/JP3988849B2/en
Publication of JPH11315884A publication Critical patent/JPH11315884A/en
Application granted granted Critical
Publication of JP3988849B2 publication Critical patent/JP3988849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二つの構造物間に配されて両構造物間の相対的な水平振動のエネルギを吸収し、構造物への振動加速度を低減するための装置、特に地震エネルギを減衰して地震入力加速度を低減し、建築物、橋梁等の構造物の損壊を防止する免震装置及びこの免震装置を一個以上使用したシステムに関する。
【0002】
【発明が解決しようとする課題】
振動エネルギ吸収体としては、例えば、特公昭61−17984号公報に記載のものが知られており、この振動エネルギ吸収体は、二つの構造物間に固定されていて剪断力を加えることによって塑性変形する鉛部材を有している。このような振動エネルギ吸収体の鉛部材は、その塑性変形において、亀裂等を生じることなしに振動エネルギを好ましく吸収するが、変形後も、通常のばねと異なり吸収したエネルギを構造物に戻さず、その変形した状態を維持し、構造物の元の位置への復帰を行わせ難いものである。
【0003】
弾性材料層を構成するゴム等からなる弾性板と剛性材料層を構成する金属板とを交互に積層し、これらを互いに加硫接着等して相互に固着してなる免震装置としての弾性体は、地震入力加速度を低減し、構造物を地震の破壊力から一応保護するが、振動エネルギ吸収能力が低く、これを単独で免震装置として用いた場合、上記の鉛部材と比較して、地震動を受けた構造物の地震後の振動が鎮るまでに長時間を要する等の地震工学及び振動工学の観点から実用上種々の問題がある。
【0004】
そこで、鉛部材の塑性変形における振動エネルギ吸収能と、弾性体の地震入力加速度の低減能及び復元能とを合せ持つべく、弾性体と、この弾性体を貫通して配された柱状鉛とを具備した免震装置も前記公報に提案されている。
【0005】
図1及び図2に示す免震装置5は、弾性材料層を構成するゴム等からなる弾性板1と剛性材料層を構成する環状の剛性板2とを交互に積層して相互に固定してなる環状の弾性体3と、弾性体3の円筒状の内周面9で規定される中空部12に配された円柱状鉛4と、円柱状鉛4の下面及び上面にそれぞれ当接して弾性体3の下面及び上面のそれぞれにボルト等により取り付けられたフランジプレート18及び19とを具備し、例えば、フランジプレート18側が基礎等の一方の構造物に固定され、フランジプレート19側に建築物等の他方の構造物が載置されて、フランジプレート19を介して建築物等から鉛直方向荷重X、すなわち弾性板1と剛性板2との積層方向の荷重Xを受けるようにして、用いられる。
【0006】
このような免震装置5に対して地震により横方向力Fが生じた場合の当該横方向力Fと横変位δとの関係は、対角剛性Kerと弾性体3の横方向(水平方向)の剛性Krとが同程度の場合、換言すれば弾性体3で隙間なく拘束された円柱状鉛4の剪断降伏荷重Auに基づく剪断降伏荷重特性値Qd(このQdと剪断降伏荷重Auとの間には、設計では、履歴曲線をバイリニア特性で表わした場合、便宜上、Qd= 0.8・Auの関係をもたせており、本発明ではQdを剪断降伏荷重という)が小さくなる場合には、図3に示すような履歴曲線を描き、対角剛性Kerが剛性Krに比較して大きい場合、換言すれば弾性体3で隙間なく拘束された円柱状鉛4の剪断降伏荷重Qdが大きくなる場合には、図4に示すような履歴曲線を描くこととなる。ここで、剪断降伏荷重Qdは、次式(1)で表される。
Qd=ap・σpd・・・・・(1)
【0007】
式(1)において、apは、円柱状鉛4の剪断面の面積(本発明では、剛性材料層の内周で囲まれる円柱状鉛4の横断面積で定義する)で、免震装置5に加わる横方向力Fに対する円柱状鉛4の剪断面の面積に相当し、σpdは、弾性体3により隙間なしに拘束されていない円柱状鉛4自体の剪断降伏応力(本発明では、これを設計剪断降伏応力という)であり、純粋鉛(純度99.9%以上)の場合、0.5Hz振動でかつ50%以上の歪振幅では、設計値として85kg/cmである。
【0008】
ところで、図3に示すような履歴曲線を描く免震装置5では、地震において、それに対する免震効果は優れるものの、これに載置される構造物と基礎との相対変位が大きく、また地震後の後揺れが比較的長く続き、長周期成分の大きな地震動では共振する虞を有し、更に、台風時のような強風時には、載置された構造物が大きく揺れる場合がある。一方、免震装置5による動的固有振動周期は、図3及び図4に示す対角剛性Ker で与えられるが、図4に示すような履歴曲線を描く免震装置5では、剛性Krが比較的小さくても、対角剛性Ker が大きい場合には、円柱状鉛4の剪断降伏荷重Qdが大きくなり、免震効果を発揮するに十分な長周期化が困難となり、結果として、免震効果が悪くなる。
【0009】
また、式(1)に従った円柱状鉛4の剪断降伏荷重Qdを保証する要件としては、弾性体を構成する弾性材料層と剛性材料層とに円柱状鉛4がそれに周期的な剪断変形が生じている間及びその後も隙間なく拘束されていることである。そして中空部12に配された円柱状鉛4が弾性体3に隙間なく拘束されていないと、地震による横方向力(水平方向力)Fが生じた場合、弾性体3の内周面9と、これに接する円柱状鉛4の円筒状の外周面との間に隙間が生じて、横方向力Fと横変位(水平方向変位)δとの関係において、図5の履歴曲線21で示すような不安定な特性となり、円柱状鉛4による効果をそれ程得ることができず、所望の免震効果を得ることが困難となる。一方、弾性体3により必要以上に円柱状鉛4を拘束すると、地震による横方向力Fでの円柱状鉛4の塑性変形において、弾性体3の弾性材料層が過度に圧縮され、これによっても弾性体3の弾性材料層の早期の劣化を招来し、耐久性に問題が生じる。また、円柱状鉛4を形成するために、弾性体3の中空部12に圧入する鉛の量には限度があり、一定量以上の鉛を弾性体3の中空部12に圧入することは困難であり、無理にこれを行うと弾性体3自体が損壊してしまう虞がある。
【0010】
そして、図1及び図2に示す免震装置5では、数度の地震により繰り返して横方向変位が生じると、円柱状鉛4の上下面の周縁部が丸み付けされて、当該周縁部と弾性体3との間に環状隙間が生じる虞もある。
【0011】
本発明は、前記諸点に鑑みてなされたものであって、剪断降伏荷重Qdと、以下述べる弾性体の支持荷重Wとの関係に着目して、この関係から得られる柱状鉛の剪断面の面積apと、弾性体の荷重面の面積Arとの比を所定の範囲内にすることにより、免震効果に優れる上に、構造物と基礎との相対変位を小さくすることができ、また地震後の後揺れも早期に減衰することができ、台風時のような強風時でも載置された構造物の横揺れを少なくし得、加えて免震効果を発揮するに十分な長周期化を計り得て長周期成分の地震動でも共振の虞がない免震装置を提供することを目的とする。
【0012】
また本発明は、上記所定の面積比率を有する免震装置において、弾性体の中空部に配された柱状鉛を所定に隙間なしに拘束し得る結果、安定な免震特性を得ることができ、加えて弾性体の弾性材料層及び柱状鉛の疲労、損壊を回避することができ、耐久性及び免震効果並びに製造性に優れた免震装置を提供することを目的とする。
【0013】
更に本発明では上記のような免震装置を少なくとも一個使用したシステムを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明によれば前記目的は、弾性材料層及び剛性材料層が交互に積層されてなる弾性体と、この弾性体を貫通して配された少なくとも一つの柱状鉛とを具備しており、当該柱状鉛の剪断降伏荷重Qdが柱状鉛の剪断面の面積apと設計剪断降伏応力σpdとの積となるように、柱状鉛がその剪断方向において弾性体に隙間なしに拘束されている免震装置であって、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の面積Arとの比Σap/Arが0.01〜0.12である免震装置によって達成される。
【0015】
また本発明によれば前記目的は、少なくとも一つの柱状鉛と、弾性材料層及び剛性材料層が交互に積層されてなる弾性体と、少なくともこの弾性体の内周面で規定されており、柱状鉛が密に配された少なくとも一つの中空部とを具備した免震装置であって、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の面積Arとの比Σap/Arが0.01〜0.12であり、中空部に配された柱状鉛の体積Vpと、柱状鉛が未挿入であって、弾性体に積層方向の荷重が加えられた状態での中空部の容積Veとの比Vp/Veが1.02〜1.12であるようにして柱状鉛が中空部に密に配されてなり、前記積層方向の荷重を支持するようにした免震装置によっても達成される。
【0016】
本発明は、柱状鉛が弾性体により隙間なく拘束されて、柱状鉛の剪断降伏荷重Qdが当該柱状鉛の剪断面の面積apと設計剪断降伏応力σpdとの積となる免震装置においては、その要求される特性を、柱状鉛の剪断降伏荷重Qdと載置される構造物に対する弾性体の支持荷重Wとの比で評価することができることに着目し、剪断降伏荷重Qdと支持荷重Wとの比Qd/Wが0.02よりも小さい場合には、載置される構造物と基礎との相対変位が大きく、また地震後の後揺れが比較的長く続き、長周期成分の大きな地震動では共振する虞を有し、台風時のような強風時には載置された構造物が大きく揺れる虞がある一方、比Qd/Wが0.08よりも大きい場合には、長周期化が困難となり、結果として、免震効果が悪くなる、という知見に基づいてなされたものである。
【0017】
