JP3008954B2 - Seismic isolation bearing - Google Patents

Seismic isolation bearing

Info

Publication number
JP3008954B2
JP3008954B2 JP2217710A JP21771090A JP3008954B2 JP 3008954 B2 JP3008954 B2 JP 3008954B2 JP 2217710 A JP2217710 A JP 2217710A JP 21771090 A JP21771090 A JP 21771090A JP 3008954 B2 JP3008954 B2 JP 3008954B2
Authority
JP
Japan
Prior art keywords
seismic isolation
plate
hard
isolation bearing
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2217710A
Other languages
Japanese (ja)
Other versions
JPH04102743A (en
Inventor
芳明 宮本
一裕 藤澤
輝男 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2217710A priority Critical patent/JP3008954B2/en
Publication of JPH04102743A publication Critical patent/JPH04102743A/en
Application granted granted Critical
Publication of JP3008954B2 publication Critical patent/JP3008954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は免震支承に関し、詳しくは複数の硬質板とゴ
ム状弾性板とを交互に積層した積層体の外周部に被覆ゴ
ム体を被着形成したもので、建築物などの上部構造物を
基礎などの下部構造物上に水平方向に揺動自在に支持
し、地震の入力加速度を低減することにより上部構造物
の損壊を未然に防止して地震から上部構造物を保護する
免震支承に関する。
Description: BACKGROUND OF THE INVENTION The present invention relates to a seismic isolation bearing, and more particularly, to a seismic isolation bearing, in which a plurality of hard plates and a rubber-like elastic plate are alternately stacked, and a coated rubber body is coated on an outer peripheral portion thereof. The upper structure, such as a building, is supported on a lower structure, such as a foundation, so that it can swing freely in the horizontal direction, and the input acceleration of earthquakes is reduced to prevent damage to the upper structure. And seismic isolation bearings to protect upper structures from earthquakes.

〔従来の技術〕[Conventional technology]

建築物などの上部構造物を基礎などの下部構造物上に
水平方向に揺動自在に支持する免震支承は、上部構造物
の固有振動周期を地震の最大振幅成分よりも長くし、地
震の入力加速度を低減させて高い鉛直ばね定数でもって
上部構造物を地震の破壊力から保護している。
Seismic isolation bearings that support an upper structure such as a building so that it can swing horizontally on a lower structure such as a foundation make the natural frequency of the upper structure longer than the maximum amplitude component of the earthquake. The input acceleration is reduced to protect the superstructure from the destructive force of the earthquake with a high vertical spring constant.

この免震支承は、第10図に示すように鋼板などの硬質
板(1′)(1′)及び(1)(1)…と圧縮永久歪み
の小さい軟質のゴム状弾性板(2)(2)…とを交互に
積層した積層体(3)の外周部に被覆ゴム体(4)を被
着形成した構造を基本とする。また、免震動作時の振動
エネルギー吸収能力を上げて減衰性能の向上を図る周囲
拘束型のものがある。この周囲拘束型免震支承は、第11
図に示すように鋼板などの硬質板(1′)(1′)及び
(1)(1)…と圧縮永久歪みの小さい軟質のゴム状弾
性板(2)(2)…とを交互に積層した積層体(3)の
中央にその積層方向の両端に開口する筒形中空部(5)
を形成し、その筒形中空部(5)に高減衰性能を持つ柱
状の粘弾性体(6)を挿入・充填すると共に、上記積層
体(3)の外周部に被覆ゴム体(4)を被着形成した構
造を有する。尚、上記粘弾性体(6)の上下面には、硬
質の受圧板(7)(7)が加硫接着などにより一体化さ
れている。
As shown in FIG. 10, this seismic isolation bearing is composed of a hard rubber plate (1 ') (1') and (1) (1)... And a soft rubber-like elastic plate (2) ( 2) are basically formed in such a manner that a covering rubber body (4) is formed on the outer periphery of a laminate (3) obtained by alternately laminating. In addition, there is a periphery-constrained type in which the vibration energy absorbing capacity during seismic isolation operation is increased to improve the damping performance. This seismic isolation bearing is
As shown in the figure, hard plates (1 ') (1') and (1) (1) ... such as steel plates and soft rubber-like elastic plates (2) (2) ... having a small compression set are alternately laminated. Cylindrical hollow part (5) opening at both ends in the laminating direction at the center of the laminated body (3)
And a column-shaped viscoelastic body (6) having a high damping performance is inserted and filled in the cylindrical hollow portion (5), and a coated rubber body (4) is provided on the outer periphery of the laminate (3). It has an adhered structure. Hard pressure receiving plates (7) and (7) are integrated on the upper and lower surfaces of the viscoelastic body (6) by vulcanization bonding or the like.

