JP3114624B2 - Seismic isolation device - Google Patents

Seismic isolation device

Info

Publication number
JP3114624B2
JP3114624B2 JP08216604A JP21660496A JP3114624B2 JP 3114624 B2 JP3114624 B2 JP 3114624B2 JP 08216604 A JP08216604 A JP 08216604A JP 21660496 A JP21660496 A JP 21660496A JP 3114624 B2 JP3114624 B2 JP 3114624B2
Authority
JP
Japan
Prior art keywords
seismic isolation
elastic body
isolation device
hollow portion
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08216604A
Other languages
Japanese (ja)
Other versions
JPH09105440A (en
Inventor
司 岸園
郁夫 下田
ヘンリー ロビンソン ウイリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16737972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3114624(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Oiles Corp filed Critical Oiles Corp
Publication of JPH09105440A publication Critical patent/JPH09105440A/en
Application granted granted Critical
Publication of JP3114624B2 publication Critical patent/JP3114624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二つの構造物間に
配されて両構造物間の相対的な水平振動のエネルギを吸
収し、構造物への振動加速度を低減するための装置、特
に地震エネルギを減衰して地震入力加速度を低減し、建
築物、橋梁等の構造物の損壊を防止する免震装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device arranged between two structures to absorb the energy of a relative horizontal vibration between the two structures and to reduce the vibration acceleration applied to the structures, and more particularly to an apparatus for reducing the vibration acceleration applied to the structures. The present invention relates to a seismic isolation device that attenuates seismic energy to reduce earthquake input acceleration and prevents damage to structures such as buildings and bridges.

【0002】[0002]

【発明が解決しようとする課題】振動エネルギ吸収体と
しては、例えば、特公昭61−17984号公報に記載
のものが知られており、この振動エネルギ吸収体は、二
つの構造物間に固定されていて剪断力を加えることによ
って塑性変形する鉛部材を有している。このような振動
エネルギ吸収体の鉛部材は、疲労等を生じることなしに
その塑性変形において振動エネルギを好ましく吸収する
が、変形後も、通常のばねと異なり吸収したエネルギを
構造物に戻さず、その変形した状態を維持し、構造物の
元の位置への復帰を行わせ難いものである。
As a vibration energy absorber, for example, a vibration energy absorber disclosed in Japanese Patent Publication No. 61-17984 is known. This vibration energy absorber is fixed between two structures. And has a lead member that is plastically deformed by applying a shearing force. The lead member of such a vibration energy absorber preferably absorbs vibration energy in its plastic deformation without causing fatigue or the like, but after deformation, unlike a normal spring, does not return the absorbed energy to the structure, The deformed state is maintained, and it is difficult to return the structure to the original position.

【0003】弾性材料層を構成するゴム等からなる弾性
板と剛性材料層を構成する金属板とを交互に積層し、こ
れらを互いに加硫接着等して相互に固着してなる免震装
置としての弾性体は、地震入力加速度を低減し、構造物
を地震の破壊力から一応保護するが、振動エネルギ吸収
能力が低く、これを単独で免震装置として用いた場合に
は、上記の鉛部材と比較して、地震動を受けた構造物の
地震後の振動が鎮るまでに長時間を要する等の地震工学
及び振動工学の観点から実用上種々の問題がある。
As a seismic isolation device, an elastic plate made of rubber or the like constituting an elastic material layer and a metal plate constituting a rigid material layer are alternately laminated, and these are fixed to each other by vulcanization bonding or the like. The elastic body reduces the earthquake input acceleration and protects the structure from the destructive force of the earthquake, but has low vibration energy absorption capacity. Compared with the above, there are various practical problems from the viewpoint of earthquake engineering and vibration engineering, such as that it takes a long time for the post-earthquake vibration of the structure subjected to the seismic motion to subside.

【0004】そこで、鉛部材の塑性変形における振動エ
ネルギ吸収能と、弾性体の地震入力加速度の低減能及び
復元能とを合せ持つべく、弾性体と、この弾性体を貫通
して配された柱状鉛とを具備した免震装置も前記公報に
提案されている。
Therefore, in order to combine the vibration energy absorbing ability of the lead member in the plastic deformation with the ability of reducing and restoring the earthquake input acceleration of the elastic body, the elastic body and the columnar shape arranged through the elastic body are combined. A seismic isolation device including lead is also proposed in the above publication.

【0005】図1及び図2に示す免震装置5は、弾性材
料層を構成するゴム等からなる弾性板1と剛性材料層を
構成する環状の剛性板2とを交互に積層して相互に固定
してなる環状の弾性体3と、弾性体3の円筒状の内周面
9で規定される中空部12に配された円柱状鉛4と、円
柱状鉛4の下面及び上面にそれぞれ当接して弾性体3の
下面及び上面のそれぞれにボルト等により取り付けられ
たフランジプレート18及び19とを具備し、例えば、
フランジプレート18側が基礎等の一方の構造物に固定
されて、フランジプレート19側に建築物等の他方の構
造物が載置されて、フランジプレート19を介して建築
物等から鉛直荷重X、すなわち弾性板1と剛性板2との
積層方向の荷重Xを受けるように、用いられる。
A seismic isolation device 5 shown in FIGS. 1 and 2 is constructed by alternately laminating an elastic plate 1 made of rubber or the like constituting an elastic material layer and an annular rigid plate 2 constituting a rigid material layer. The fixed annular elastic body 3, the cylindrical lead 4 disposed in the hollow portion 12 defined by the cylindrical inner peripheral surface 9 of the elastic body 3, and the lower surface and the upper surface of the cylindrical lead 4, respectively. Flange plates 18 and 19 that are in contact with each other and are attached to the lower and upper surfaces of the elastic body 3 by bolts or the like, for example,
The flange plate 18 side is fixed to one structure such as a foundation, the other structure such as a building is placed on the flange plate 19 side, and the vertical load X 1 from the building or the like via the flange plate 19 , that is, Between the elastic plate 1 and the rigid plate 2
It is used to receive a load X in the stacking direction .