免震装置5においては、円柱状鉛4の剪断降伏荷重Qdは、上記の式(1)で与えられ、また、弾性体3の支持荷重Wは、
W=Ar・P・・・・・・・・(2)
で与えられる。ここで、Arは、弾性体3の荷重面の面積で、免震装置5に加わる鉛直方向荷重X、すなわち支持荷重Wに対する弾性体3の受圧面積に相当し、Pは、免震装置5に加わる鉛直方向荷重Xに対する弾性体3の平均圧縮応力で、免震装置の設計では、通常、60kg/cm〜130kg/cm程度の値がとられる。
【0018】
ところで、比Qd/Wは、

Figure 0003988849
で表され、ここで、σpd=80kg/cm、P=130kg/cmとすると、比Qd/Wの上限値は、換言すればap/Arの上限値は、約0.12となり、σpd=100kg/cm、P=60kg/cmとすると、比Qd/Wの下限値は、換言すればap/Arの下限値は、約0.01となる。なお、上記のσpdの値は、0.5Hz振動でかつ50%以上の歪振幅での値である。
【0019】
すなわち、柱状鉛の剪断面の面積apと、弾性体の荷重面の面積Arとの比ap/Arを0.01〜0.12の範囲内にすることにより、免震効果が優れ、構造物と基礎との相対変位を小さくすることができ、また地震後の後揺れも早期に減衰することができ、台風時のような強風時でも載置された構造物の横揺れを少なくし得、加えて長周期化を計り得て長周期成分の地震動でも共振の虞がないといえるのである。
【0020】
なお、以下の実施例からも明らかであるように、比ap/Arを、0.02〜0.07にすることにより、更に好ましい結果が得られ、比ap/Arを、0.03〜0.06にすることにより、更により好ましい結果が得られることが判明した。
【0021】
一つの弾性体に複数個の柱状鉛が配される場合も同様であって、本発明では、この場合をも含めて、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の面積Arとの比Σap/Arが上記の範囲内にされる。
【0022】
また本発明は、中空部に配された柱状鉛の体積Vpと、弾性体の内周面で規定される中空部の容積、具体的には、柱状鉛を配する前、換言すれば柱状鉛を形成するための鉛を圧入する前であって、弾性体に積層方向の荷重を加えた状態での中空部(以下、縮小中空部という)の容積Veとを一定の関係にすることにより、弾性体を構成する弾性材料層と剛性材料層とに柱状鉛が隙間なしに拘束される結果、式(1)に従った柱状鉛の剪断降伏荷重Qdが保証され、而して上記効果に加えて耐久性及び免震効果並びに製造性に特に優れた免震装置を提供し得るという知見に基づいてなされたものである。
【0023】
すなわち本発明の免震装置では、前記面積比率に加えて、中空部に配された柱状鉛の体積Vpと、縮小中空部の容積Veとの比Vp/Veが1.02〜1.12である。縮小中空部の容積Veは、弾性体に加えられる鉛直方向荷重である弾性材料層と剛性材料層との積層方向の荷重によって、換言すれば免震装置が支持する構造物の重量によって増減し、また縮小中空部の容積Veに対して1.00倍を越える体積の柱状鉛が配された状態における中空部の容積とも異なる。本免震装置においても、縮小中空部の容積Veに対して1.00倍を十分越える体積の柱状鉛を中空部に配して、柱状鉛を弾性体の弾性材料層に食い込ませ、中空部を規定する弾性体の内周面を、弾性材料層の位置で凹面となし、剛性材料層の位置で凸面となるようにしてもよい。
【0024】
ところで、円柱状鉛4を縮小中空部の容積の1.00倍(比Vp/Ve=1.00)よりも少なく配した場合には、弾性体3の内周面9と、内周面9に対面してこれに接する円柱状鉛4の外周面との間に隙間が生じ易くなり、したがって免震装置5の作動中に、すなわち免震装置5に繰り返し横方向力Fが加わっている間に、容易に弾性体3の内周面9と円柱状鉛4の外周面との間に隙間が生じ、履歴曲線21で示すような不安定な免震特性を示すことになる。これは、円柱状鉛4が弾性体3に少なくとも剪断方向において隙間なく拘束されず、剪断変形以外の変形を生じ、円柱状鉛4が設計剪断降伏応力(通常、純度99.9%以上の純粋度の鉛の場合には、設計値として85kg/cm)を現出しないことにもよる、と推測される。
【0025】
一方、円柱状鉛4を縮小中空部の容積の1.12倍(比Vp/Ve=1.12)よりも多く配した場合には、円柱状鉛4が大きく弾性板1に食い込んで、図6の符号41で示すように、弾性体3の内周面9が過度に凹面になり、この位置の近傍での弾性板1と剛性板2との間の剪断応力が大きくなり過ぎることとなる。このように過度に応力が生じた状態であると、弾性板1の劣化を早め、耐久性が劣ることになる。また、免震装置5の製造において、中空部12に円柱状鉛4を形成するために、鉛を縮小中空部の容積の1.12倍より多く圧入することは、その圧入力を極めて大きくしなければならない上に、圧入により弾性体3を損壊してしまう虞があり、困難であることも判った。
【0026】
なお、以下の実施例からも明らかであるように、小さな振動入力では、高い剛性を示し、大きな振動入力では、低い剛性を示す機能、いわゆるトリガ機能が特に要求され、かつ大振幅の地震動に特に好ましく対応し得るためには、比Vp/Veが1.02以上であることがよい。また、比Vp/Veが1.02〜1.07の範囲であると、製造性に極めて優れる。
【0027】
本発明において、弾性材料層の素材としては、天然ゴム、シリコンゴム、高減衰ゴム、ウレタンゴム又はクロロプレンゴム等を挙げることができるが、好ましくは天然ゴムである。弾性材料層の各層の厚みとしては、無負荷状態において1mm〜30mm程度のものが好ましいが、これに限定されない。また、剛性材料層の素材としては、鋼板、炭素繊維、ガラス繊維若しくはアラミド繊維等の繊維補強合成樹脂板又は繊維補強硬質ゴム板等を挙げることができ、その厚みは、各厚肉剛性板には10mm〜50mm程度、それ以外の各層には1mm〜6mm程度のものが好ましいが、これに限定されず、更にその枚数においても特に限定されない。弾性体及び柱状鉛は、円環状体及び円柱状体が好ましいが、他の形状のもの、例えば楕円若しくは方形体及び楕円若しくは方形体のものであってもよい。弾性体を貫通して配される柱状鉛は、一つでもよいが、これに代えて、一つの弾性体に複数の中空部を形成し、この複数の中空部にそれぞれ柱状鉛を配して免震装置を構成してもよい。なお、これら複数の中空部の各柱状鉛を比Vp/Veに関して同一の上記条件下で配する必要はなく、それぞれ異なる条件下で配してもよく、また、各柱状鉛が比Vp/Veに関して上記条件を満足しているのが好ましいが、複数個の柱状鉛の内の一部の柱状鉛を、比Vp/Veに関して上記条件を満足しないようにして配してもよい。
【0028】
また本発明は、弾性材料層及び剛性材料層が交互に積層されてなる弾性体と、この弾性体の内周面で規定される少なくとも一つの中空部に配された柱状鉛とを具備した上述の免震装置を一個以上、好ましくは複数個構造物と基礎との間に配するシステムにも適用することができ、この場合、柱状鉛の剪断降伏荷重Qdが柱状鉛の剪断面の面積apと設計剪断降伏応力σpdとの積となるように、柱状鉛が対応の弾性体に隙間なく拘束されて、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の総面積ΣArとの比Σap/ΣArが0.01〜0.12であればよく、また、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の総面積ΣArとの比Σap/ΣArが0.01〜0.12であり、中空部に配された柱状鉛の体積Vpと、柱状鉛が未挿入であって、弾性体に積層方向の荷重が加えられた状態での中空部(縮小中空部)の容積Veとの比Vp/Veが1.02〜1.12であるようにして柱状鉛が中空部に密に配されてなり、前記積層方向の荷重を支持するようにしたものであれば、上述の効果を同様に得ることができる。また、本システムにおいても、比Σap/ΣArを、0.02〜0.07にすることにより、更に好ましい結果が得られ、比Σap/ΣArを、0.03〜0.06にすることにより、更により好ましい結果が得られる一方、比Vp/Veが1.02〜1.07であると、好ましい製造性を得ることができる。
【0029】
加えて、本システムの免震装置において、中空部を規定する弾性体の内周面は、柱状鉛が弾性体の弾性材料層に食い込んで、当該弾性材料層の位置で凹面になり、剛性材料層の位置で凸面になっていてもよい。なお、複数の免震装置を配するシステムにおいて、これら複数の免震装置を比Vp/Veに関して同一の上記条件下で配する必要はなく、それぞれ異なる条件下で配してもよく、また、比Vp/Veに関して各免震装置が上記条件を満足しているのが好ましいが、複数個の免震装置の内の一部の免震装置を、比Vp/Veに関して上記条件を満足しないようにして配してもよい。
【0030】
更に、柱状鉛を具備した免震装置を一個以上構造物と基礎との間に配する上述のシステムにおいて、弾性材料層及び剛性材料層が交互に積層されてなり、中空部を有さない中実の弾性体を具備した少なくとも一個の他の免震装置を、柱状鉛を具備した免震装置と共に構造物と基礎との間に配してもよい。
【0031】
柱状鉛を具備した少なくとも一個の免震装置と、柱状鉛を具備しなく、中実の弾性体を具備した少なくとも一個の免震装置とを構造物と基礎との間に配してなるこのようなシステムにおいては、弾性体の荷重面の総面積ΣArに、柱状鉛を具備しない免震装置の中実の弾性体の荷重面を含めて、比Σap/ΣArが上記条件を満足するように、各免震装置を構成する。
【0032】
上記柱状鉛を具備するいずれの免震装置においても、剛性材料層が、弾性体におけるその各端面側にそれぞれ配された厚肉剛性板を具備し、柱状鉛の一端部が、一方の厚肉剛性板の内周面によって規定される中空部の一端部に密に配されており、柱状鉛の他端部が、他方の厚肉剛性板の内周面によって規定される中空部の他端部に密に配されているとよい。