上記免震支承はその実使用状態で取り替えることが困
難であるため、コンクリート構造物と同じように60年程
度の耐久寿命が要求されている。そこで、硬質板
(1′)(1′)及び(1)(1)…とゴム状弾性板
(2)(2)…とからなる積層体(3)を外部と完全に
遮断し、酸素、オゾン、紫外線或いは酸、アルカリ、塩
などの薬品を含んだ水分により、ゴム状弾性板(2)
(2)…が劣化したり、また、硬質板(1′)(1′)
及び(1)(1)…が酸化(錆の発生)したりすること
を防止するため、耐候性に優れたゴム材料からなる被覆
ゴム体(4)で上記積層体(3)を被覆した構造とする
ことにより免震支承の長期耐久性の向上を図っている。
Since it is difficult to replace the seismic isolation bearing in its actual use condition, it is required to have a durable life of about 60 years like a concrete structure. Therefore, the laminate (3) composed of the hard plates (1 ') (1') and (1) (1) ... and the rubber-like elastic plates (2) (2) ... is completely shut off from the outside, and oxygen, Rubber-like elastic plate (2) due to ozone, ultraviolet rays or moisture containing chemicals such as acids, alkalis and salts
(2) is deteriorated or hard plate (1 ') (1')
And (1) a structure in which the laminated body (3) is covered with a coated rubber body (4) made of a rubber material having excellent weather resistance in order to prevent oxidation (generation of rust) of (1). The aim is to improve the long-term durability of the seismic isolation bearing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、上述した従来の免震支承は、積層体(3)
のすべての硬質板(1′)(1′)及び(1)(1)…
の外径寸法が等しい構造となっている。このような免震
支承では、第12図(a)に示すように地震発生による水
平剪断変形時、最下硬質板(1′)のすぐ上に位置する
中間硬質板(1)の外周端部が最下硬質板(1′)側に
引っ張られ、第12図(b)に示すように最終的にその外
周端部に曲げ変形(a)が発生する。図示しないが、こ
の曲げ変形(a)は最上硬質板(1′)のすぐ下に位置
する中間硬質板(1)の外周端部にも同様に発生する。
この曲げ変形(a)により中間硬質板(1)の外周端部
付近に局所歪みが生じ、この局所歪みが免震支承の損
傷、破断を招来するという問題があった。
By the way, the above-mentioned conventional seismic isolation bearing is a laminate (3)
All the hard plates (1 ') (1') and (1) (1) ...
Have the same outer diameter. In such a seismic isolation bearing, as shown in FIG. 12 (a), at the time of horizontal shear deformation due to the occurrence of an earthquake, the outer peripheral end of the intermediate rigid plate (1) located immediately above the lowermost rigid plate (1 '). Is pulled to the lowermost hard plate (1 ') side, and finally bending deformation (a) occurs at the outer peripheral end as shown in FIG. 12 (b). Although not shown, the bending deformation (a) similarly occurs at the outer peripheral end of the intermediate hard plate (1) located immediately below the uppermost hard plate (1 ').
This bending deformation (a) causes a local distortion near the outer peripheral end of the intermediate hard plate (1), and this local distortion causes damage and breakage of the seismic isolation bearing.

そこで、本発明は上記問題点に鑑みて提案されたもの
で、その目的とするところは、水平剪断変形時、最上下
硬質板のすぐ上下に位置する中間硬質板の外周端部に曲
げ変形が発生することを簡単な構造により阻止し得る免
震支承を提供することにある。
Therefore, the present invention has been proposed in view of the above problems, and the object thereof is that, during horizontal shearing deformation, bending deformation occurs at the outer peripheral end portion of the intermediate hard plate located immediately above and below the lowermost hard plate. It is an object of the present invention to provide a seismic isolation bearing which can be prevented from occurring by a simple structure.

〔課題を解決するための手段〕 本発明における上記目的を達成するための技術的手段
は、複数の硬質板とゴム状弾性板とを交互に積層し、前
記硬質板のうちの最上下硬質板の厚みがその他の中間硬
質板より大きく、前記最上下硬質板を含む全体を被覆ゴ
ム体で一体に被覆した免震支承において、上記硬質板の
うち、最上下硬質板の外周端部を、その他の中間硬質板
の外周端部よりゴム状弾性板1層の厚みの100〜400%分
の長さだけ突出させると共に、前記被覆ゴム体と接する
前記最上下硬質板のエッジ部を断面円弧形状とし、この
断面円弧形状における円弧半径rを、ゴム状弾性板の厚
みをtとした時、0.1t<r<3tとしたことである。
[Means for Solving the Problems] The technical means for achieving the above object in the present invention is to alternately laminate a plurality of hard plates and rubbery elastic plates, and to form a lowermost hard plate of the hard plates. In the seismic isolation bearing, the thickness of which is larger than that of the other intermediate hard plates, and the entirety including the lowermost hard plate is integrally covered with the covering rubber body, the outer peripheral end of the lowermost hard plate among the hard plates is other And the edge of the lowermost hard plate that is in contact with the coated rubber body has an arc-shaped cross-section. The radius r of the circular arc in the cross-sectional circular shape is 0.1t <r <3t, where t is the thickness of the rubber-like elastic plate.

また、上記免震支承は、積層体の中央にその積層方向
の両端に開口する筒形中空部を形成し、その筒形中空部
に柱状の粘弾性体或いは弾塑性体を挿入・充填する場合
もある。
In the case of the above seismic isolation bearing, a cylindrical hollow portion which is open at both ends in the laminating direction is formed at the center of the laminated body, and a columnar viscoelastic body or an elastoplastic body is inserted and filled into the cylindrical hollow portion. There is also.