【0006】このような免震装置5において、中空部1
2に配された円柱状鉛4が弾性体3に隙間なく拘束され
ていないと、地震による横方向力(水平方向力)Fが生
じた場合、弾性体3の内周面9と、これに接する円柱状
鉛4の円筒状の外周面との間に隙間が生じて、図3に示
す横方向力(水平方向力)Fと横変位(水平方向変位)
δとの関係において、履歴曲線21で示すような弾性体
3による効果が主となり、円柱状鉛4による効果をほと
んど得ることができず、所望の免震効果を得ることが困
難となる。一方、弾性体3により必要以上に円柱状鉛4
を拘束すると、地震による横方向力Fでの円柱状鉛4の
塑性変形において、弾性体3の弾性材料層が過度に圧縮
され、これによっても弾性体3の弾性材料層の早期の劣
化を招来し、耐久性に問題が生じる。また、円柱状鉛4
を形成するために、弾性体3の中空部12に圧入する鉛
の量には限度があり、一定量以上の鉛を弾性体3の中空
部12に圧入することは困難であり、無理にこれを行う
と弾性体3自体が損壊してしまう虞がある。
In such a seismic isolation device 5, the hollow portion 1
If the columnar lead 4 arranged on the base 2 is not restrained by the elastic body 3 without a gap, when a lateral force (horizontal force) F is generated by an earthquake, the inner peripheral surface 9 of the elastic body 3 and the A gap is formed between the cylindrical lead 4 and the cylindrical outer peripheral surface of the lead 4 in contact, and a lateral force (horizontal force) F and a lateral displacement (horizontal displacement) shown in FIG.
In relation to δ, the effect of the elastic body 3 as shown by the hysteresis curve 21 is mainly used, the effect of the columnar lead 4 can hardly be obtained, and it becomes difficult to obtain the desired seismic isolation effect. On the other hand, the columnar lead 4
Is restrained, the elastic material layer of the elastic body 3 is excessively compressed in the plastic deformation of the columnar lead 4 by the lateral force F due to the earthquake, which also leads to early deterioration of the elastic material layer of the elastic body 3. This causes a problem in durability. In addition, cylindrical lead 4
There is a limit to the amount of lead that can be pressed into the hollow portion 12 of the elastic body 3 in order to form, and it is difficult to press-fit a certain amount or more of lead into the hollow portion 12 of the elastic body 3. When this is performed, the elastic body 3 itself may be damaged.

【0007】そして、図1及び図2に示す免震装置5で
は、数度の地震により繰り返して横方向変位が生じる
と、円柱状鉛4の上下面の周縁部が丸み付けされて、当
該周縁部と弾性体3との間に環状間隙が生じる虞もあ
る。
In the seismic isolation device 5 shown in FIG. 1 and FIG. 2, when the lateral displacement is repeatedly generated by several degrees of earthquake, the peripheral portions of the upper and lower surfaces of the columnar lead 4 are rounded, and the peripheral portions are rounded. There is a possibility that an annular gap may be formed between the portion and the elastic body 3.

【0008】本発明は、前記諸点に鑑みてなされたもの
であって、弾性体の中空部に配された柱状鉛を所定に隙
間なしに拘束し得る結果、安定な免震特性を得ることが
でき、加えて弾性体の弾性材料層及び柱状鉛の疲労、損
壊を回避することができ、耐久性及び免震効果並びに製
造性に特に優れた免震装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and it is possible to restrain columnar lead disposed in a hollow portion of an elastic body without a predetermined gap, thereby obtaining stable seismic isolation characteristics. It is another object of the present invention to provide a seismic isolation device which can avoid fatigue and destruction of an elastic material layer of an elastic body and columnar lead, and are particularly excellent in durability, seismic isolation effect, and manufacturability.

【0009】[0009]

【課題を解決するための手段】本発明によれば前記目的
は、柱状鉛と、弾性材料層及び剛性材料層が交互に積層
されてなる弾性体と、少なくともこの弾性体の内周面で
規定された中空部とを具備している免震装置であって
状鉛の体積Vpと、前記柱状鉛が未挿入であって、
弾性体に積層方向の荷重が加えられた状態での中空部
の容積Veとの比Vp/Veが1.02〜1.12であ
ようにして柱状鉛が中空部に密に配されてなり、前記
積層方向の荷重を支持するようにした免震装置によって
達成される。
According to the present invention, an object of the present invention is to define a columnar lead, an elastic body in which an elastic material layer and a rigid material layer are alternately laminated, and at least an inner peripheral surface of the elastic body. A seismic isolation device having a hollow portion ,
The volume Vp of the pillars Jonamari, the columnar lead a not inserted, before
The columnar lead is densely arranged in the hollow portion so that the ratio Vp / Ve to the volume Ve of the hollow portion in a state where a load in the laminating direction is applied to the elastic body is 1.02 to 1.12. Become
This is achieved by a seismic isolation device adapted to support loads in the stacking direction .