【0033】
図2に示すような免震装置5では、前述のとおり、数度の地震が加わることにより、円柱状鉛4の上下面の周縁部と弾性体3との間に環状隙間が生じ、長期の使用によりこの環状隙間により免震特性が不安定となり得るが、本発明は、上記のように、柱状鉛の両端部のそれぞれを、各厚肉剛性板の内周面で規定される中空部の各端部に密に配して、環状隙間の発生を防止し、免震特性の劣化を防止しようとするものである。
【0034】
【発明の実施の形態】
以下、本発明及び本発明の実施の形態を、好ましい実施例に基づいて更に説明する。
【0035】
【実施例】
図7に示す本例の免震装置5は、環状の弾性板1からなる弾性材料層並びに環状の薄肉剛性鋼板2及び環状の厚肉剛性鋼板15、16からなる剛性材料層とが交互に積層されてなる環状の弾性体3と、少なくとも弾性体3の内周面9で規定される中空部12に密に配された円柱状鉛4と、鋼板15及び16にぞれぞれボルト17を介して連結されたフランジプレート18及び19と、円柱状鉛4の下面及び上面においてフランジプレート18及び19と鋼板15及び16とを互いに剪断方向(F方向)に固定する剪断キー20とを具備しており、円柱状鉛4が密に配された中空部12は、内周面9に加えて、下方の剪断キー20の上面21と上方の剪断キー20の下面22とによって規定されている。免震装置5において、鋼板15及び16は、弾性体3の上下端面側の弾性材料層に埋め込まれて配されており、円柱状鉛4の下端部23は、鋼板15の内周面によって規定される中空部12の下端部に密に配されており、円柱状鉛4の上端部24は、鋼板16の内周面によって規定される中空部12の上端部に密に配されている。
【0036】
本免震装置5は、フランジプレート18側が基礎10に、フランジプレート19側が構造物11にそれぞれ連結されて用いられる。本例においては、弾性材料層を形成するために、厚さ5mmの天然ゴム製の環状の弾性板1を25枚使用し、剛性材料層を形成するために、厚さ2.3mmの環状の鋼板2を22枚と、厚さ31mmの環状の鋼板15及び16とを使用した。
【0037】
本発明の免震装置5を製造する場合には、まず、環状の弾性板1と鋼板2とを交互に積層して、その下面及び上面に環状の鋼板15及び16を配置し、型内における加圧下での加硫接着等によりこれらを相互に固定してなる環状の弾性体3を準備し、その後、円柱状鉛4を中空部12に形成すべく、弾性体3の中空部12に鉛を圧入する。鉛の圧入は、円柱状鉛4が弾性体3により中空部12において隙間なしに拘束されるように、鉛を中空部12に油圧ラム等により押し込んで行う。鉛の圧入後、剪断キー20並びにフランジプレート18及び19を取り付ける。なお、型内における加圧下での加硫接着による弾性体3の形成において、鋼板2、15及び16の外周面を覆って、円筒状被覆層25が形成されるようにするとよい。本例の被覆層の厚みは、10mmであった。また上記形成において、弾性板1の内周側の一部が流動して、鋼板2、15及び16の内周面を覆って、円筒状被覆層25と同様であるがそれよりも極めて薄い円筒状被覆層が形成されてもよい。
【0038】
無負荷状態における弾性体3の高さが240mmの図7に示すような免震装置5において、比ap/Arを変化させて、各比ap/Arでの基礎10の振動エネルギEbによる構造物11への振動エネルギEsを求めた。得られた比ap/Arと免震装置5によるエネルギ伝達率Es/Ebとの関係を図8に示す。
【0039】
なお、このエネルギ伝達率は、以上の各値に加えて、免震装置5の面圧を80kg/cmとし、弾性板1の剪断弾性率Gを6kg/cmとし、入力として、エルセントロ地震波、十勝沖地震波、八戸地震波及びTAFT地震波を用い、これに統計的処理を施して、求めた。
【0040】
図8から明らかなように、比ap/Arが0.01〜0.12の範囲内であれば、エネルギ伝達率Es/Ebが1/2以下となり、基礎10の振動エネルギが十分に減衰されて構造物11に伝達されることが判る。また、比ap/Arが0.12を越えると、応答加速度比(応答/入力)が約50%以上になることを確認し得た。また、比ap/Arが0.01未満であると、構造物11と基礎10との相対変位が、例えば好ましい比ap/Ar=0.05におけるそれの2〜3倍以上も生じ、実用的でないことが判った。
【0041】
また、比ap/Arが0.02〜0.07の範囲内の場合及び0.03〜0.06の範囲内の場合は、図8から明らかなように、ぞれぞれ更に好ましいエネルギ伝達率Es/Ebが得られることが判る。
【0042】
一方、図7に示す免震装置5であって、鋼板2、15及び16の外径を500mm、内径を90mmとした免震装置5に対して、鉛直荷重57tonf(面圧30kgf/cm)〜342tonf(面圧180kgf/cm)を加えて、水平方向の変位と水平方向力との関係を実験により求めた。これを図9〜図12に示す。図9〜図12において、(a)は、免震装置5の全弾性板1自体の横変位(水平方向変位)が10%の場合、(b)及び(c)は、同じく50%及び100%の場合である。図9に示す鉛直荷重57tonf(面圧30kgf/cm)を加えた場合における比Vp/Veは1.03、図10に示す鉛直荷重114tonf(面圧60kgf/cm)を加えた場合における比Vp/Veは1.00、図11に示す鉛直荷重228tonf(面圧120kgf/cm)を加えた場合における比Vp/Veは1.02及び図12に示す鉛直荷重342tonf(面圧180kgf/cm)を加えた場合における比Vp/Veは1.11であった。以上の場合における比ap/Arは、0.03であった。
【0043】
図9、図11及び図12から明らかであるように、比Vp/Veが1.02以上では、トリガ機能が特に要求され、大振幅の地震に対して好ましく対応し得ることが判る。また図10から明らかであるように、比Vp/Veが1.00〜1.02未満の場合には、トリガ機能を好ましく得ることができないといえる。なお、比Vp/Veが1.07以下であれば、製造において中空部12への鉛の圧入が容易であり、それほど困難を伴わないことが判明した。また、比Vp/Veが1.12以上になるように、中空部12へ鉛を圧入しようとしたが、弾性体3の損壊なしに、これを行うことは困難であることが判明した。
【0044】
なお、免震装置5では、鋼板15及び16とフランジプレート18及び19とを別体で形成したが、フランジプレート18及び19に、厚肉剛性板を一体に形成して、免震装置を具体化してもよい。
【0045】
【発明の効果】
以上のように本発明によれば、柱状鉛の剪断面の総面積Σapと、弾性体の荷重面の面積Arとの比Σar/Arを所定の範囲内にするため、免震効果に優れ、構造物と基礎との相対変位を小さくすることができ、また地震後の後揺れも早期に減衰することができ、台風時のような強風時でも載置された構造物の横揺れを少なくし得、加えて免震効果を発揮するに十分な長周期化を計り得て長周期成分の地震動でも共振の虞がない免震装置を提供することができる。そして弾性体の中空部に配された柱状鉛を隙間なしに拘束し得る結果、安定な免震特性を得ることができ、しかも、トリガ機能を有して、大振幅の地震動に好ましく対応し得、加えて弾性体の弾性材料層及び柱状鉛の劣化を回避することができ、耐久性及び免震効果並びに製造性に特に優れた免震装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る免震装置の斜視図である。
【図2】図1に示す免震装置の断面図である。
【図3】免震装置の動作説明図である。
【図4】免震装置の動作説明図である。
【図5】免震装置の動作説明図である。
【図6】図1に示す免震装置の一部拡大断面図である。
【図7】本発明の好ましい一実施例の断面図である。
【図8】図7に示す実施例の効果を示す図である。
【図9】図7に示す実施例の効果を示す図である。
【図10】図7に示す実施例の効果を示す図である。
【図11】図7に示す実施例の効果を示す図である。
【図12】図7に示す実施例の効果を示す図である。
【符号の説明】
1 弾性板
2 剛性鋼板
3 弾性体
4 円柱状鉛
5 免震装置
12 中空部[0001]
BACKGROUND OF THE INVENTION
The present invention is an apparatus for reducing the vibration acceleration to a structure, particularly for a seismic energy attenuation, which is arranged between two structures to absorb the energy of relative horizontal vibration between the two structures. The present invention relates to a seismic isolation device that reduces input acceleration and prevents damage to structures such as buildings and bridges, and a system that uses one or more such seismic isolation devices.
[0002]
[Problems to be solved by the invention]