〔作用〕[Action]

本発明に係る免震支承では、最上下硬質板の外周端部
を、その他の中間硬質板の外周端部より、ゴム状弾性板
1層の厚みの100〜400%分の長さだけ突出させると共
に、前記被覆ゴム体と接する前記最上下硬質板のエッジ
部を断面円弧形状とし、この断面円弧形状における円弧
半径rを、ゴム状弾性板の厚みをtとした時、0.1t<r
<3tとしたから、地震発生による水平剪断変形時、最上
下硬質板のすぐ上下に位置する中間硬質板の外周端部が
最上下硬質板の外周端部よりも常に内側に位置すること
になり、上記中間硬質板の外周端部が最上下硬質板側に
引張られることもなくて曲げ変形せず、局所歪みの発生
を回避できる。
In the seismic isolation bearing according to the present invention, the outer peripheral end of the lowermost hard plate protrudes from the outer peripheral ends of the other intermediate hard plates by a length corresponding to 100 to 400% of the thickness of one rubber-like elastic plate. At the same time, the edge portion of the lowermost hard plate in contact with the coated rubber body has an arc-shaped cross section, and an arc radius r in the cross-section arc shape is 0.1t <r, where t is the thickness of the rubber-like elastic plate.
Since it is <3t, the outer peripheral edge of the intermediate hard plate located immediately above and below the lowermost hard plate is always located inside the outer peripheral edge of the lowermost hard plate during horizontal shear deformation due to the occurrence of an earthquake. In addition, the outer peripheral end of the intermediate hard plate is not pulled toward the lowermost hard plate side, does not bend, and can avoid the occurrence of local distortion.

〔実施例〕〔Example〕

本発明に係る免震支承の実施例を第1図乃至第9図を
参照しながら説明する。
An embodiment of a seismic isolation bearing according to the present invention will be described with reference to FIGS.

第1図に示す免震支承は、鋼板などの複数の硬質板
(11′)(11′)及び(11)(11)…と圧縮永久歪みが
小さい軟質のゴム状弾性板(12)(12)…とを交互に積
層した積層体(13)の外周部に耐候性及び耐薬品性に優
れた被覆ゴム体(14)を被着形成したものである。これ
により積層体(13)のすべての硬質板(11′)(11′)
及び(11)(11)…とゴム状弾性板(12)(12)…の外
周端部が被覆ゴム体(14)で完全に被覆される。上記積
層体(13)は、硬質板(11′)(11′)及び(11)(1
1)…とゴム状弾性板(12)(12)…とを積層状態で加
硫接着などにより一体化される。また、被覆ゴム体(1
4)は、積層体(13)の成形と同時か或いは成形後に加
硫接着などにより積層体(13)と一体化される。この被
覆ゴム体(14)は、例えばEPT、EPDM、IIR、ハロゲン化
IIR、CR、クロロスルフォン化ポリエチレン等の耐候性
及び耐薬品性に優れたゴム材料からなり、免震支承の実
使用時、硬質板(11′)(11′)及び(11)(11)…と
ゴム状弾性板(12)(12)…とからなる積層体(13)を
外部と完全に遮断し、酸素、オゾン、紫外線或いは酸、
アルカリ、塩などの薬品を含んだ水分により、ゴム状弾
性板(12)(12)…が劣化したり或いは硬質板(11′)
(11′)…が酸化(錆の発生)したりすることを防止し
て免震支承の長期耐久性を向上させている。
The seismic isolation bearing shown in FIG. 1 is composed of a plurality of hard plates (11 ') (11') and (11) (11), such as steel plates, and a soft rubbery elastic plate (12) (12) having a small compression set. ) Are formed by applying a coated rubber body (14) having excellent weather resistance and chemical resistance on the outer periphery of a laminate (13) in which are alternately laminated. As a result, all the hard plates (11 ') (11') of the laminate (13)
And (11), (11) and the rubbery elastic plates (12) (12) are completely covered with the covering rubber body (14). The laminate (13) is composed of hard plates (11 ') (11') and (11) (1
1) and the rubber-like elastic plates (12) (12) are integrated in a laminated state by vulcanization bonding or the like. In addition, the covering rubber body (1
4) is integrated with the laminate (13) by vulcanization bonding at the same time as or after molding of the laminate (13). This coated rubber body (14) is, for example, EPT, EPDM, IIR, halogenated
Made of rubber material with excellent weather resistance and chemical resistance such as IIR, CR, chlorosulfonated polyethylene, etc., when the seismic isolation bearing is actually used, hard plates (11 ') (11') and (11) (11) ... And a rubber-like elastic plate (12), (12) ..., completely block the laminate (13) from the outside.
Rubber-like elastic plates (12) (12) ... deteriorate or hard plates (11 ') due to moisture containing chemicals such as alkalis and salts.
(11 ') ... is prevented from oxidizing (rusting) to improve the long-term durability of the seismic isolation bearing.

本発明の特徴は、積層体(13)の硬質板(11′)(1
1′)及び(11)(11)…にある。即ち、最上下硬質板
(11′)(11′)の外周端部を、その他の中間硬質板
(11)(11)…の外周端部より、ゴム状弾性板1層の厚
みtの100〜400%、より好ましくは200〜300%分の長さ
xだけ突出させる。
The feature of the present invention is that the hard plate (11 ') (1
1 ') and (11) (11) ... That is, the outer peripheral edge of the lowermost hard plate (11 ') (11') is moved from the outer peripheral edge of the other intermediate hard plates (11), (11). It is projected by a length x of 400%, more preferably 200 to 300%.

尚、ゴム状弾性板(12)(12)…の厚みが各層で異な
る場合は、最上下硬質板(11′)(11′)に接している
ゴム状弾性板(12)(12)の厚みをtとする。
If the thickness of the rubber-like elastic plates (12) (12) is different in each layer, the thickness of the rubber-like elastic plates (12) (12) in contact with the lowermost hard plate (11 ') (11') Is defined as t.