【0010】本発明は、中空部に配された柱状鉛の体積
Vpと、弾性体の内周面で規定される中空部の容積、具
体的には、柱状鉛を配する前、換言すれば柱状鉛を形成
するための鉛を圧入する前であって、弾性体に積層方向
荷重を加えた状態での中空部(以下、縮小中空部とい
う)の容積Veとが一定の関係にある免震装置では、耐
久性及び免震効果並びに製造性に特に優れているという
知見に基づいてなされたものである。
[0010] The present invention provides a method for disposing the volume Vp of the columnar lead disposed in the hollow portion and the volume of the hollow portion defined by the inner peripheral surface of the elastic body, specifically, before disposing the columnar lead. even before press-fitting the lead for forming the columnar lead stacking direction in the elastic body
It has been found that a seismic isolation device in which the volume Ve of a hollow portion (hereinafter referred to as a reduced hollow portion) in a state where a load is applied has a fixed relationship is particularly excellent in durability, seismic isolation effect, and manufacturability. It was made based on it.

【0011】すなわち本発明の免震装置では、中空部に
配された柱状鉛の体積Vpと、縮小中空部の容積Veと
の比Vp/Veが1.02〜1.12である。縮小中空
部の容積Veは、弾性体に加えられる鉛直方向荷重であ
る弾性材料層と剛性材料層との積層方向の荷重によっ
、換言すれば免震装置が支持する構造物の重量によっ
て増減し、また縮小中空部の容積Veに対して1.00
倍を越える体積の柱状鉛が配された状態における中空部
の容積とも異なる。縮小中空部の容積Veに対して1.
00倍を十分越える体積の柱状鉛を中空部に配してなる
免震装置では、図4に示す例のように、中空部12を規
定する弾性体3の内周面9は、円柱状鉛4が弾性体3の
弾性材料層を構成するゴム等からなる弾性板1に食い込
んで、当該弾性板1の位置では環状の凹面31になり、
剛性材料層を構成する環状の剛性板2の位置では環状の
凸面32になる。
That is, in the seismic isolation device of the present invention, the ratio Vp / Ve of the volume Vp of the columnar lead disposed in the hollow portion to the volume Ve of the reduced hollow portion is 1.02 to 1.12. Volume Ve of the reduced hollow section, vertical load der applied to the elastic member
Due to the load in the stacking direction of the elastic material layer and the rigid material layer
In other words, it increases or decreases according to the weight of the structure supported by the seismic isolation device.
It is also different from the volume of the hollow portion in the state where the columnar lead having more than twice the volume is arranged. 1. With respect to the volume Ve of the reduced hollow portion,
In the seismic isolation device in which the columnar lead having a volume exceeding 00 times is arranged in the hollow portion, the inner peripheral surface 9 of the elastic body 3 defining the hollow portion 12 has a cylindrical lead shape as shown in FIG. 4 digs into the elastic plate 1 made of rubber or the like constituting the elastic material layer of the elastic body 3, and becomes an annular concave surface 31 at the position of the elastic plate 1;
At the position of the annular rigid plate 2 constituting the rigid material layer, an annular convex surface 32 is formed.

【0012】ところで円柱状鉛4を縮小中空部の容積の
1.00倍(比Vp/Ve=1.00)よりも少なく配
した場合には、弾性体3の内周面9と、内周面9に対面
してこれに接する円柱状鉛4の外周面との間に隙間が生
じ易くなり、したがって免震装置5の作動中に、すなわ
ち免震装置5に繰り返し横方向力Fが加わっている間
に、容易に弾性体3の内周面9と円柱状鉛4の外周面と
の間に隙間が生じ、履歴曲線21で示すような不安定な
免震特性を示すことになる。これは、円柱状鉛4が弾性
体3に少なくとも剪断方向において隙間なく拘束され
ず、剪断変形以外の変形を生じ、円柱状鉛4が設計剪断
降伏応力(通常、純度99.9%以上の純粋度の鉛の場
合には、設計値として85kg/cm2 )を現出しない
ことにもよる、と推測される。
When the columnar lead 4 is disposed less than 1.00 times the volume of the reduced hollow portion (ratio Vp / Ve = 1.00), the inner peripheral surface 9 of the elastic body 3 A gap is likely to be formed between the outer peripheral surface of the columnar lead 4 which faces the surface 9 and is in contact with the surface 9. Therefore, during the operation of the seismic isolation device 5, that is, the lateral force F is repeatedly applied to the seismic isolation device 5. In the meantime, a gap is easily generated between the inner peripheral surface 9 of the elastic body 3 and the outer peripheral surface of the columnar lead 4, so that unstable seismic isolation characteristics as shown by the hysteresis curve 21 are exhibited. This is because the columnar lead 4 is not confined to the elastic body 3 at least in the shear direction without any gap, causing deformation other than shear deformation, and the columnar lead 4 has a design shear yield stress (usually a pure purity of 99.9% or more). In the case of lead, it is presumed that this is due to the fact that 85 kg / cm 2 ) does not appear as a design value.