As a vibration energy absorber, for example, one described in Japanese Patent Publication No. 61-17984 is known. This vibration energy absorber is fixed between two structures and is plasticized by applying a shearing force. The lead member is deformed. Such a vibration energy absorber lead member preferably absorbs vibration energy without causing cracks or the like in its plastic deformation, but does not return the absorbed energy to the structure even after deformation unlike a normal spring. It is difficult to maintain the deformed state and return the structure to the original position.
[0003]
Elastic body as a seismic isolation device in which an elastic plate made of rubber or the like constituting an elastic material layer and a metal plate constituting a rigid material layer are alternately laminated and bonded together by vulcanization bonding or the like Reduces the earthquake input acceleration and protects the structure from the destructive force of the earthquake, but the vibration energy absorption ability is low, and when this is used alone as a seismic isolation device, compared with the above lead member, There are various problems in practical use from the viewpoint of earthquake engineering and vibration engineering, such as it takes a long time for the vibration after the earthquake of a structure subjected to earthquake motion to subside.
[0004]
Therefore, in order to have both the vibration energy absorption ability in plastic deformation of the lead member and the ability to reduce and restore the earthquake input acceleration of the elastic body, the elastic body and the columnar lead arranged through the elastic body are provided. The equipped seismic isolation device is also proposed in the publication.
[0005]
The seismic isolation device 5 shown in FIGS. 1 and 2 has an elastic plate 1 made of rubber or the like constituting an elastic material layer and an annular rigid plate 2 constituting a rigid material layer alternately stacked and fixed to each other. And the cylindrical lead 4 disposed in the hollow portion 12 defined by the cylindrical inner peripheral surface 9 of the elastic body 3, and the lower surface and the upper surface of the cylindrical lead 4, respectively. And flange plates 18 and 19 attached to the lower surface and the upper surface of the body 3 with bolts or the like. For example, the flange plate 18 side is fixed to one structure such as a foundation, and the building plate or the like is mounted on the flange plate 19 side. The other structure is placed and used so as to receive a vertical load X, that is, a load X in the stacking direction of the elastic plate 1 and the rigid plate 2 from a building or the like via the flange plate 19.
[0006]
The relationship between the lateral force F and the lateral displacement δ when the lateral force F is generated by the earthquake with respect to the seismic isolation device 5 is as follows: the diagonal stiffness Ker and the lateral direction (horizontal direction) of the elastic body 3. In other words, the shear yield load characteristic value Qd based on the shear yield load Au of the columnar lead 4 constrained by the elastic body 3 without a gap (between this Qd and the shear yield load Au). In the design, when the hysteresis curve is expressed by a bilinear characteristic, for convenience, the relationship of Qd = 0.8 · Au is given. In the present invention, Qd is called a shear yield load). When a hysteresis curve as shown in FIG. 3 is drawn and the diagonal stiffness Ker is larger than the stiffness Kr, in other words, when the shear yield load Qd of the cylindrical lead 4 constrained by the elastic body 3 without a gap increases. Will draw a history curve as shown in FIG. . Here, the shear yield load Qd is expressed by the following equation (1).
Qd = ap · σpd (1)
[0007]
In the formula (1), ap is the area of the shear surface of the cylindrical lead 4 (in the present invention, defined by the cross-sectional area of the cylindrical lead 4 surrounded by the inner periphery of the rigid material layer). This corresponds to the area of the shearing surface of the cylindrical lead 4 with respect to the applied lateral force F, and σpd is the shear yield stress of the cylindrical lead 4 itself that is not constrained by the elastic body 3 without a gap (in the present invention, this is designed) In the case of pure lead (purity 99.9% or more), the design value is 85 kg / cm 2 at a vibration amplitude of 0.5 Hz and a strain amplitude of 50% or more.