この免震支承では、第2図に示すように地震発生によ
る水平剪断変形時、最下硬質板(11′)のすぐ上に位置
する中間硬質板(11)の外周端部が最下硬質板(11′)
の外周端部よりも常に内側に位置することになる。これ
により中間硬質板(11)の外周端部が最下硬質板(1
1′)側に引張られる応力を抑制することができる。こ
れは、図示しないが、最上硬質板(11′)のすぐ下に位
置する中間硬質板(11)の外周端部についても同様であ
る。この引張力の抑制により中間硬質板(11)の外周端
部の曲げ変形がなくなり、中間硬質板(11)の外周端部
付近での局所歪みの発生を抑止して免震支承の損傷、破
断を回避する。尚、水平剪断変形時における中間硬質板
(11)の外周端部の変位量は、ゴム状弾性板1層の厚み
tと水平剪断歪み率によって決定される。
In this seismic isolation bearing, as shown in FIG. 2, during horizontal shear deformation caused by an earthquake, the outer peripheral end of the intermediate hard plate (11) located immediately above the lowermost hard plate (11 ') is connected to the lowermost hard plate. (11 ')
Will always be located on the inner side of the outer peripheral end. As a result, the outer peripheral end of the intermediate hard plate (11) is
It is possible to suppress the stress pulled to the 1 ′) side. Although not shown, the same applies to the outer peripheral end of the intermediate hard plate (11) located immediately below the uppermost hard plate (11 '). Due to the suppression of the tensile force, bending deformation of the outer peripheral end of the intermediate hard plate (11) is eliminated, and occurrence of local distortion near the outer peripheral end of the intermediate hard plate (11) is suppressed, thereby damaging or breaking the seismic isolation bearing. Work around. The amount of displacement of the outer peripheral end of the intermediate hard plate (11) during horizontal shear deformation is determined by the thickness t of one rubber-like elastic plate and the horizontal shear strain rate.

ここで、中間硬質板(11)の外周端部に対する最上下
硬質板(11′)(11′)の外周端部の突出長さxがゴム
状弾性板(12)の厚みtの100%より小さいと、免震支
承が100%以上の水平剪断歪みを受けた時に中間硬質板
(11)の外周端部が最上下硬質板(11′)(11′)の外
周端部より外側に位置してしまい、上記中間硬質板(1
1)の外周端部に曲げ変形が発生してしまう。また、最
上下硬質板(11′)(11′)の外周端部の突出長さxが
ゴム状弾性板(12)の厚みtの400%より大きいと、水
平剪断変形時において中間硬質板(11)の外周端部が曲
げ変形を起こさない水平剪断歪み領域は大きくなる。し
かしながら、免震支承の通常の作動領域以上に大きくす
る必要はなく、必要以上に大きくした場合、積層体(1
3)を覆う被覆ゴム体(14)の体積が大きくなり過ぎて
コスト高になってしまう。以上のことから、最上下硬質
板(11′)(11′)の外周端部の突出長さxはゴム状弾
性板(12)の厚みtの100〜400%分に設定することが好
適である。
Here, the projecting length x of the outer peripheral end of the lowermost hard plate (11 ') (11') with respect to the outer peripheral end of the intermediate hard plate (11) is larger than 100% of the thickness t of the rubber-like elastic plate (12). If it is small, the outer edge of the intermediate hard plate (11) will be located outside the outer edge of the lowermost hard plate (11 ') (11') when the seismic isolation bearing is subjected to 100% or more horizontal shear strain. The intermediate hard plate (1
Bending deformation occurs at the outer peripheral end of 1). If the protruding length x of the outer peripheral end of the lowermost hard plate (11 ') (11') is larger than 400% of the thickness t of the rubber-like elastic plate (12), the intermediate hard plate ( The horizontal shear strain region where the outer peripheral end of 11) does not cause bending deformation becomes large. However, it is not necessary to increase the size of the seismic isolation bearing beyond the normal operating range.
The volume of the covering rubber body (14) covering 3) becomes too large, resulting in high cost. From the above, it is preferable that the protruding length x of the outer peripheral end of the lowermost hard plate (11 ') (11') be set to 100 to 400% of the thickness t of the rubber-like elastic plate (12). is there.

次に、本発明に係る免震支承の他の実施例について説
明する。
Next, another embodiment of the seismic isolation bearing according to the present invention will be described.

まず、第1図に示す実施例では、被覆ゴム体(14)の
厚みが、最上下硬質板(11′)(11′)の外周部よりも
中間硬質板(11)(11)…及びゴム状弾性板(12)(1
2)…の外周部の方が大きくなっているが、第3図に示
すように上記被覆ゴム体(14)の厚みを、最上下硬質板
(11′)(11′)の外周部と中間硬質板(11)(11)…
及びゴム状弾性板(12)(12)…の外周部とで略同一に
してもよい。この免震支承では、中間硬質板(11)(1
1)…とゴム状弾性板(12)(12)…との積層部分に沿
って凹形状となり、その分被覆ゴム体(14)の体積を低
減させることができて加硫並びにコストの面で好適であ
る。
First, in the embodiment shown in FIG. 1, the thickness of the coated rubber body (14) is larger than that of the outer periphery of the lowermost hard plate (11 ') (11'). Elastic plate (12) (1
2) Although the outer peripheral portion of... Is larger, as shown in FIG. 3, the thickness of the covering rubber body (14) is set to be intermediate between the outer peripheral portion of the lowermost hard plate (11 ') and (11'). Hard plate (11) (11) ...
And the outer peripheral portions of the rubber-like elastic plates (12) may be substantially the same. In this seismic isolation bearing, the intermediate rigid plate (11) (1
1) and the rubber-like elastic plates (12) and (12) are concave along the laminated portion, and the volume of the coated rubber body (14) can be reduced by that amount, and vulcanization and cost are reduced. It is suitable.