【0013】一方、円柱状鉛4を縮小中空部の容積の
1.12倍(比Vp/Ve=1.12)よりも多く配し
た場合には、円柱状鉛4が大きく弾性板1に食い込ん
で、図4の符号41で示すように、弾性体3の内周面9
が過度に凹面になり、この部位の近傍での弾性板1と剛
性板2との間の剪断応力が大きくなり過ぎることとな
る。このように過度に応力が生じた状態であると、弾性
板1の劣化を早め、耐久性が劣ることになる。また、免
震装置5の製造において、中空部12に円柱状鉛4を形
成するために、鉛を縮小中空部の容積の1.12倍より
多く圧入することは、その圧入力を極めて大きくしなけ
ればならない上に、圧入により弾性体3を損壊してしま
う虞があり、困難であることも判った。
On the other hand, when the columnar lead 4 is arranged more than 1.12 times (volume Vp / Ve = 1.12) of the volume of the reduced hollow portion, the columnar lead 4 largely cuts into the elastic plate 1. As shown by reference numeral 41 in FIG.
Becomes excessively concave, and the shear stress between the elastic plate 1 and the rigid plate 2 in the vicinity of this portion becomes too large. If the stress is excessively generated as described above, the elastic plate 1 is accelerated in deterioration, and the durability is deteriorated. In the manufacture of the seismic isolation device 5, press-fitting lead more than 1.12 times the volume of the reduced hollow portion in order to form the columnar lead 4 in the hollow portion 12 significantly increases the press-fitting. In addition, it has been found that there is a possibility that the elastic body 3 may be damaged by press-fitting, which is difficult.

【0014】なお、以下の実施例からも明らかであるよ
うに、小さな振動入力では、高い剛性を示し、大きな振
動入力では、低い剛性を示す機能、いわゆるトリガ機能
が特に要求され、かつ大振幅の地震動に特に好ましく対
応し得るためには、比Vp/Veが1.02以上である
ことがよい。また、比Vp/Veが1.02〜1.07
の範囲内であると、製造性に極めて優れる。
As will be apparent from the following embodiments, a small vibration input exhibits a high rigidity, and a large vibration input requires a function exhibiting a low rigidity, that is, a so-called trigger function. The ratio Vp / Ve is preferably 1.02 or more in order to be able to cope particularly preferably with earthquake motion. Further, the ratio Vp / Ve is 1.02 to 1.07.
Within this range, the productivity is extremely excellent.

【0015】本発明ではまた、剛性材料層は、弾性体に
おけるその各端面側にそれぞれ配された厚肉剛性板を具
備しており、柱状鉛の一端部は、一方の厚肉剛性板の内
周面によって規定された中空部の一端部に密に配されて
おり、柱状鉛の他端部は、他方の厚肉剛性板の内周面に
よって規定された中空部の他端部に密に配されている。
図2に示す免震装置5では、前述のとおり、数度の地震
が加わることにより、円柱状鉛4の上下面の周縁部と弾
性体3との間に環状の隙間が生じ、長期の使用によりこ
の環状隙間により免震特性が不安定となるが、本発明
は、上記のように、柱状鉛の両端部のそれぞれを、各厚
肉剛性板の内周面で規定される中空部の各端部に密に配
して、環状隙間の発生を防止し、免震特性の劣化を防止
しようとするものである。
According to the present invention, the rigid material layer includes a thick rigid plate disposed on each end surface of the elastic body, and one end of the columnar lead is formed of one of the thick rigid plates. The other end of the columnar lead is densely arranged on the other end of the hollow portion defined by the inner peripheral surface of the other thick rigid plate. Are arranged.
As described above, in the seismic isolation device 5 shown in FIG. 2, an annular gap is generated between the peripheral portions of the upper and lower surfaces of the columnar lead 4 and the elastic body 3 due to the application of several degrees of earthquake, so Due to this annular gap, the seismic isolation characteristics become unstable, but the present invention, as described above, separates each of the two ends of the columnar lead from each of the hollow portions defined by the inner peripheral surface of each thick rigid plate. It is arranged densely at the end to prevent the generation of an annular gap and to prevent the seismic isolation characteristics from deteriorating.

【0016】本発明において、弾性材料層の素材として
は、天然ゴム、シリコンゴム、高減衰ゴム、ウレタンゴ
ム又はクロロプレンゴム等を挙げることができるが、好
ましくは天然ゴムである。弾性材料層の各層の厚みとし
ては、無負荷状態において1mm〜30mm程度のもの
が好ましいが、これに限定されない。また、剛性材料層
の素材としては、鋼板、炭素繊維、ガラス繊維若しくは
アラミド繊維等の繊維補強合成樹脂板又は繊維補強硬質
ゴム板等を挙げることができ、その厚みは、各厚肉剛性
板には10mm〜50mm程度、それ以外の各層には1
mm〜6mm程度のものが好ましいが、これに限定され
ず、更にその枚数においても特に限定されない。弾性体
及び柱状鉛は、円環状体及び円柱状体が好ましいが、他
の形状のもの、例えば楕円若しくは方形体及び楕円若し
くは方形体のものであってもよい。柱状鉛は、一つでも
よいが、これに代えて、一つの弾性体に複数の中空部を
形成し、この複数の中空部にそれぞれ柱状鉛を配して免
震装置を構成してもよい。なお、これら複数の中空部の
各柱状鉛を比Vp/Veに関して同一の上記条件下で配
する必要はなく、それぞれ異なる条件下で配してもよ
く、また、各柱状鉛が比Vp/Veに関して上記条件を
満足しているのが好ましいが、複数個の柱状鉛の内の一
部の柱状鉛を、比Vp/Veに関して上記条件を満足し
ないようにして配してもよい。
In the present invention, examples of the material of the elastic material layer include natural rubber, silicone rubber, high attenuation rubber, urethane rubber and chloroprene rubber, and preferably natural rubber. The thickness of each elastic material layer is preferably about 1 mm to 30 mm in a no-load state, but is not limited to this. Examples of the material of the rigid material layer include a steel plate, a carbon fiber, a fiber reinforced synthetic resin plate such as a glass fiber or an aramid fiber, and a fiber reinforced hard rubber plate. Is about 10 mm to 50 mm, and 1
The thickness is preferably about mm to 6 mm, but is not limited to this, and the number is not particularly limited. The elastic body and the columnar lead are preferably an annular body and a columnar body, but may have another shape, for example, an elliptical or square body and an elliptical or square body. The columnar lead may be one, but instead, a plurality of hollow portions may be formed in one elastic body, and the columnar lead may be disposed in each of the plurality of hollow portions to configure the seismic isolation device. . In addition, it is not necessary to arrange | position each columnar lead of these several hollow parts under the same conditions with respect to the ratio Vp / Ve, and they may be arranged under different conditions, respectively, and each columnar lead has a ratio Vp / Ve. It is preferable that the above condition is satisfied, but some of the plurality of columnar leads may be arranged so that the ratio Vp / Ve does not satisfy the above condition.