[0008]
By the way, in the seismic isolation device 5 that draws a history curve as shown in FIG. 3, the seismic isolation effect against the earthquake is excellent, but the relative displacement between the structure placed on the base and the foundation is large, and after the earthquake. There is a possibility that the after-swing lasts for a relatively long time, and there is a risk of resonating in the case of an earthquake motion with a large long-period component. Further, in a strong wind such as a typhoon, the mounted structure may shake greatly. On the other hand, the dynamic natural vibration period by the seismic isolation device 5 is given by the diagonal stiffness Ker shown in FIGS. 3 and 4, but in the seismic isolation device 5 that draws a hysteresis curve as shown in FIG. 4, the stiffness Kr is compared. If the diagonal stiffness Ker is large, the shear yield load Qd of the cylindrical lead 4 increases, and it is difficult to make the period long enough to exhibit the seismic isolation effect. Becomes worse.
[0009]
Further, as a requirement for guaranteeing the shear yield load Qd of the cylindrical lead 4 according to the formula (1), the cylindrical lead 4 is subjected to periodic shear deformation in the elastic material layer and the rigid material layer constituting the elastic body. It is restrained without a gap during and after that. If the cylindrical lead 4 arranged in the hollow portion 12 is not constrained by the elastic body 3 without a gap, when a lateral force (horizontal force) F is generated by an earthquake, the inner peripheral surface 9 of the elastic body 3 and A gap is formed between the cylindrical lead 4 in contact with the cylindrical outer peripheral surface, and the relationship between the lateral force F and the lateral displacement (horizontal displacement) δ is shown by a hysteresis curve 21 in FIG. Therefore, it is difficult to obtain the desired seismic isolation effect. On the other hand, if the cylindrical lead 4 is restrained more than necessary by the elastic body 3, the elastic material layer of the elastic body 3 is excessively compressed in the plastic deformation of the cylindrical lead 4 due to the lateral force F caused by the earthquake. This causes early deterioration of the elastic material layer of the elastic body 3 and causes a problem in durability. In addition, in order to form the cylindrical lead 4, there is a limit to the amount of lead that is pressed into the hollow portion 12 of the elastic body 3, and it is difficult to press-fit a certain amount or more of lead into the hollow portion 12 of the elastic body 3. If this is done forcibly, the elastic body 3 itself may be damaged.
[0010]
In the seismic isolation device 5 shown in FIG. 1 and FIG. 2, when a lateral displacement occurs repeatedly due to several degrees of earthquake, the peripheral portions of the upper and lower surfaces of the cylindrical lead 4 are rounded, and the peripheral portions are elastic. There is also a possibility that an annular gap may be formed between the body 3 and the body 3.
[0011]
The present invention has been made in view of the above points, and paying attention to the relationship between the shear yield load Qd and the support load W of the elastic body described below, the area of the shear surface of the columnar lead obtained from this relationship By making the ratio of ap and the area Ar of the load surface of the elastic body within a predetermined range, the seismic isolation effect is excellent and the relative displacement between the structure and the foundation can be reduced. The after-swing can be attenuated early, and it can reduce the roll of the mounted structure even in strong winds such as typhoons, and in addition, it is designed to have a long enough period to exhibit the seismic isolation effect An object of the present invention is to provide a seismic isolation device that is free from resonance even with long-period ground motion.
[0012]
Further, the present invention provides a seismic isolation device having the predetermined area ratio, and as a result of being able to restrain the columnar lead arranged in the hollow portion of the elastic body without a predetermined gap, stable seismic isolation characteristics can be obtained, In addition, an object of the present invention is to provide a seismic isolation device that can avoid fatigue and breakage of the elastic material layer of the elastic body and the columnar lead, and is excellent in durability, seismic isolation effect, and manufacturability.
[0013]
A further object of the present invention is to provide a system using at least one seismic isolation device as described above.
[0014]
[Means for Solving the Problems]
According to the present invention, the object includes an elastic body in which an elastic material layer and a rigid material layer are alternately laminated, and at least one columnar lead arranged through the elastic body, The seismic isolation device in which the columnar lead is constrained to the elastic body in the shearing direction without a gap so that the shear yield load Qd of the columnar lead is the product of the area ap of the columnar lead shear surface and the designed shear yield stress σpd. And it is achieved by the seismic isolation device in which the ratio Σap / Ar of the total area Σap of the columnar lead shear surface and the area Ar of the load surface of the elastic body is 0.01 to 0.12.
[0015]
According to the present invention, the object is defined by at least one columnar lead, an elastic body in which an elastic material layer and a rigid material layer are alternately laminated, and at least an inner peripheral surface of the elastic body. The seismic isolation device includes at least one hollow portion in which lead is densely arranged, and the ratio Σap / Ar of the total area Σap of the columnar lead shear surface to the area Ar of the elastic load surface is 0. The volume Vp of the columnar lead arranged in the hollow portion is 01 to 0.12, and the volume Ve of the hollow portion when the columnar lead is not inserted and a load in the stacking direction is applied to the elastic body. This is also achieved by the seismic isolation device in which the columnar lead is densely arranged in the hollow portion so that the ratio Vp / Ve is 1.02-1.12 and supports the load in the stacking direction. .
[0016]
In the seismic isolation device in which the columnar lead is constrained by the elastic body without a gap, and the shear yield load Qd of the columnar lead is a product of the area ap of the shear surface of the columnar lead and the designed shear yield stress σpd, Focusing on the fact that the required characteristics can be evaluated by the ratio between the shear yield load Qd of columnar lead and the support load W of the elastic body on the structure to be placed, the shear yield load Qd and the support load W When the ratio Qd / W is less than 0.02, the relative displacement between the mounted structure and the foundation is large, and the post-quake after the earthquake lasts relatively long. There is a risk of resonating, and in a strong wind such as a typhoon, there is a possibility that the mounted structure may shake greatly. On the other hand, if the ratio Qd / W is larger than 0.08, it is difficult to increase the period. As a result, the knowledge that the seismic isolation effect is worsened This invention was made based.
[0017]
In the seismic isolation device 5, the shear yield load Qd of the cylindrical lead 4 is given by the above formula (1), and the support load W of the elastic body 3 is
W = Ar · P (2)
Given in. Here, Ar is the area of the load surface of the elastic body 3 and corresponds to the vertical load X applied to the seismic isolation device 5, that is, the pressure receiving area of the elastic body 3 with respect to the support load W, and P is the seismic isolation device 5. the average compressive stress of the elastic body 3 with respect to the vertical direction load X applied in the design of the seismic isolation device, normally, 60kg / cm 2 ~130kg / cm 2 about values is taken.
[0018]
By the way, the ratio Qd / W is
Figure 0003988849
Where σpd = 80 kg / cm 2 and P = 130 kg / cm 2 , the upper limit value of the ratio Qd / W is, in other words, the upper limit value of ap / Ar is about 0.12, and σpd = 100 kg / cm 2 and P = 60 kg / cm 2 , the lower limit value of the ratio Qd / W is, in other words, the lower limit value of ap / Ar is about 0.01. Note that the value of σpd is a value at 0.5 Hz vibration and a strain amplitude of 50% or more.
[0019]
That is, by making the ratio ap / Ar between the area ap of the columnar lead shear surface and the area Ar of the load surface of the elastic body within a range of 0.01 to 0.12, the seismic isolation effect is excellent, and the structure The relative displacement between the base and the foundation can be reduced, and the post shake after the earthquake can be attenuated early, and the roll of the mounted structure can be reduced even in strong winds such as typhoons, In addition, it can be said that there is no possibility of resonance even in the case of long-period seismic motion by measuring a long period.
[0020]
As is clear from the following examples, a more preferable result can be obtained by setting the ratio ap / Ar to 0.02 to 0.07, and the ratio ap / Ar is set to 0.03 to 0. It was found that an even more favorable result can be obtained by setting the value to 0.06.
[0021]
The same applies to the case where a plurality of columnar lead is arranged on one elastic body. In the present invention, including this case, the total area Σap of the shear surface of the columnar lead and the area Ar of the load surface of the elastic body are included. The ratio Σap / Ar is set within the above range.