また、最上下硬質板(11′)(11′)の被覆ゴム体
(14)と接する外周端部のエッジ部(11a′)(11a′)
についても、水平剪断変形時に局所歪みが発生し易いた
め、第4図に示すように上記エッジ部(11a′)(11
a′)を断面円弧形状にして局所歪みの発生を未然に防
止するようにしてもよい。この時、エッジ部(11a′)
(11a′)の断面円弧形状における円弧半径rは、ゴム
状弾性板(12)の厚みをtとすると、0.1t<r<3tとす
ることが望ましい。尚、上記エッジ部(11a′)(11
a′)を断面円弧形状とする場合には、その円弧半径r
分の寸法は最上下硬質板(11a′)(11a′)の外周端部
の突出長さx分には含まれず、従って、上記円弧半径r
分の寸法は上記最上下硬質板(11′)(11′)の外周端
部の突出長さx分に付加されることになる。
In addition, the edge portions (11a ') and (11a') of the outer peripheral end in contact with the covering rubber body (14) of the lowermost hard plate (11 ') (11')
Also, since local distortion is likely to occur during horizontal shearing deformation, the edge portions (11a ') (11
a ′) may be formed in an arc-shaped cross section to prevent the occurrence of local distortion. At this time, the edge part (11a ')
It is desirable that the arc radius r in the cross-sectional arc shape of (11a ') be 0.1t <r <3t, where t is the thickness of the rubber-like elastic plate (12). The edge portion (11a ') (11
When a ′) is formed into an arc-shaped cross section, its arc radius r
Is not included in the protruding length x of the outer peripheral end of the lowermost hard plate (11a ') (11a').
The size of the minute is added to the protruding length x of the outer peripheral end of the lowermost hard plate (11 ') (11').

第4図の免震支承は、第1図の免震支承において最上
下硬質板(11′)(11′)の外周端部のエッジ部(11
a′)(11a′)を断面円弧形状にした適用例であり、第
3図の免震支承においても上記エッジ部(11a′)(11
a′)を断面円弧形状としてもよいのは勿論である。
The seismic isolation bearing shown in FIG. 4 is different from the seismic isolation bearing shown in FIG. 1 in that the edge portion (11) of the outer peripheral end of the lowermost hard plate (11 ') (11') is provided.
a ′) and (11a ′) are arc-shaped in cross section. In the case of the seismic isolation bearing shown in FIG.
Needless to say, a ′) may have an arc-shaped cross section.

次に、第5図に示す免震支承は、第1図の免震支承に
おける積層体(13)の中央にその積層方向の両端に開口
する筒形中空部(15)を形成し、その筒形中空部(15)
に高減衰性能を持つ柱状の粘弾性体(16)或いは弾塑性
体を挿入・充填した構造のものである。尚、上記粘弾性
体(16)の上下面には硬質の受圧板(17)(17)が加硫
接着などにより一体化される。この免震支承では粘弾性
体(16)或いは弾塑性体が積層体(13)で周囲拘束され
るので、第1図の免震支承よりも減衰性能をより一層向
上させることができる。また、この周囲拘束型免震支承
において、被覆ゴム体(14)を中間硬質板(11)(11)
…とゴム状弾性板(12)(12)…との積層部分に沿わせ
て凹形状としたり、或いは最上下硬質板(11′)(1
1′)の外周端部のエッジ部(11a′)(11a′)を断面
円弧形状としてもよい。また、これらを組合わせて被覆
ゴム体(14)を凹形状とし、且つ、エッジ部(11a′)
(11a′)を断面円弧形状としてもよいのは勿論であ
る。
Next, in the seismic isolation bearing shown in FIG. 5, a cylindrical hollow portion (15) opening at both ends in the laminating direction is formed at the center of the laminated body (13) in the seismic isolation bearing of FIG. Shape hollow part (15)
It has a structure in which a columnar viscoelastic body (16) or elastoplastic body having high damping performance is inserted and filled. Hard pressure receiving plates (17) and (17) are integrated on the upper and lower surfaces of the viscoelastic body (16) by vulcanization bonding or the like. In this seismic isolation bearing, the viscoelastic body (16) or the elasto-plastic body is constrained by the laminate (13), so that the damping performance can be further improved as compared with the seismic isolation bearing of FIG. Also, in this seismic isolation bearing, the covering rubber body (14) is connected to the intermediate hard plate (11) (11).
... and a rubber-like elastic plate (12) (12) ... to form a concave shape along the laminated portion, or a lowermost hard plate (11 ') (1
The edge portions (11a ') and (11a') at the outer peripheral end of 1 ') may have an arc-shaped cross section. Further, these are combined to make the covering rubber body (14) concave, and the edge portion (11a ')
Needless to say, (11a ') may have an arc-shaped cross section.