【0017】[0017]

【発明の実施の形態】以下、本発明及び本発明の実施の
形態を、好ましい実施例に基づいて更に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention and embodiments of the present invention will be further described below based on preferred embodiments.

【0018】[0018]

【実施例】図5に示す本例の免震装置5は、環状の弾性
板1からなる弾性材料層並びに環状の薄肉剛性鋼板2及
び厚肉剛性鋼板15、16からなる剛性材料層とが交互
に積層されてなる環状の弾性体3と、少なくとも弾性体
3の内周面9で規定される中空部12に密に配された円
柱状鉛4と、鋼板15及び16にぞれぞれボルト17を
介して連結されたフランジプレート18及び19と、円
柱状鉛4の下面及び上面においてフランジプレート18
及び19と鋼板15及び16とを互いに剪断方向(F方
向)に固定する剪断キー20とを具備しており、円柱状
鉛4が密に配された中空部12は、内周面9に加えて、
下方の剪断キー20の上面21と上方の剪断キー20の
下面22とによって規定されている。免震装置5におい
て、鋼板15及び16は、弾性体3の上下端面側の弾性
材料層に埋め込まれて配されており、円柱状鉛4の下端
部23は、鋼板15の内周面によって規定される中空部
12の下端部に密に配されており、円柱状鉛4の上端部
24は、鋼板16の内周面によって規定される中空部1
2の上端部に密に配されている。本免震装置5は、フラ
ンジプレート18側が基礎10に、フランジプレート1
9側が構造物11にそれぞれ連結されて用いられる。本
例においては、弾性材料層を形成するために、厚さ5m
mの天然ゴム製の環状の弾性板1を25枚使用し、剛性
材料層を形成するために、厚さ2.3mmの環状の鋼板
2を22枚と、厚さ31mmの環状の鋼板15及び16
とを使用した。
FIG. 5 shows a seismic isolation device 5 of this embodiment in which an elastic material layer composed of an annular elastic plate 1 and a rigid material layer composed of an annular thin rigid steel plate 2 and thick rigid steel plates 15 and 16 alternate. The elastic body 3 is laminated on each other, the columnar lead 4 densely arranged at least in the hollow portion 12 defined by the inner peripheral surface 9 of the elastic body 3, and the bolts on the steel plates 15 and 16, respectively. 17 and flange plates 18 and 19 connected via
And a shear key 20 for fixing the steel plates 15 and 16 to each other in the shear direction (F direction). The hollow portion 12 in which the columnar lead 4 is densely arranged is added to the inner peripheral surface 9. hand,
It is defined by the upper surface 21 of the lower shear key 20 and the lower surface 22 of the upper shear key 20. In the seismic isolation device 5, the steel plates 15 and 16 are embedded in the elastic material layer on the upper and lower end surfaces of the elastic body 3, and the lower end 23 of the columnar lead 4 is defined by the inner peripheral surface of the steel plate 15. The upper end 24 of the columnar lead 4 is densely arranged at the lower end of the hollow portion 12, and the hollow portion 1 defined by the inner peripheral surface of the steel plate 16.
2 are densely arranged at the upper end. The seismic isolation device 5 has the flange plate 18 side on the foundation 10 and the flange plate 1
The 9 side is connected to the structure 11 and used. In this example, in order to form the elastic material layer, the thickness is 5 m.
In order to form a rigid material layer, 25 annular steel plates 2 each having a thickness of 2.3 mm, and a ring steel plate 15 having a thickness of 31 mm were used. 16
And were used.