[0022]
Further, the present invention relates to the volume Vp of the columnar lead arranged in the hollow portion and the volume of the hollow portion defined by the inner peripheral surface of the elastic body, specifically, before arranging the columnar lead, in other words, the columnar lead. By making the volume Ve of the hollow portion (hereinafter referred to as a reduced hollow portion) in a state where a load in the stacking direction is applied to the elastic body into a certain relationship before press-fitting lead for forming As a result of the columnar lead being constrained by the elastic material layer and the rigid material layer constituting the elastic body without gaps, the shear yield load Qd of the columnar lead according to the formula (1) is guaranteed, and in addition to the above effect This is based on the knowledge that a seismic isolation device that is particularly excellent in durability, seismic isolation effect, and manufacturability can be provided.
[0023]
That is, in the seismic isolation device of the present invention, in addition to the area ratio, the ratio Vp / Ve between the volume Vp of the columnar lead arranged in the hollow portion and the volume Ve of the reduced hollow portion is 1.02 to 1.12. is there. The volume Ve of the reduced hollow portion is increased or decreased by the load in the stacking direction of the elastic material layer and the rigid material layer, which is a vertical load applied to the elastic body, in other words, by the weight of the structure supported by the seismic isolation device, Moreover, it differs from the volume of the hollow part in the state where the columnar lead having a volume exceeding 1.00 times the volume Ve of the reduced hollow part is arranged. Also in this seismic isolation device, the columnar lead having a volume sufficiently exceeding 1.00 times the volume Ve of the reduced hollow portion is arranged in the hollow portion, and the columnar lead is bitten into the elastic material layer of the elastic body. The inner peripheral surface of the elastic body that defines the above may be a concave surface at the position of the elastic material layer and a convex surface at the position of the rigid material layer.
[0024]
By the way, when the cylindrical lead 4 is arranged to be less than 1.00 times the volume of the reduced hollow portion (ratio Vp / Ve = 1.00), the inner peripheral surface 9 of the elastic body 3 and the inner peripheral surface 9 Between the cylindrical lead 4 and the outer peripheral surface of the columnar lead 4 facing and in contact with the seismic isolation device 5 during operation of the seismic isolation device 5, that is, while the lateral force F is repeatedly applied to the seismic isolation device 5. In addition, a gap is easily generated between the inner peripheral surface 9 of the elastic body 3 and the outer peripheral surface of the cylindrical lead 4, and unstable seismic isolation characteristics as indicated by the hysteresis curve 21 are exhibited. This is because the columnar lead 4 is not constrained to the elastic body 3 at least in the shearing direction and causes deformation other than shear deformation, and the columnar lead 4 is subjected to design shear yield stress (usually a pure purity of 99.9% or higher purity). In the case of lead at a degree, it is presumed that it also depends on not showing 85 kg / cm 2 ) as a design value.
[0025]
On the other hand, when the columnar lead 4 is disposed more than 1.12 times the volume of the reduced hollow portion (ratio Vp / Ve = 1.12), the columnar lead 4 greatly bites into the elastic plate 1, 6, the inner peripheral surface 9 of the elastic body 3 becomes excessively concave, and the shear stress between the elastic plate 1 and the rigid plate 2 in the vicinity of this position becomes too large. . When the stress is excessively generated in this manner, the elastic plate 1 is quickly deteriorated and the durability is inferior. Further, in the manufacture of the seismic isolation device 5, in order to form the cylindrical lead 4 in the hollow portion 12, press-fitting lead more than 1.12 times the volume of the reduced hollow portion greatly increases the pressure input. In addition, the elastic body 3 may be damaged by press-fitting, and it has been found difficult.
[0026]
As is clear from the following examples, a small vibration input exhibits a high rigidity, and a large vibration input requires a function exhibiting a low rigidity, that is, a so-called trigger function. In order to cope with it preferably, the ratio Vp / Ve is preferably 1.02 or more. Further, when the ratio Vp / Ve is in the range of 1.02 to 1.07, the productivity is extremely excellent.
[0027]
In the present invention, examples of the material of the elastic material layer include natural rubber, silicon rubber, high damping rubber, urethane rubber, chloroprene rubber, and the like, and natural rubber is preferable. The thickness of each layer of the elastic material layer is preferably about 1 mm to 30 mm in an unloaded state, but is not limited thereto. In addition, examples of the material of the rigid material layer include a fiber-reinforced synthetic resin plate such as a steel plate, carbon fiber, glass fiber, or aramid fiber, or a fiber-reinforced hard rubber plate. Is preferably about 10 mm to 50 mm, and each of the other layers is preferably about 1 mm to 6 mm, but is not limited thereto, and the number of sheets is not particularly limited. The elastic body and the columnar lead are preferably an annular body and a cylindrical body, but may have other shapes such as an ellipse or a rectangular body and an ellipse or a rectangular body. There may be one columnar lead arranged through the elastic body, but instead, a plurality of hollow portions are formed in one elastic body, and the columnar lead is disposed in each of the plurality of hollow portions. You may comprise a seismic isolation apparatus. In addition, it is not necessary to arrange | position each columnar lead of these several hollow parts on the same said conditions regarding ratio Vp / Ve, and may arrange | position on different conditions, respectively, and each columnar lead is ratio Vp / Ve. It is preferable that the above condition is satisfied with respect to the above, but some of the columnar lead may be arranged so as not to satisfy the above condition with respect to the ratio Vp / Ve.
[0028]
The present invention also includes an elastic body in which an elastic material layer and a rigid material layer are alternately laminated, and the columnar lead arranged in at least one hollow portion defined by the inner peripheral surface of the elastic body. It can also be applied to a system in which one or more, preferably a plurality of seismic isolation devices are arranged between the structure and the foundation. In this case, the shear yield load Qd of the columnar lead is the area ap of the columnar lead shear surface. The columnar lead is constrained to the corresponding elastic body without gap so that the product of the design shear yield stress σpd and the ratio of the total area Σap of the columnar lead shear surface and the total area ΣAr of the load surface of the elastic body The Σap / ΣAr may be 0.01 to 0.12, and the ratio Σap / ΣAr of the total area Σap of the columnar lead shear surface to the total area ΣAr of the load surface of the elastic body is 0.01-0. 12 and the volume Vp of the columnar lead arranged in the hollow portion and the columnar lead is not inserted. Thus, the columnar lead is hollow so that the ratio Vp / Ve to the volume Ve of the hollow portion (reduced hollow portion) in a state where the load in the stacking direction is applied to the elastic body is 1.02 to 1.12. The above-described effects can be obtained in the same manner as long as they are densely arranged in the portion and support the load in the stacking direction. Also in this system, a more preferable result can be obtained by setting the ratio Σap / ΣAr to 0.02 to 0.07, and by setting the ratio Σap / ΣAr to 0.03 to 0.06, On the other hand, more preferable results can be obtained, while preferable productivity can be obtained when the ratio Vp / Ve is 1.02 to 1.07.
[0029]
In addition, in the seismic isolation device of this system, the inner circumferential surface of the elastic body that defines the hollow portion has a columnar lead that bites into the elastic material layer of the elastic body and becomes a concave surface at the position of the elastic material layer. It may be convex at the position of the layer. In a system in which a plurality of seismic isolation devices are arranged, it is not necessary to arrange the plurality of seismic isolation devices under the same conditions with respect to the ratio Vp / Ve. It is preferable that each seismic isolation device satisfies the above condition with respect to the ratio Vp / Ve, but some seismic isolation devices among the plurality of seismic isolation devices do not satisfy the above condition with respect to the ratio Vp / Ve. May be arranged.
[0030]
Further, in the above-mentioned system in which one or more seismic isolation devices having columnar lead are arranged between the structure and the foundation, the elastic material layer and the rigid material layer are alternately laminated, and the hollow portion is not included. At least one other seismic isolation device having a real elastic body may be arranged between the structure and the foundation together with the seismic isolation device having columnar lead.
[0031]
At least one seismic isolation device with columnar lead and at least one seismic isolation device without solid lead and with a solid elastic body are arranged between the structure and the foundation. In such a system, the total area ΣAr of the load surface of the elastic body includes the load surface of the solid elastic body having no columnar lead, so that the ratio Σap / ΣAr satisfies the above condition, Configure each seismic isolation device.
[0032]
In any seismic isolation device including the columnar lead, the rigid material layer includes a thick rigid plate disposed on each end face side of the elastic body, and one end of the columnar lead is one thick wall. The other end of the hollow portion is densely arranged at one end of the hollow portion defined by the inner peripheral surface of the rigid plate, and the other end of the columnar lead is defined by the inner peripheral surface of the other thick rigid plate It is good to be densely arranged in the part.
[0033]
In the seismic isolation device 5 as shown in FIG. 2, as described above, when an earthquake of several degrees is applied, an annular gap is generated between the peripheral portions of the upper and lower surfaces of the cylindrical lead 4 and the elastic body 3, and a long-term Although the seismic isolation characteristic may be unstable due to this annular gap by use, as described above, in the present invention, both end portions of the columnar lead are formed on the hollow portion defined by the inner peripheral surface of each thick rigid plate. It is densely arranged at each end to prevent the occurrence of an annular gap and to prevent the deterioration of seismic isolation characteristics.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention and the embodiments of the present invention will be further described based on preferred examples.
[0035]
【Example】
The seismic isolation device 5 of this example shown in FIG. 7 has an elastic material layer composed of an annular elastic plate 1 and a rigid material layer composed of an annular thin rigid steel plate 2 and annular thick rigid steel plates 15 and 16 alternately laminated. The annular elastic body 3 formed, the cylindrical lead 4 densely arranged in the hollow portion 12 defined by at least the inner peripheral surface 9 of the elastic body 3, and the bolts 17 on the steel plates 15 and 16 respectively. And a shear key 20 for fixing the flange plates 18 and 19 and the steel plates 15 and 16 to each other in the shearing direction (F direction) on the lower and upper surfaces of the cylindrical lead 4. The hollow portion 12 in which the cylindrical lead 4 is densely arranged is defined by the upper surface 21 of the lower shear key 20 and the lower surface 22 of the upper shear key 20 in addition to the inner peripheral surface 9. In the seismic isolation device 5, the steel plates 15 and 16 are embedded in an elastic material layer on the upper and lower end surfaces of the elastic body 3, and the lower end portion 23 of the columnar lead 4 is defined by the inner peripheral surface of the steel plate 15. The upper end portion 24 of the cylindrical lead 4 is densely arranged on the upper end portion of the hollow portion 12 defined by the inner peripheral surface of the steel plate 16.
[0036]
The seismic isolation device 5 is used with the flange plate 18 side connected to the foundation 10 and the flange plate 19 side connected to the structure 11. In this example, in order to form an elastic material layer, 25 annular elastic plates 1 made of natural rubber having a thickness of 5 mm are used, and in order to form a rigid material layer, an annular material having a thickness of 2.3 mm is used. Twenty-two steel plates 2 and annular steel plates 15 and 16 having a thickness of 31 mm were used.
[0037]
When manufacturing the seismic isolation device 5 of the present invention, first, the annular elastic plates 1 and the steel plates 2 are alternately laminated, and the annular steel plates 15 and 16 are disposed on the lower surface and the upper surface thereof. An annular elastic body 3 is prepared by fixing them to each other by vulcanization adhesion under pressure, and then lead is formed in the hollow portion 12 of the elastic body 3 in order to form the cylindrical lead 4 in the hollow portion 12. Press fit. The press-fitting of lead is performed by pushing lead into the hollow portion 12 with a hydraulic ram or the like so that the cylindrical lead 4 is constrained by the elastic body 3 in the hollow portion 12 without a gap. After lead press-fitting, the shear key 20 and the flange plates 18 and 19 are attached. In the formation of the elastic body 3 by vulcanization adhesion under pressure in the mold, the cylindrical coating layer 25 may be formed so as to cover the outer peripheral surfaces of the steel plates 2, 15 and 16. The thickness of the coating layer in this example was 10 mm. In the above formation, a part of the inner peripheral side of the elastic plate 1 flows to cover the inner peripheral surfaces of the steel plates 2, 15 and 16, and is the same as the cylindrical covering layer 25, but an extremely thin cylinder A shaped coating layer may be formed.
[0038]
In the seismic isolation device 5 as shown in FIG. 7 where the height of the elastic body 3 in an unloaded state is 240 mm, the structure by the vibration energy Eb of the foundation 10 at each ratio ap / Ar by changing the ratio ap / Ar. The vibration energy Es to 11 was obtained. FIG. 8 shows the relationship between the obtained ratio ap / Ar and the energy transfer rate Es / Eb by the seismic isolation device 5.
[0039]
In addition to the above values, the energy transfer rate is such that the surface pressure of the seismic isolation device 5 is 80 kg / cm 2 , the shear elastic modulus G of the elastic plate 1 is 6 kg / cm 2 , and the input is an El Centro seismic wave. Tokachi-oki seismic wave, Hachinohe seismic wave and TAFT seismic wave were used for statistical processing.
[0040]
As is clear from FIG. 8, if the ratio ap / Ar is in the range of 0.01 to 0.12, the energy transfer rate Es / Eb is ½ or less, and the vibration energy of the foundation 10 is sufficiently attenuated. It can be seen that the signal is transmitted to the structure 11. It was also confirmed that when the ratio ap / Ar exceeds 0.12, the response acceleration ratio (response / input) is about 50% or more. Moreover, when the ratio ap / Ar is less than 0.01, the relative displacement between the structure 11 and the base 10 is, for example, 2 to 3 times or more of that at the preferable ratio ap / Ar = 0.05, which is practical. It turns out that it is not.
[0041]
Further, when the ratio ap / Ar is in the range of 0.02 to 0.07 and in the range of 0.03 to 0.06, as is apparent from FIG. It can be seen that the rate Es / Eb is obtained.
[0042]
On the other hand, in the seismic isolation device 5 shown in FIG. 7, the vertical load 57 tonf (surface pressure 30 kgf / cm 2 ) is applied to the seismic isolation device 5 in which the outer diameters of the steel plates 2, 15 and 16 are 500 mm and the inner diameter is 90 mm. ˜342 tonf (surface pressure 180 kgf / cm 2 ) was added, and the relationship between the horizontal displacement and the horizontal force was determined by experiments. This is shown in FIGS. 9 to 12, (a) shows that when the lateral displacement (horizontal displacement) of the entire elastic plate 1 itself of the seismic isolation device 5 is 10%, (b) and (c) show the same 50% and 100 %. The ratio Vp / Ve is 1.03 when the vertical load 57tonf (surface pressure 30 kgf / cm 2 ) shown in FIG. 9 is applied, and the ratio when the vertical load 114 tof (surface pressure 60 kgf / cm 2 ) shown in FIG. 10 is applied. Vp / Ve is 1.00, the ratio Vp / Ve is 1.02 when the vertical load 228tonf (surface pressure 120 kgf / cm 2 ) shown in FIG. 11 is applied, and the vertical load 342 tof (surface pressure 180 kgf / cm) shown in FIG. The ratio Vp / Ve when 2 ) was added was 1.11. The ratio ap / Ar in the above case was 0.03.
[0043]
As is clear from FIGS. 9, 11 and 12, it can be seen that when the ratio Vp / Ve is 1.02 or more, a trigger function is particularly required, and it can preferably cope with a large-amplitude earthquake. As is clear from FIG. 10, when the ratio Vp / Ve is less than 1.00 to less than 1.02, it can be said that the trigger function cannot be preferably obtained. It has been found that when the ratio Vp / Ve is 1.07 or less, it is easy to press-fit lead into the hollow portion 12 in manufacturing, and there is no difficulty. In addition, lead was tried to be pressed into the hollow portion 12 so that the ratio Vp / Ve was 1.12 or more. However, it was found difficult to do this without damaging the elastic body 3.
[0044]
In the seismic isolation device 5, the steel plates 15 and 16 and the flange plates 18 and 19 are formed separately. However, a thick rigid plate is integrally formed on the flange plates 18 and 19 to specify the seismic isolation device. May be used.
[0045]
【The invention's effect】
As described above, according to the present invention, since the ratio Σar / Ar of the total area Σap of the columnar lead shear surface and the area Ar of the load surface of the elastic body is within a predetermined range, the seismic isolation effect is excellent. The relative displacement between the structure and the foundation can be reduced, and the post-quake after the earthquake can be attenuated early, reducing the roll of the mounted structure even during strong winds such as typhoons. In addition, it is possible to provide a seismic isolation device that can measure a sufficiently long period for exhibiting a seismic isolation effect and that does not cause resonance even in a long-period earthquake motion. And as a result of being able to constrain the columnar lead arranged in the hollow part of the elastic body without gaps, it is possible to obtain stable seismic isolation characteristics, and it has a trigger function and can preferably cope with large-amplitude earthquake motion. In addition, it is possible to avoid deterioration of the elastic material layer and columnar lead of the elastic body, and to provide a seismic isolation device that is particularly excellent in durability, seismic isolation effect, and manufacturability.
[Brief description of the drawings]
FIG. 1 is a perspective view of a seismic isolation device according to the present invention.
2 is a cross-sectional view of the seismic isolation device shown in FIG.
FIG. 3 is an operation explanatory diagram of the seismic isolation device.
FIG. 4 is an operation explanatory diagram of the seismic isolation device.
FIG. 5 is an operation explanatory diagram of the seismic isolation device.
6 is a partially enlarged sectional view of the seismic isolation device shown in FIG. 1;
FIG. 7 is a cross-sectional view of a preferred embodiment of the present invention.
8 is a diagram showing the effect of the embodiment shown in FIG.
9 is a diagram showing the effect of the embodiment shown in FIG.
FIG. 10 is a diagram showing the effect of the embodiment shown in FIG.
11 is a diagram showing the effect of the embodiment shown in FIG.
12 is a diagram showing the effect of the embodiment shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Elastic plate 2 Rigid steel plate 3 Elastic body 4 Columnar lead 5 Seismic isolation device 12 Hollow part

Claims (8)

少なくとも一つの柱状鉛と、弾性材料層及び剛性材料層が交互に積層されてなる弾性体と、少なくともこの弾性体の内周面で規定されており、柱状鉛が密に配された少なくとも一つの中空部とを具備した免震装置であって、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の面積Arとの比Σap/Arが0.01〜0.12であり、中空部に配された柱状鉛の体積Vpと、柱状鉛が未挿入であって、弾性体に積層方向の荷重が加えられた状態での中空部の容積Veとの比Vp/Veが1.02〜1.12であるようにして柱状鉛が中空部に密に配されてなり、前記積層方向の荷重を支持するようにした免震装置。  At least one columnar lead, an elastic body formed by alternately laminating an elastic material layer and a rigid material layer, and at least one inner surface of the elastic body, the columnar lead being densely arranged A seismic isolation device having a hollow portion, wherein the ratio Σap / Ar of the total area Σap of the columnar lead shear surface and the area Ar of the elastic load surface is 0.01 to 0.12, and the hollow portion The ratio Vp / Ve between the volume Vp of the columnar lead arranged in the column and the volume Ve of the hollow portion when the columnar lead is not inserted and the load in the stacking direction is applied to the elastic body is 1.02 A seismic isolation device in which columnar lead is densely arranged in the hollow portion as in 1.12. And supports the load in the stacking direction. 比Vp/Veが1.02〜1.07である請求項1に記載の免震装置。  The seismic isolation device according to claim 1, wherein the ratio Vp / Ve is 1.02 to 1.07. 比Σap/Arが、0.02〜0.07である請求項1又は2に記載の免震装置。  The seismic isolation device according to claim 1 or 2, wherein the ratio Σap / Ar is 0.02 to 0.07. 比Σap/Arが、0.03〜0.06である請求項1又は2に記載の免震装置。  The seismic isolation device according to claim 1 or 2, wherein the ratio Σap / Ar is 0.03 to 0.06. 弾性材料層及び剛性材料層が交互に積層されてなる弾性体と、この弾性体の内周面で規定された少なくとも一つの中空部に配された柱状鉛とを具備した免震装置を一個以上有した免震システムであって、柱状鉛の剪断面の総面積Σapと弾性体の荷重面の総面積ΣArとの比Σap/ΣArが0.01〜0.12であり、中空部に配された柱状鉛の体積Vpと、柱状鉛が未挿入であって、弾性体に積層方向の荷重が加えられた状態での中空部の容積Veとの比Vp/Veが1.02〜1.12であるようにして柱状鉛が中空部に密に配されてなり、前記積層方向の荷重を支持するようにした免震システム。  One or more seismic isolation devices comprising an elastic body in which elastic material layers and rigid material layers are alternately laminated, and columnar lead arranged in at least one hollow portion defined by the inner peripheral surface of the elastic body A ratio of Σap / ΣAr between the total area Σap of the columnar lead shear surface and the total area ΣAr of the load surface of the elastic body is 0.01 to 0.12, and is disposed in the hollow portion. The ratio Vp / Ve between the volume Vp of the columnar lead and the volume Ve of the hollow portion when the columnar lead is not inserted and a load in the stacking direction is applied to the elastic body is 1.02 to 1.12. The seismic isolation system in which the columnar lead is densely arranged in the hollow portion so as to support the load in the stacking direction. 比Vp/Veが1.02〜1.07である請求項5に記載の免震システム。  The seismic isolation system according to claim 5, wherein the ratio Vp / Ve is 1.02-1.07. 比Σap/ΣArが、0.02〜0.07である請求項5又は6に記載の免震システム。  The seismic isolation system according to claim 5 or 6, wherein the ratio Σap / ΣAr is 0.02 to 0.07. 比Σap/ΣArが、0.03〜0.06である請求項5又は6に記載の免震システム。  The seismic isolation system according to claim 5 or 6, wherein the ratio Σap / ΣAr is 0.03 to 0.06.
JP03500199A 1995-08-04 1999-02-12 Seismic isolation device Expired - Lifetime JP3988849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03500199A JP3988849B2 (en) 1995-08-04 1999-02-12 Seismic isolation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-219594 1995-08-04
JP21959495 1995-08-04
JP03500199A JP3988849B2 (en) 1995-08-04 1999-02-12 Seismic isolation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8216605A Division JP3024562B2 (en) 1995-08-04 1996-07-30 Seismic isolation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005239224A Division JP2006022965A (en) 1995-08-04 2005-08-19 Vibration isolation device

Publications (2)

Publication Number Publication Date
JPH11315884A JPH11315884A (en) 1999-11-16
JP3988849B2 true JP3988849B2 (en) 2007-10-10

Family

ID=26373885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03500199A Expired - Lifetime JP3988849B2 (en) 1995-08-04 1999-02-12 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3988849B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853725B2 (en) * 2017-04-20 2021-03-31 オイレス工業株式会社 Seismic isolation support device
JP2019127996A (en) * 2018-01-24 2019-08-01 オイレス工業株式会社 Base isolation support device

Also Published As

Publication number Publication date
JPH11315884A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
US5761856A (en) Vibration isolation apparatus
AU620587B2 (en) Improvements in or relating to energy absorbers
JPH0419407B2 (en)
US10619700B2 (en) Seismic isolation apparatus
JP3205393U (en) Seismic isolation device
JP4061818B2 (en) Seismic isolation device
EP3614017A1 (en) Seismic isolation support device
JP3024562B2 (en) Seismic isolation device
JP3988849B2 (en) Seismic isolation device
JP2008292000A (en) Vibration isolation device
JP2006022965A (en) Vibration isolation device
JP2007170679A (en) Vibration isolating apparatus
JP2006207680A (en) Laminated rubber supporter
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2019127994A (en) Aseismic base isolation support device
JP2650153B2 (en) Seismic isolation device
KR100409274B1 (en) Vibration isolating apparatus and vibration isolating system
JP3039846B2 (en) Laminated rubber bearing
JP3021447U (en) Seismic isolation device
JP2002188687A (en) Base-isolation device
JP3008954B2 (en) Seismic isolation bearing
EP3614016A1 (en) Seismic isolation support device
JPS62220734A (en) Vibrational energy absorbing device
JPH0520808Y2 (en)
JP2940731B2 (en) Structure vibration control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term