また、第6図に示す免震支承は、第5図の免震支承に
おける積層体(13)の筒形中空部(15)に挿入・充填さ
れた粘弾性体(16)に、その挿入方向に複数の硬質板
(18)(18)…を埋設した構造のものである。この粘弾
性体(16)中の硬質板(18)(18)…は、積層体(13)
の中間硬質板(11)(11)…と高さを揃えて配置しなけ
ればならず、その間隔は積層体(13)の中間硬質板(1
1)(11)…の間隔と同一かあるいは一つないし複数お
きに設定すればよい。この周囲拘束型免震支承において
も、被覆ゴム体(14)を中間硬質板(11)(11)…とゴ
ム状弾性板(12)(12)…との積層部分に沿わせて凹形
状としたり、或いは最上下硬質板(11′)(11′)の外
周端部のエッジ部(11a′)(11a′)を断面円弧形状と
してもよい。また、これらを組合せて被覆ゴム体(14)
を凹形状とし、且つ、エッジ部(11a′)(11a′)を断
面円弧形状としてもよいのは勿論である。
The seismic isolation bearing shown in FIG. 6 is inserted into the viscoelastic body (16) inserted and filled in the cylindrical hollow part (15) of the laminate (13) in the seismic isolation bearing of FIG. And a plurality of hard plates (18) (18) ... embedded therein. The hard plates (18) (18) ... in the viscoelastic body (16) are laminated (13)
... must be arranged at the same height as the intermediate hard plates (11), (11) ...
1) It may be set to be equal to the interval of (11), or to be set at one or more intervals. Also in this seismic isolation bearing, the covering rubber body (14) is formed in a concave shape along the laminated portion of the intermediate hard plates (11) (11) and the rubbery elastic plates (12) (12). Alternatively, the edge portions (11a ') and (11a') of the outer peripheral ends of the lowermost hard plates (11 ') and (11') may have an arc-shaped cross section. Also, by combining these, the coated rubber body (14)
May be concave, and the edge portions (11a ') and (11a') may be arc-shaped in cross section.

最後に、従来品と本発明品とを比較検討するため、本
出願人が行った実験について以下説明する。
Finally, an experiment conducted by the present applicant will be described below in order to compare and examine the conventional product and the present invention product.

第7図は最上下硬質板(1′)(1′)と中間硬質板
(1)(1)…との外径寸法が等しい従来品を示し、そ
の仕様については下記の通りである。
FIG. 7 shows a conventional product in which the outer diameters of the lowermost hard plate (1 ') (1') and the intermediate hard plates (1) (1)... Are equal, and their specifications are as follows.

最上下硬質板(1′)(1′):鉄板 D1=180mm、t
119mm 中間硬質板(1):鉄板 D2=180mm、t2=1mm、13層 ゴム状弾性体(2):ゴム板 D=180mm、t=4mm、
14層 被覆ゴム体(4): D3=190mm、t3=5mm 第8図は最上下硬質板(11′)(11′)の外径寸法を
中間硬質板(11)(11)…よりも大きくし、上記最上下
硬質板(11′)(11′)のエッジ部(11a′)(11a′)
を断面円弧形状とした本発明品を示し、その仕様につい
ては下記の通りである。
The most up and down hard plate (1 ') (1'): iron plate D 1 = 180mm, t
1 19 mm intermediate rigid plate (1): iron plate D 2 = 180mm, t 2 = 1mm, 13 -layer rubber-(2): Rubber plate D = 180mm, t = 4mm,
14-layer coated rubber body (4): D 3 = 190 mm, t 3 = 5 mm Fig. 8 shows the outer diameter of the lowermost hard plate (11 ') (11') from the middle hard plate (11) (11) ... And the edge portions (11a ') (11a') of the lowermost hard plates (11 ') (11')
Shows a product of the present invention having an arc-shaped cross section, and its specifications are as follows.

最上下硬質板(11′)(11′):鉄板 D1=196mm、t
119mm 中間硬質板(11):鉄板 D2=180mm、t2=1mm、13層 ゴム状弾性体(12):ゴム板 D=180mm、t=4mm、
14層 被覆ゴム体(14): D3=206mm 最上下硬質板(11′)(11′)の突出長さ:x=8mm 最上下硬質板(11′)(11′)のエッジ部(11a′)
(11a′):r=3mm 上記諸条件に基づき本出願人が行った実験結果によれ
ば、第7図に示す従来品で水平剪断歪み200%までの動
的試験を行った場合、従来品では第9図に示すように試
験後の切断面状態において、最上下硬質板(1′)
(1′)のすぐ上下に位置する中間硬質板(1)(1)
の外周端部が最上下硬質板(1′)(1′)側に曲げら
れ、その部分での被覆ゴム体(4)が外観上でも判別で
きる程度に膨れ上がり、しかも、中間硬質板(1)
(1)の曲がった外周端部付近には微小な亀裂が発生し
ていた。これに対して、最上下硬質板(11′)(11′)
の外周端部を、その他の中間硬質板(11)(11)…の外
周端部より、ゴム状弾性板(12)の厚みt(4mm)の200
%(8mm)分だけ突出させた本発明品では、水平剪断歪
み200%までの動的試験を繰返し行っても、試験後の切
断面状態において何の異常も認められなかった。
The most up and down hard plate (11 ') (11'): iron plate D 1 = 196mm, t
1 19 mm intermediate rigid plate (11): steel plate D 2 = 180mm, t 2 = 1mm, 13 -layer rubber-(12): rubber plate D = 180mm, t = 4mm,
14 layers Coated rubber body (14): D 3 = 206 mm Projection length of upper and lower hard plates (11 ′) and (11 ′): x = 8 mm Edge portion (11a) of upper and lower hard plates (11 ′) and (11 ′) ′)
(11a '): r = 3 mm According to the results of an experiment conducted by the applicant based on the above conditions, the conventional product shown in FIG. 7 was subjected to a dynamic test up to a horizontal shearing strain of 200%. Then, as shown in FIG. 9, in the cut surface state after the test, the lowermost hard plate (1 ')
Intermediate hard plate located just above and below (1 ') (1) (1)
Is bent toward the lowermost hard plate (1 ') (1') side, and the coated rubber body (4) at that portion is swollen to such a degree that it can be visually identified. )
A small crack was generated near the bent outer peripheral end of (1). In contrast, the lowermost hard plate (11 ') (11')
Of the rubber-like elastic plate (12) from the outer peripheral end of the other intermediate hard plate (11) (11).
% (8 mm), no abnormalities were observed in the cut surface condition after the test, even when the dynamic test was repeated up to a horizontal shear strain of 200%.