【0019】本発明の免震装置5を製造する場合には、
まず、環状の弾性板1と鋼板2とを交互に積層して、そ
の下面及び上面に環状の鋼板15及び16を配置し、型
内における加圧下での加硫接着等によりこれらを相互に
固定してなる環状の弾性体3を準備し、その後、円柱状
鉛4を中空部12に形成すべく、弾性体3の中空部12
に鉛を圧入する。鉛の圧入は、円柱状鉛4が弾性体3に
より中空部12において隙間なしに拘束されるように、
鉛を中空部12に油圧ラム等により押し込んで行う。鉛
の圧入後、剪断キー20並びにフランジプレート18及
び19を取り付ける。なお、型内における加圧下での加
硫接着による弾性体3の形成において、鋼板2、15及
び16の外周面を覆って、円筒状被覆層25が形成され
るようにするとよい。本例の被覆層の厚みは、10mm
であった。また上記形成において、弾性板1の内周側の
一部が流動して、鋼板2、15及び16の内周面を覆っ
て、円筒状被覆層25と同様であるがそれよりも極めて
薄い円筒状被覆層が形成されてもよい。
When manufacturing the seismic isolation device 5 of the present invention,
First, the annular elastic plates 1 and the steel plates 2 are alternately laminated, and the annular steel plates 15 and 16 are arranged on the lower surface and the upper surface thereof, and these are fixed to each other by vulcanization bonding or the like under pressure in the mold. An annular elastic body 3 is prepared, and then the hollow part 12 of the elastic body 3 is formed to form the columnar lead 4 in the hollow part 12.
Press lead in. The press-fitting of lead is performed so that the columnar lead 4 is restrained by the elastic body 3 in the hollow portion 12 without any gap.
Lead is pushed into the hollow portion 12 by a hydraulic ram or the like. After the lead press-fit, the shear key 20 and the flange plates 18 and 19 are installed. In the formation of the elastic body 3 by vulcanization bonding under pressure in the mold, the cylindrical coating layer 25 may be formed so as to cover the outer peripheral surfaces of the steel plates 2, 15, and 16. The thickness of the coating layer of this example is 10 mm
Met. In the above-mentioned formation, a part of the inner peripheral side of the elastic plate 1 flows and covers the inner peripheral surfaces of the steel plates 2, 15 and 16, and is the same as the cylindrical coating layer 25, but an extremely thin cylinder. A coating layer may be formed.

【0020】図5に示すような無負荷状態における弾性
体3の高さが240mmの免震装置5であって、鋼板
2、15及び16の外径を500mm、内径を90mm
とした免震装置5に対して、鉛直荷重57tonf(面
圧30kgf/cm2 )〜342tonf(面圧180
kgf/cm2 )を加えて、水平方向の変位と水平方向
力との関係を実験により求めた。これを図6〜図9に示
す。図6〜図9において、(a)は、免震装置5の全弾
性板1自体の横変位(水平方向変位)が10%の場合、
(b)及び(c)は、同じく50%及び100%の場合
である。図6に示す鉛直荷重57tonf(面圧30k
gf/cm2 )を加えた場合における比Vp/Veは
1.03、図7に示す鉛直荷重114tonf(面圧6
0kgf/cm2 )を加えた場合における比Vp/Ve
は1.00、図8に示す鉛直荷重228tonf(面圧
120kgf/cm2 )を加えた場合における比Vp/
Veは1.02及び図9に示す鉛直荷重342tonf
(面圧180kgf/cm2 )を加えた場合における比
Vp/Veは1.11であった。
FIG. 5 shows a seismic isolation device 5 in which the height of the elastic body 3 in a no-load state is 240 mm, and the outer diameters of the steel plates 2, 15 and 16 are 500 mm and the inner diameters are 90 mm.
The vertical load 57 tonf (contact pressure 30 kgf / cm 2 ) to 342 tonf (contact pressure 180
kgf / cm 2 ), and the relationship between the horizontal displacement and the horizontal force was determined by experiment. This is shown in FIGS. 6A to 9, (a) shows the case where the lateral displacement (horizontal displacement) of all the elastic plates 1 of the seismic isolation device 5 is 10%.
(B) and (c) are the same for 50% and 100%. The vertical load of 57 tonf shown in FIG.
gf / cm 2 ), the ratio Vp / Ve is 1.03, and the vertical load 114 tonf shown in FIG.
0 kgf / cm 2 ) when adding Vp / Ve
Is 1.00, and the ratio Vp / V when a vertical load of 228 tonf (surface pressure of 120 kgf / cm 2 ) shown in FIG. 8 is applied.
Ve is 1.02 and the vertical load of 342 tonf shown in FIG.
The ratio Vp / Ve when applying (surface pressure of 180 kgf / cm 2 ) was 1.11.

【0021】図6、図8及び図9から明らかであるよう
に、比Vp/Veが1.02以上では、トリガ機能が特
に要求され、大振幅の地震に対して好ましく対応し得る
ことが判る。また、図7から明らかであるように、比V
p/Veが1.00〜1.02未満の場合には、トリガ
機能を好ましく得ることができないといえる。なお、比
Vp/Veが1.07以下であれば、製造において中空
部12への鉛の圧入が容易であり、それほど困難を伴わ
ないことが判明した。また、比Vp/Veが1.12以
上になるように、中空部12へ鉛を圧入しようとした
が、弾性体3の損壊なしに、これを行うことは困難であ
ることが判明した。
As is clear from FIGS. 6, 8 and 9, when the ratio Vp / Ve is 1.02 or more, a trigger function is particularly required, and it is possible to preferably cope with a large amplitude earthquake. . Also, as is apparent from FIG.
When p / Ve is less than 1.00 to 1.02, it can be said that the trigger function cannot be preferably obtained. When the ratio Vp / Ve was 1.07 or less, it was found that press-fitting of lead into the hollow portion 12 was easy in manufacturing, and was not so difficult. In addition, lead was pressed into the hollow portion 12 so that the ratio Vp / Ve became 1.12 or more. However, it was found that it was difficult to do this without damaging the elastic body 3.

【0022】なお、免震装置5では、鋼板15及び16
とフランジプレート18及び19とを別体で形成した
が、フランジプレート18及び19に、厚肉剛性板を一
体に形成して、免震装置を具体化してもよい。
In the seismic isolation device 5, the steel plates 15 and 16
Although the flange plates 18 and 19 are formed separately, a thick rigid plate may be integrally formed with the flange plates 18 and 19 to realize the seismic isolation device.