〔発明の効果〕〔The invention's effect〕

本発明に係る免震支承によれば、最上下硬質板の外周
端部を、その他の中間硬質板の外周端部より、ゴム状弾
性板1層の厚みの100〜400%分の長さだけ突出させると
共に、前記被覆ゴム体と接する前記最上下硬質板のエッ
ジ部を断面円弧形状とし、この断面円弧形状における円
弧半径rを、ゴム状弾性板の厚みをtとした時、0.1t<
r<3tとしたから、地震発生による水平剪断変形時、最
上下硬質板のすぐ上下に位置する中間硬質板の外周端部
が最上下硬質板の外周端部よりも常に内側に位置するの
で、上記中間硬質板の外周端部が最上下硬質板側に引張
られることなくて曲げ変形せず、中間硬質板の外周端部
付近での局所歪みが発生しないので免震支承の損傷、破
断を未然に防止でき、長期耐久性に優れた実用的価値大
なる免震支承を提供できる。
According to the seismic isolation bearing according to the present invention, the outer peripheral end of the lowermost hard plate is separated from the outer peripheral ends of the other intermediate hard plates by a length corresponding to 100 to 400% of the thickness of one rubber-like elastic plate. At the same time, the edge of the lowermost hard plate in contact with the coated rubber body has an arc-shaped cross section, and an arc radius r in the cross-section arc shape is 0.1t <when the thickness of the rubber-like elastic plate is t.
Since r <3t, the outer peripheral edge of the intermediate hard plate located immediately above and below the lowermost hard plate is always located inside the outer peripheral end of the lowermost hard plate during horizontal shear deformation due to the occurrence of an earthquake. The outer peripheral end of the intermediate hard plate is not bent and deformed without being pulled to the lowermost hard plate side, and local distortion does not occur near the outer peripheral end of the intermediate hard plate. And provide a seismic isolation bearing with excellent practical value and excellent long-term durability.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る免震支承の一実施例を示す断面
図、第2図は第1図の免震支承を水平剪断変位させた状
態を示す要部拡大断面図、第3図は被覆ゴム体を中間硬
質板とゴム状弾性板との積層部分に沿って凹形状とした
免震支承を示す断面図、第4図は最上下硬質板の外周端
部のエッジ部を断面円弧形状とした免震支承を示す要部
拡大断面図、第5図は積層体の筒形中空部に粘弾性体を
挿入・充填した周囲拘束型免震支承を示す断面図、第6
図は第5図の粘弾性体に硬質板を埋設した周囲拘束型免
震支承を示す断面図である。 第7図乃至第9図は本発明において中間硬質板の外周端
部の曲げ変形の防止を実証するため、本出願人が行った
実験について説明するためのもので、第7図は実験で使
用した従来品の免震支承を示す断面図、第8図は実験で
使用した本発明品の免震支承を示す断面図、第9図は第
7図の従来品の水平剪断変形状態を示す要部拡大断面図
である。 第10図は免震支承の従来例を示す断面図、第11図は周囲
拘束型免震支承の従来例を示す断面図、第12図(a)
(b)は免震支承の水平剪断変形状態を示す各要部拡大
断面図である。 (11)……中間硬質板、 (11′)(11′)……最上下硬質板、 (12)……ゴム状弾性板、(13)……積層体、 (14)……被覆ゴム体、(15)……筒形中空部、 (16)……粘弾性体。
FIG. 1 is a sectional view showing an embodiment of a seismic isolation bearing according to the present invention, FIG. 2 is an enlarged sectional view of a principal part showing a state where the seismic isolation bearing of FIG. 1 is horizontally displaced, and FIG. FIG. 4 is a cross-sectional view showing a seismic isolation bearing in which a coated rubber body is concave along a laminated portion of an intermediate hard plate and a rubber-like elastic plate, and FIG. FIG. 5 is an enlarged cross-sectional view of a main part showing a seismic isolation bearing, and FIG. 5 is a cross-sectional view showing a constrained peripheral seismic isolation bearing in which a viscoelastic body is inserted and filled in a cylindrical hollow portion of a laminate.
The figure is a cross-sectional view showing a seismic isolation bearing with a hard plate embedded in the viscoelastic body of FIG. 7 to 9 illustrate an experiment performed by the present applicant to demonstrate the prevention of bending deformation of the outer peripheral end of the intermediate hard plate in the present invention, and FIG. 7 is used in the experiment. FIG. 8 is a cross-sectional view showing the seismic isolation bearing of the conventional product used in the experiment, FIG. 8 is a cross-sectional view showing the seismic isolation bearing of the product of the present invention, and FIG. It is a part enlarged sectional view. Fig. 10 is a cross-sectional view showing a conventional example of a seismic isolation bearing, Fig. 11 is a cross-sectional view showing a conventional example of a seismically isolated type seismic isolation bearing, and Fig. 12 (a).
(B) is each principal part expanded sectional view which shows the horizontal shear deformation state of the seismic isolation bearing. (11) ... Intermediate hard plate, (11 ') (11') ... Lowermost hard plate, (12) ... Rubbery elastic plate, (13) ... Laminated body, (14) ... Coated rubber body , (15) ... tubular hollow part, (16) ... viscoelastic body.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−29540(JP,A) 特開 昭63−225739(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16F 1/40 F16F 15/00 - 15/04 E04H 9/02 331 ────────────────────────────────────────────────── (5) References JP-A-64-29540 (JP, A) JP-A-63-225739 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F16F 1/40 F16F 15/00-15/04 E04H 9/02 331