【0023】[0023]

【発明の効果】以上のように本発明によれば、弾性体の
中空部に配された柱状鉛を所望に拘束し得る結果、安定
な免震特性を得ることができ、しかも、トリガ機能を有
して、大振幅の地震動に好ましく対応し得、加えて弾性
体の弾性材料層及び柱状鉛の劣化を回避することがで
き、耐久性及び免震効果並びに製造性に特に優れた免震
装置を提供することができる。
As described above, according to the present invention, the columnar lead disposed in the hollow portion of the elastic body can be restrained as desired, so that a stable seismic isolation characteristic can be obtained, and the trigger function can be provided. A seismic isolation device that can preferably cope with large-amplitude seismic motions, and in addition, can avoid deterioration of the elastic material layer of the elastic body and columnar lead, and is particularly excellent in durability, seismic isolation effect, and manufacturability. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る免震装置の斜視図である。FIG. 1 is a perspective view of a seismic isolation device according to the present invention.

【図2】図1に示す免震装置の断面図である。FIG. 2 is a sectional view of the seismic isolation device shown in FIG.

【図3】免震装置の動作説明図である。FIG. 3 is a diagram illustrating the operation of the seismic isolation device.

【図4】図1に示す免震装置の一部拡大断面図である。FIG. 4 is a partially enlarged sectional view of the seismic isolation device shown in FIG.

【図5】本発明の好ましい一実施例の断面図である。FIG. 5 is a cross-sectional view of a preferred embodiment of the present invention.

【図6】図5に示す実施例の効果を示す図である。FIG. 6 is a diagram showing the effect of the embodiment shown in FIG.

【図7】図5に示す実施例の効果を示す図である。FIG. 7 is a diagram showing the effect of the embodiment shown in FIG.

【図8】図5に示す実施例の効果を示す図である。FIG. 8 is a diagram showing the effect of the embodiment shown in FIG.

【図9】図5に示す実施例の効果を示す図である。FIG. 9 is a diagram showing the effect of the embodiment shown in FIG. 5;

【符号の説明】[Explanation of symbols]

1 弾性板 2 剛性鋼板 3 弾性体 4 円柱状鉛 5 免震装置 12 中空部 DESCRIPTION OF SYMBOLS 1 Elastic plate 2 Rigid steel plate 3 Elastic body 4 Cylindrical lead 5 Seismic isolation device 12 Hollow part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 平2−56204(JP,U) 特公 昭61−17984(JP,B2) Earthquake Engine ering and Structur al Dynamics,Vol.10, 593−604(1982) (58)調査した分野(Int.Cl.7,DB名) F16F 1/00 - 6/00 F16F 15/00 - 15/32 E01D 19/04 E04B 1/36 E04H 9/02 331 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-56204 (JP, U) JP-B-61-17984 (JP, B2) Earthquake Engineering and Structure al Dynamics, Vol. 10, 593-604 (1982) (58) Fields investigated (Int.Cl. 7 , DB name) F16F 1/00-6/00 F16F 15/00-15/32 E01D 19/04 E04B 1/36 E04H 9 / 02 331

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 柱状鉛と、弾性材料層及び剛性材料層が
交互に積層されてなる弾性体と、少なくともこの弾性体
の内周面で規定された中空部とを具備している免震装置
であって、柱状鉛の体積Vpと、前記柱状鉛が未挿入で
あって、前記弾性体に積層方向の荷重が加えられた状態
での中空部の容積Veとの比Vp/Veが1.02〜
1.12であるようにして柱状鉛が中空部に密に配され
てなり、前記積層方向の荷重を支持するようにした免震
装置。
1. A seismic isolation device comprising: a columnar lead; an elastic body in which elastic material layers and rigid material layers are alternately laminated; and at least a hollow portion defined by an inner peripheral surface of the elastic body. an apparatus, and a volume Vp pillars Jonamari, the columnar lead a not inserted, the ratio Vp / Ve of the volume Ve of the hollow portion in a state where a load in the stacking direction is applied to the elastic body 1 . 02 ~
The columnar lead is densely arranged in the hollow portion so that
A seismic isolation device configured to support the load in the stacking direction .
【請求項2】 前記比Vp/Veが1.02〜1.0
7である請求項1に記載の免震装置。
Wherein said ratio Vp / Ve is 1.02 to 1.0
7. The seismic isolation device according to claim 1.
【請求項3】 前記中空部を規定する弾性体の内周面
は、柱状鉛が弾性体の弾性材料層に食い込んで、当該弾
性材料層の位置で凹面になっている請求項1又は2に記
載の免震装置。
3. An inner peripheral surface of the elastic body defining the hollow portion, wherein the columnar lead bites into the elastic material layer of the elastic body and is concave at the position of the elastic material layer. The seismic isolation device described.
【請求項4】 前記中空部を規定する弾性体の内周面
は、柱状鉛が弾性体の弾性材料層に食い込んで、剛性材
料層の位置で凸面になっている請求項1から3のいずれ
か一項に記載の免震装置。
The inner peripheral surface of 4. A resilient body defining said hollow portion, bite columnar lead to an elastic material layer of the elastic body, any of claims 1 to 3 that is a convex surface at the position of the rigid material layers
Seismic isolation device according to an item or.
【請求項5】 前記剛性材料層は、弾性体におけるその
各端面側にそれぞれ配された厚肉剛性板を具備してお
り、前記柱状鉛の一端部は、一方の厚肉剛性板の内周面
によって規定された中空部の一端部に密に配されてお
り、前記柱状鉛の他端部は、他方の厚肉剛性板の内周面
によって規定された中空部の他端部に密に配されている
請求項1から4のいずれか一項に記載の免震装置。
Wherein said rigid material layer is provided with a thick rigid plates disposed respectively that on each end face of the elastic body, one end of the columnar lead, the inner periphery of one of the thick rigid plate are densely arranged at one end of the hollow portion defined by the surface, the other end portion of the columnar lead, densely at the other end of the hollow portion defined by the inner peripheral surface of the other thick rigid plate The seismic isolation device according to any one of claims 1 to 4 , which is arranged.
【請求項6】 前記弾性材料層は弾性板からなり、前記6. The elastic material layer is made of an elastic plate.
剛性材料層は鋼板からなり、当該鋼板の内周面は、弾性The rigid material layer is made of a steel plate, and the inner peripheral surface of the steel plate has elasticity.
板の内周側の一部が流動して形成された極めて薄い円筒An extremely thin cylinder formed by flowing part of the inner circumference of the plate
状被覆層によって覆われている請求項1から5のいずれ6. The method according to claim 1, which is covered with a coating layer.
か一項に記載の免震装置。The seismic isolation device according to claim 1.
JP08216604A 1995-08-04 1996-07-30 Seismic isolation device Expired - Lifetime JP3114624B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21959395 1995-08-04
JP7-219593 1995-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000133462A Division JP4061818B2 (en) 1995-08-04 2000-05-02 Seismic isolation device

Publications (2)

Publication Number Publication Date
JPH09105440A JPH09105440A (en) 1997-04-22
JP3114624B2 true JP3114624B2 (en) 2000-12-04

Family

ID=16737972

Family Applications (2)

Application Number Title Priority Date Filing Date
JP08216604A Expired - Lifetime JP3114624B2 (en) 1995-08-04 1996-07-30 Seismic isolation device
JP2000133462A Expired - Lifetime JP4061818B2 (en) 1995-08-04 2000-05-02 Seismic isolation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2000133462A Expired - Lifetime JP4061818B2 (en) 1995-08-04 2000-05-02 Seismic isolation device

Country Status (1)

Country Link
JP (2) JP3114624B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050322A (en) * 1999-08-10 2001-02-23 Showa Electric Wire & Cable Co Ltd Manufacture for laminated rubber supporting body
JP2001355676A (en) * 2000-06-09 2001-12-26 Oiles Ind Co Ltd Laminated rubber supporting device containing lead plug
JP2001355677A (en) * 2000-06-09 2001-12-26 Oiles Ind Co Ltd Laminated rubber supporting device containing lead plug
JP2003074612A (en) * 2001-09-05 2003-03-12 Bridgestone Corp Rubber bearing body and its manufacturing method
JP2005299762A (en) * 2004-04-09 2005-10-27 Sumitomo Metal Mining Co Ltd Manufacturing method for laminated rubber supporting body
JP2007139115A (en) * 2005-11-21 2007-06-07 Kajima Corp Plug-filled laminated rubber bearing
JP6439244B2 (en) 2013-05-30 2018-12-19 オイレス工業株式会社 Seismic isolation device
JP2015132303A (en) * 2014-01-10 2015-07-23 住友金属鉱山シポレックス株式会社 Lead-plug incorporated laminate rubber type base insulation bearing
KR102399782B1 (en) 2014-11-28 2022-05-19 오일레스고교 가부시키가이샤 Seismic isolation apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ178949A (en) * 1975-10-14 1979-04-26 New Zealand Dev Finance Energy absorber for eg bouldings:cyclicylly deformable body in shear
JPH0418672Y2 (en) * 1986-09-03 1992-04-27
JPH0256204U (en) * 1988-10-14 1990-04-24

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Earthquake Engineering and Structural Dynamics,Vol.10,593−604(1982)

Also Published As

Publication number Publication date
JPH09105440A (en) 1997-04-22
JP4061818B2 (en) 2008-03-19
JP2000346132A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
US5761856A (en) Vibration isolation apparatus
JP2883219B2 (en) Seismic isolation support device
JPH0419407B2 (en)
AU620587B2 (en) Improvements in or relating to energy absorbers
JP3114624B2 (en) Seismic isolation device
US10619700B2 (en) Seismic isolation apparatus
JP3205393U (en) Seismic isolation device
US5161338A (en) Laminated rubber support assembly
JPH1088851A (en) Bearing device for vibration isolation
EP3614017A1 (en) Seismic isolation support device
JP3024562B2 (en) Seismic isolation device
JP3124502B2 (en) Structure of leaded rubber bearing
JP2006207680A (en) Laminated rubber supporter
JP3988849B2 (en) Seismic isolation device
JP2019127994A (en) Aseismic base isolation support device
KR100409274B1 (en) Vibration isolating apparatus and vibration isolating system
JP3039846B2 (en) Laminated rubber bearing
JP2008292000A (en) Vibration isolation device
JP2007170679A (en) Vibration isolating apparatus
JP2006022965A (en) Vibration isolation device
JP3717287B2 (en) Seismic isolation device
JPH0860746A (en) Lead-sealed laminated rubber
JP3021447U (en) Seismic isolation device
JP2937983B2 (en) Vertical shock-absorbing laminated rubber bearing
JP6982350B1 (en) Seismic isolation bearing device for structures

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term