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の硬質板とゴム状弾性板とを交互に積
層し、前記硬質板のうちの最上下硬質板の厚みがその他
の中間硬質板より大きく、前記最上下硬質板を含む全体
を被覆ゴム体で一体に被覆した免震支承において、 上記硬質板のうち、最上下硬質板の外周端部を、その他
の中間硬質板の外周端部よりゴム状弾性板1層の厚みの
100〜400%分の長さだけ突出させると共に、前記被覆ゴ
ム体と接する前記最上下硬質板のエッジ部を断面円弧形
状とし、この断面円弧形状における円弧半径rを、ゴム
状弾性板の厚みをtとした時、0.1t<r<3tとしたこと
を特徴とする免震支承。
1. A plurality of hard plates and rubber-like elastic plates are alternately laminated, wherein a thickness of a lowermost hard plate of the hard plates is larger than other intermediate hard plates, and the entirety including the lowermost hard plate is included. In the seismic isolation bearing which is integrally covered with a covering rubber body, the outer peripheral end of the lowermost hard plate among the above-mentioned hard plates has a thickness of one layer of the rubbery elastic plate from the outer peripheral ends of the other intermediate hard plates.
While projecting by a length of 100 to 400%, the edge of the lowermost hard plate that is in contact with the coated rubber body has an arc-shaped cross section, and the arc radius r in this cross-section arc shape is the thickness of the rubber-like elastic plate. A seismic isolation bearing characterized by 0.1t <r <3t when t.
【請求項2】積層体の中央にその積層方向の両端に開口
する筒形中空部を形成し、その筒形中空部に柱状の粘弾
性体或いは弾塑性体を挿入・充填したことを特徴とする
請求項(1)記載の免震支承。
2. A laminated hollow body is formed at the center of the laminated body at both ends in the laminating direction, and a columnar viscoelastic or elasto-plastic body is inserted and filled in the cylindrical hollow part. The seismic isolation bearing according to claim (1).
JP2217710A 1990-08-17 1990-08-17 Seismic isolation bearing Expired - Fee Related JP3008954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217710A JP3008954B2 (en) 1990-08-17 1990-08-17 Seismic isolation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217710A JP3008954B2 (en) 1990-08-17 1990-08-17 Seismic isolation bearing

Publications (2)

Publication Number Publication Date
JPH04102743A JPH04102743A (en) 1992-04-03
JP3008954B2 true JP3008954B2 (en) 2000-02-14

Family

ID=16708526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217710A Expired - Fee Related JP3008954B2 (en) 1990-08-17 1990-08-17 Seismic isolation bearing

Country Status (1)

Country Link
JP (1) JP3008954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470713A (en) * 2010-06-30 2012-05-23 株式会社小松制作所 Off-road truck with rubber spring apparatus installed

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090777A (en) * 1999-09-24 2001-04-03 Bando Chem Ind Ltd Base isolation device
JP5849430B2 (en) * 2011-04-18 2016-01-27 横浜ゴム株式会社 Rust prevention treatment method for laminated rubber bearings
JP5849429B2 (en) * 2011-04-18 2016-01-27 横浜ゴム株式会社 Rust prevention treatment method for laminated rubber bearings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470713A (en) * 2010-06-30 2012-05-23 株式会社小松制作所 Off-road truck with rubber spring apparatus installed

Also Published As

Publication number Publication date
JPH04102743A (en) 1992-04-03

Similar Documents

Publication Publication Date Title
WO1997006372A1 (en) Vibration isolation device
JP2589727B2 (en) Seismic isolation rubber
CN112281641B (en) Grid damping support
JP3008954B2 (en) Seismic isolation bearing
US5161338A (en) Laminated rubber support assembly
EP3614017A1 (en) Seismic isolation support device
JP3114624B2 (en) Seismic isolation device
JP2006207680A (en) Laminated rubber supporter
JP2002070943A (en) Slip support device for base isolation
JP4594183B2 (en) Laminated support
JP3024562B2 (en) Seismic isolation device
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2951214B2 (en) 3D seismic isolation device
JP2002188687A (en) Base-isolation device
JP2019127994A (en) Aseismic base isolation support device
JP3039846B2 (en) Laminated rubber bearing
JP3988849B2 (en) Seismic isolation device
JP4695650B2 (en) Seismic isolation and control equipment
JPH09317240A (en) Elastic and plastic damper
JPH10317715A (en) Base isolation mechanism
JP2005146680A (en) Laminated rubber bearing device including lead core material
JP2615644B2 (en) Seismic isolation device
JP2623589B2 (en) Seismic isolation structure
JP2017187055A (en) Seismic isolator with concentric circle laminated attenuation materials
EP3614016A1 (en) Seismic isolation support device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees