JP2015132303A - Lead-plug incorporated laminate rubber type base insulation bearing - Google Patents

Lead-plug incorporated laminate rubber type base insulation bearing Download PDF

Info

Publication number
JP2015132303A
JP2015132303A JP2014003345A JP2014003345A JP2015132303A JP 2015132303 A JP2015132303 A JP 2015132303A JP 2014003345 A JP2014003345 A JP 2014003345A JP 2014003345 A JP2014003345 A JP 2014003345A JP 2015132303 A JP2015132303 A JP 2015132303A
Authority
JP
Japan
Prior art keywords
lead
seismic isolation
rubber type
lead plug
laminated rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014003345A
Other languages
Japanese (ja)
Inventor
亮 安永
Akira Yasunaga
亮 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2014003345A priority Critical patent/JP2015132303A/en
Publication of JP2015132303A publication Critical patent/JP2015132303A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a lead-plug incorporated laminate rubber type base insulation bearing having a durability improved by preventing the occurrences of cracks or ruptures due to the vibrations of minute amplitudes.SOLUTION: A lead-plug incorporated laminate rubber type base insulating bearing 10 includes: an elastic body 2 having elastic material layers and rigid material layers laminated alternately; and a columnar lead plug 1. The lead plug 1 is arranged in a cylindrical hollow part formed vertically in the elastic body 2, and the lead plug 1 is formed in at least its side face with a film part 11, to which a lubricant is applied.

Description

本発明は、構造物の免震装置として用いる鉛プラグ入り積層ゴム型免震支承に関する。   The present invention relates to a laminated rubber type seismic isolation bearing with a lead plug used as a seismic isolation apparatus for a structure.

構造物の免震装置には、様々な材料、構造、機能を有する種々の装置が用いられているが、この鉛プラグ入り積層ゴム型免震支承もそれらの一つである。この鉛プラグ入り積層ゴム型免震支承は、積層ゴム体の内部の中空部分に柱状の鉛プラグが配置されていて、この鉛プラグは上下の取付け鋼板と周囲の積層ゴム体によって拘束されている。   Various devices having various materials, structures, and functions are used for the seismic isolation device for the structure, and this laminated rubber type seismic isolation bearing with a lead plug is one of them. In this laminated rubber type seismic isolation bearing with lead plugs, columnar lead plugs are arranged in hollow portions inside the laminated rubber bodies, and these lead plugs are restrained by upper and lower mounting steel plates and surrounding laminated rubber bodies. .

鉛プラグ入り積層ゴム型免震支承は、建築物や橋梁等の構造物に設置され、これらの構造物の基礎側の下部構造体と上部構造体との間に配置される。一般的に免震支承に作用する鉛直方向への圧縮応力(免震支承に作用する軸力を受圧面積で除した鉛直方向の平均応力度)は10MPa程度以上であるが、例えば、鉄骨造や中低層建物等の比較的軽量な構造物に用いられた場合は、鉛直方向への圧縮応力が10MPaとなることもある。また、構造物のうち、階段下や下屋等の軸力が小さいに場所に免震支承が用いられた場合、免震支承に作用する鉛直方向への圧縮応力は5MPa未満となる場合もある。   Laminated rubber type seismic isolation bearings with lead plugs are installed in structures such as buildings and bridges, and are arranged between the lower structure and the upper structure on the foundation side of these structures. Generally, the compressive stress in the vertical direction acting on the seismic isolation bearing (the average stress in the vertical direction obtained by dividing the axial force acting on the seismic isolation bearing by the pressure-receiving area) is about 10 MPa or more. When used for a relatively lightweight structure such as a medium- or low-rise building, the compressive stress in the vertical direction may be 10 MPa. In addition, in the structure, when the base isolation is used at a place where the axial force is small, such as under the stairs or the lower house, the compressive stress in the vertical direction acting on the base isolation support may be less than 5 MPa. .

そして、この鉛プラグ入り積層ゴム型免震支承は、上記の積層ゴム体が水平方向に大きく変形し、その内部に配置される鉛プラグが変形を受けることにより、地震等から受けるエネルギーの吸収性能を発揮する(特許文献1参照)。   And this laminated rubber type seismic isolation bearing with lead plug is capable of absorbing the energy received from earthquakes, etc. when the above laminated rubber body is greatly deformed in the horizontal direction and the lead plug disposed inside is deformed. (See Patent Document 1).

尚、鉛等の弾塑性素材で形成された部材からなる免震装置において、金属疲労による亀裂や破断を抑制するための手段として、グリース等の鉱物油を補強用塗料として免震ダンパーの表面に塗布することによって補強用の被膜部を形成し、これにより上記の亀裂や破断を抑制する免震装置の保守方法が、本発明の発明者他により開示されている(非特許文献1及び2参照)。   In addition, in a seismic isolation device composed of an elastic-plastic material such as lead, mineral oil such as grease is used as a reinforcing paint on the surface of the seismic isolation damper as a means to suppress cracks and fractures due to metal fatigue. A maintenance method for a seismic isolation device that forms a coating film for reinforcement by coating and thereby suppresses the above-described cracks and breaks is disclosed by the inventors of the present invention (see Non-Patent Documents 1 and 2). ).

特開平9−105440号公報JP-A-9-105440

森田慶子、高山峯夫、安永亮、「免震構造用鉛ダンパーの疲労特性に関する研究、表面皮膜による疲労抑制効果」、日本建築学会大会学術講演梗概集B−2構造II、2012年9月Keiko Morita, Ikuo Takayama, Ryo Yasunaga, “Study on fatigue properties of lead dampers for seismic isolation structures, fatigue suppression effect by surface coating”, Annual Meeting of the Architectural Institute of Japan B-2 Structure II, September 2012 森田慶子、高山峯夫、安永亮、「免震構造用鉛ダンパーの疲労特性に関する研究、その2グリース塗布の金属疲労現象抑制効果について」、日本建築学会大会学術講演梗概集B−2構造II、2013年9月Keiko Morita, Ikuo Takayama, Ryo Yasunaga, “Study on fatigue properties of lead dampers for seismic isolation structures, Part 2 On the effect of grease application on the suppression of metal fatigue”, Annual Meeting of the Architectural Institute of Japan B-2 Structure II, 2013 September

ところで、鉛プラグ入り積層ゴム型免震支承が設置される構造物の上部構造体には、地震時の大きな振幅の振動の他に、中小地震、風、交通振動、地盤の常時微動等に対する構造物の応答による微少振幅の振動が繰り返し発生している。このため、例えば、特許文献1の鉛プラグ入り積層ゴム型免震支承の鉛プラグのように振動により変形する部材は、平時において、微少振幅の振動による変形が繰り返されている。   By the way, the upper structure of the structure where the laminated rubber type seismic isolation bearing with lead plugs is installed has a structure for small and medium earthquakes, wind, traffic vibrations, ground microtremors, etc. in addition to large amplitude vibrations during earthquakes. The vibration of minute amplitude due to the response of the object is repeatedly generated. For this reason, for example, a member that is deformed by vibration, such as a lead plug of a laminated rubber type seismic isolation bearing with a lead plug disclosed in Patent Document 1, is repeatedly deformed by vibration of a minute amplitude during normal times.

この鉛プラグのように、地震時において、変形することで振動エネルギーを吸収する部材は、鉛等の弾塑性素材で形成される。これらの弾塑性素材で形成された部材は、地震時の大きな振幅の振動に対しては塑性変形して、上記の通り、振動エネルギーを吸収する。一方、これらの弾塑性素材で形成された部材は、微少振幅の振動に対しては弾性変形して、振動エネルギーを吸収する。   Like this lead plug, a member that absorbs vibration energy by deformation during an earthquake is formed of an elastic-plastic material such as lead. The members formed of these elastic-plastic materials are plastically deformed with respect to vibrations having a large amplitude during an earthquake and absorb vibration energy as described above. On the other hand, members formed of these elastic-plastic materials are elastically deformed to absorb vibration energy with respect to minute amplitude vibration.

しかしながら、鉛等の弾塑性素材で形成された部材は、微少振幅の振動であっても、この振動が繰り返されることで表面に金属疲労による亀裂が発生し、更に繰り返されることで破断する。この部材が破断した場合、免震装置は、振動エネルギーを吸収することができず、地震時において、所定の免震性能を発揮できない。   However, a member formed of an elastoplastic material such as lead is cracked due to metal fatigue on the surface when the vibration is repeated, and is broken when the vibration is repeated. When this member breaks, the seismic isolation device cannot absorb vibration energy and cannot exhibit predetermined seismic isolation performance during an earthquake.

実際に、構造物の荷重によって鉛直方向への強い圧縮応力がかかる状態で、鉛プラグ入り積層ゴム型免震支承が設置されている場合には、上記の微小振幅による変形では上記の弾塑性素材に引張応力が作用せず、常に圧縮応力のみが作用し、引張・圧縮応力の繰返しが起こらないため、上記金属疲労は起こり難い状態となっている。しかし、上述した通り、鉛プラグ入り積層ゴム型免震支承は、鉛直方向への圧縮応力が10MPa未満となるような鉄骨造や中低層建物等の比較的軽量な構造物に用いられることもある。そして、そのような使用態様においては、構造物の荷重による鉛直方向への圧縮応力が小さいため、上記微小振動時にも弾塑性素材に引張応力が作用し、引張・圧縮応力の繰返しが起こり、鉛材料の金属疲労が起こり易い状態となる。   In fact, if a laminated rubber type base-isolated bearing with lead plugs is installed in a state where a strong compressive stress is applied in the vertical direction due to the load of the structure, the above-mentioned elastic-plastic material will not be deformed by the above-mentioned small amplitude deformation. No tensile stress acts on the metal, only the compressive stress always acts, and the repetition of the tensile / compressive stress does not occur. Therefore, the metal fatigue is unlikely to occur. However, as described above, laminated rubber type seismic isolation bearings with lead plugs may be used for relatively light structures such as steel structures and medium to low-rise buildings where the compressive stress in the vertical direction is less than 10 MPa. . In such a usage mode, since the compressive stress in the vertical direction due to the load of the structure is small, the tensile stress acts on the elastic-plastic material even during the minute vibration, and the tensile / compressive stress repeats, leading to lead. It becomes a state in which metal fatigue of the material is likely to occur.

本発明は、微少振幅の振動に起因する亀裂や破断が発生することを防止して耐久性を向上させた鉛プラグ入り積層ゴム型免震支承を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a lead plug-containing laminated rubber type seismic isolation bearing that has improved durability by preventing the occurrence of cracks and fractures due to minute amplitude vibrations.

(1) 複数の弾性材料層と剛性材料層とが交互に積層されてなる弾性体と、柱状の鉛プラグと、を備え、前記鉛プラグは、前記弾性体の内部に鉛直方向に形成された筒状の中空部内に配置されていて、前記鉛プラグの側面の少なくとも一部には、潤滑剤が塗布されてなる被膜部が形成されている鉛プラグ入り積層ゴム型免震支承。   (1) An elastic body in which a plurality of elastic material layers and rigid material layers are alternately stacked, and a columnar lead plug are provided, and the lead plug is formed in the vertical direction inside the elastic body. A laminated rubber type seismic isolation bearing with a lead plug, which is disposed in a cylindrical hollow portion, and a coating portion formed by applying a lubricant is formed on at least a part of a side surface of the lead plug.

ここで、鉛プラグを形成する鉛は、塑性変形能力に優れるため、エネルギー吸収部材として優れた性能を有する。又、鉛は、炭素鋼等の鉄鋼材と比べ、振動を繰り返したときの応力振幅の限界点(疲労限界)が無いため、低い応力振幅でも金属疲労により亀裂が生じるとされている。そして、鉛プラグ入り積層ゴム型免震支承は、地震に起因するような振幅が大きい振動に対してはこの鉛からなる鉛プラグが塑性変形して振動エネルギーを吸収し、中小地震、風、交通振動、地盤の常時微動等に対する構造物の応答に起因する微少振幅の振動に対しては弾性変形して振動エネルギーを吸収する。   Here, the lead forming the lead plug has an excellent performance as an energy absorbing member because of its excellent plastic deformation ability. In addition, lead has no stress amplitude limit point (fatigue limit) when it is repeatedly oscillated as compared with steel materials such as carbon steel, and therefore it is said that cracks are caused by metal fatigue even at low stress amplitude. In the case of laminated rubber type seismic isolation bearings with lead plugs, the lead plug made of lead plastically deforms and absorbs vibration energy for vibrations with large amplitudes such as those caused by earthquakes. It absorbs vibrational energy by elastically deforming vibrations of minute amplitude caused by the response of the structure to vibrations, microtremors of the ground, etc.

(1)の発明によれば、この鉛プラグ側面の少なくとも一部に、潤滑剤を塗布することによって被膜部を形成したことによって、上記の微少振幅の振動が繰り返しに起因する鉛プラグの表面の金属疲労による亀裂の発生を防止することができる。よって、鉛プラグ入り積層ゴム型免震支承の免震装置としての耐久性、信頼性を顕著に向上させることができる。   According to the invention of (1), the surface of the lead plug caused by repetition of the above-mentioned vibration with the small amplitude is obtained by forming the coating portion by applying a lubricant to at least a part of the side surface of the lead plug. Generation of cracks due to metal fatigue can be prevented. Therefore, durability and reliability as a seismic isolation device of the laminated rubber type seismic isolation bearing with lead plug can be remarkably improved.

(2) 前記鉛プラグの側面の少なくとも一部には、凹凸面が形成されており、少なくとも該凹凸面上に前記被膜部が形成されている(1)に記載の鉛プラグ入り積層ゴム型免震支承。   (2) The lead-plug laminated rubber mold exemption according to (1), wherein a concavo-convex surface is formed on at least a part of a side surface of the lead plug, and the coating portion is formed on at least the concavo-convex surface. Seismic support.

(2)の発明によれば、潤滑剤を塗布し易く、尚且つ、潤滑剤が重力により下方に流れてしまうのを防止して、被膜部の安定性と定着性を向上させることができる。又、鉛プラグ表面の単位面積当りの被膜部の表面積、或いは、同単位面積当り塗布量の増加により、(1)の発明の奏する上記効果を更に好ましく発現させることができる。   According to the invention of (2), the lubricant can be easily applied, and the lubricant can be prevented from flowing downward due to gravity, thereby improving the stability and fixability of the coating portion. In addition, the above-described effect of the invention of (1) can be more preferably expressed by increasing the surface area of the coating portion per unit area on the surface of the lead plug or the amount of coating per unit area.

(3) 前記潤滑剤が、ワセリンである(1)又は(2)に記載の鉛プラグ入り積層ゴム型免震支承。   (3) The laminated rubber type seismic isolation bearing with a lead plug according to (1) or (2), wherein the lubricant is petrolatum.

(3)の発明によれば、ワセリンを鉛プラグの表面に塗布することによって、微少振幅の振動に起因する亀裂や破断の発生をより効果的に防止することができる。   According to the invention of (3), by applying petrolatum to the surface of the lead plug, it is possible to more effectively prevent the occurrence of cracks and breaks due to minute amplitude vibration.

(4) 前記グリースが、鉱物油を基油とするグリースである(1)又は(2)に記載の鉛プラグ入り積層ゴム型免震支承。   (4) The laminated rubber type seismic isolation bearing with lead plug according to (1) or (2), wherein the grease is a grease having a mineral oil as a base oil.

(4)の発明によれば、鉱物油を基油とするグリースを鉛プラグの表面に塗布することによって、微少振幅の振動に起因する亀裂や破断の発生をより効果的に防止することができる。   According to the invention of (4), by applying grease based on mineral oil to the surface of the lead plug, it is possible to more effectively prevent the occurrence of cracks and fractures due to minute amplitude vibrations. .

(5) 前記グリースが、ちょう度番号が00号から4号に含まれる(4)に記載の鉛プラグ入り積層ゴム型免震支承。
ここで、本発明における「ちょう度番号」は、JIS K2220において分類されるちょう度番号であり、グリースの外観的硬さを表示するものである。ちょう度番号00号から4号は、常温における外観的硬さの状態は、半流動状(ちょう度000号)から極めて硬(ちょう度6号)で示される範囲のうち、軟から硬の範囲である。
(5) The laminated rubber type seismic isolation bearing with lead plug according to (4), wherein the grease has a consistency number of 00 to 4.
Here, the “consistency number” in the present invention is a consistency number classified in JIS K2220, and indicates the external hardness of the grease. Consistency numbers No. 00 to No. 4 indicate that the state of appearance hardness at normal temperature is a range from soft to hard in a range from semi-fluid (concentration 000) to extremely hard (concentration 6). It is.

(5)の発明によれば、ちょう度番号が00号から4号に含まれるグリースで被膜部を形成することで、グリースを塗布し易く、尚且つグリースが重力により下方に流れてしまうのを防止することができる。   According to the invention of (5), it is easy to apply the grease by forming the coating portion with grease having a consistency number of No. 00 to No. 4, and the grease flows downward due to gravity. Can be prevented.

(6) (1)から(5)のいずれかに記載の鉛プラグ入り積層ゴム型免震支承を含んでなる免震構造であって、前記鉛プラグ入り積層ゴム型免震支承は、該鉛プラグ入り積層ゴム型免震支承に働く鉛直方向への圧縮応力が5MPa以上10MPa未満となる位置に配置されている免震構造。   (6) A seismic isolation structure comprising the laminated rubber type seismic isolation bearing with lead plug according to any one of (1) to (5), wherein the laminated rubber type seismic isolation bearing with lead plug is the lead A seismic isolation structure arranged at a position where the compressive stress in the vertical direction acting on the laminated rubber type seismic isolation bearing with plug is 5 MPa or more and less than 10 MPa.

ここで、免震支承等の免震装置は建物の荷重を支えているため、一般的には10MPa程度の鉛直方向への圧縮応力が常に作用している場合が多い。よって、この場合には、鉛プラグ入り積層ゴム型免震支承には、地震時の他の微小振動に起因して鉛プラグに引張り応力が作用することは実際には少なく、この場合には鉛プラグの金属疲労は起こりにくい状態にある。   Here, since seismic isolation devices such as seismic isolation bearings support the building load, generally a compressive stress in the vertical direction of about 10 MPa is always applied. Therefore, in this case, in the case of laminated rubber type seismic isolation bearings with lead plugs, there is actually little tensile stress acting on the lead plugs due to other minute vibrations during the earthquake. Metal fatigue of the plug is unlikely to occur.

しかし、例えば、鉄骨造や中低層建物等の、鉛直方向への圧縮応力が10MPa未満で比較的、鉛直方向への圧縮応力の小さい場所に使用されている場合には、鉛プラグ入り積層ゴム型免震支承には、上記微小振動に起因する鉛材料の金属疲労が起こり易い状態となる。   However, for example, when used in places where the compressive stress in the vertical direction is less than 10 MPa and relatively low in the compressive stress in the vertical direction, such as steel frames and medium to low-rise buildings, a laminated rubber mold with a lead plug is used. In the seismic isolation bearing, metal fatigue of the lead material due to the minute vibration is likely to occur.

(6)の発明によれば、鉄骨造や中低層建物等の、鉛直方向への圧縮応力が10MPa未満で比較的、鉛直方向への圧縮応力の小さい場所に使用されている場合であっても鉛プラグ入り積層ゴム型免震支承の耐久性や信頼性を十分に向上させることができるため、そのような場所においても、耐久性や信頼性に優れた免震構造を形成することができる。   According to the invention of (6), even when used in places where the compressive stress in the vertical direction is less than 10 MPa and relatively low in the compressive stress in the vertical direction, such as steel structures and medium- and low-rise buildings. Since durability and reliability of the laminated rubber type seismic isolation bearing with lead plug can be sufficiently improved, a seismic isolation structure having excellent durability and reliability can be formed even in such a place.

(7) (1)から(5)のいずれかに記載の鉛プラグ入り積層ゴム型免震支承を含む免震構造であって、前記鉛プラグ入り積層ゴム型免震支承は、該鉛プラグ入り積層ゴム型免震支承に働く鉛直方向への圧縮応力が5MPa未満となる位置に配置されている免震構造。   (7) A seismic isolation structure including the laminated rubber type seismic isolation bearing with lead plug according to any one of (1) to (5), wherein the laminated rubber type seismic isolation bearing with lead plug includes the lead plug. Seismic isolation structure arranged at a position where the compressive stress in the vertical direction acting on the laminated rubber type seismic isolation bearing is less than 5 MPa.

(7)の発明によれば、構造物のうち階段下や下屋等の鉛直方向への圧縮応力が小さいに場所に用いられ、鉛直方向への圧縮応力が5MPa未満であり、鉛直方向への圧縮応力が更に小さい場所に使用されている場合であっても、鉛プラグ入り積層ゴム型免震支承の耐久性や信頼性を十分に向上させることができるため、そのような場所においても、耐久性や信頼性に優れた免震構造を形成することができる。   According to the invention of (7), the compressive stress in the vertical direction of the structure, such as under the stairs and the lower house, is used in a small place, the compressive stress in the vertical direction is less than 5 MPa, The durability and reliability of laminated rubber-type seismic isolation bearings with lead plugs can be sufficiently improved even when they are used in places where the compressive stress is even smaller. A seismically isolated structure with excellent reliability and reliability can be formed.

本発明によれば、微少振幅の振動に起因する亀裂や破断が発生することを防止して耐久性を向上させた鉛プラグ入り積層ゴム型免震支承を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated rubber type seismic isolation bearing with a lead plug which prevented generation | occurrence | production of the crack and fracture | rupture resulting from a vibration of minute amplitude, and improved durability can be provided.

本発明に係る鉛プラグ入り積層ゴム型免震支承の斜視図である。It is a perspective view of a laminated rubber type seismic isolation bearing with a lead plug according to the present invention. 本発明に係る鉛プラグ入り積層ゴム型免震支承の内部構造の説明に供する模式図である。It is a schematic diagram with which it uses for description of the internal structure of the laminated rubber type seismic isolation bearing with a lead plug which concerns on this invention. 本発明に係る鉛プラグ入り積層ゴム型免震支承を構成する鉛プラグの好ましい一実施形態の斜視図である。1 is a perspective view of a preferred embodiment of a lead plug constituting a laminated rubber type seismic isolation bearing with a lead plug according to the present invention. 図3の鉛プラグの側面の表面形状の説明に供する表面拡大模式図である。It is a surface expansion schematic diagram with which it uses for description of the surface shape of the side surface of the lead plug of FIG.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。又、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略若しくは簡略化する。   Hereinafter, although embodiment of this invention is described, this invention is not limited to this. In the description of the following embodiments, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.

先ず、本発明の鉛プラグ入り積層ゴム型免震支承10の全体構成について、図1及び図2を参照しながら説明する。   First, the whole structure of the laminated rubber type seismic isolation bearing 10 with a lead plug according to the present invention will be described with reference to FIG. 1 and FIG.

鉛プラグ入り積層ゴム型免震支承10は、免震支承の一例であり、構造物の下部構造体と上部構造体との間に設置され、振動エネルギーを吸収する。図1及び図2に示す通り、鉛プラグ入り積層ゴム型免震支承10は、複数の弾性材料層と剛性材料層とが交互に積層されてなる弾性体2と、柱状の鉛プラグ1と、を備え、鉛プラグ1は、弾性体2の内部に鉛直方向に形成された筒状の中空部内に、中空部の内面に隙間なく拘束される態様で配置されている。又、鉛プラグ入り積層ゴム型免震支承10は、鉛プラグ1の下面及び上面にそれぞれ当接して弾性体2の下面及び上面のそれぞれにボルト等により取り付けられた下部フランジ3及び上部フランジ4を備える。例えば、下部フランジ3側が基礎等の一方の構造物に固定されて、上部フランジ4側に建築物等の他方の構造物が載置されて、上部フランジ4を介して建築物等から鉛直荷重を受けるように設置されて用いられる。   The laminated rubber type seismic isolation bearing 10 with a lead plug is an example of a seismic isolation bearing, and is installed between a lower structure and an upper structure of the structure, and absorbs vibration energy. As shown in FIGS. 1 and 2, the laminated rubber type seismic isolation bearing 10 with lead plug includes an elastic body 2 in which a plurality of elastic material layers and rigid material layers are alternately laminated, a columnar lead plug 1, The lead plug 1 is disposed in a cylindrical hollow portion formed in the vertical direction inside the elastic body 2 in a manner that is constrained to the inner surface of the hollow portion without a gap. Further, the laminated rubber type seismic isolation bearing 10 with lead plugs has a lower flange 3 and an upper flange 4 which are in contact with the lower and upper surfaces of the lead plug 1 and are attached to the lower and upper surfaces of the elastic body 2 with bolts or the like, respectively. Prepare. For example, the lower flange 3 side is fixed to one structure such as a foundation, the other structure such as a building is placed on the upper flange 4 side, and a vertical load is applied from the building or the like via the upper flange 4. Installed and used to receive.

このような全体構成を備える鉛プラグ入り積層ゴム型免震支承10においては、弾性体2の中空部に配された鉛プラグ1が弾性体2に隙間なく拘束されている態様とすることが必要である。しかし、一方で弾性体2により鉛プラグ1を過度に圧迫する態様で拘束した場合には、弾性体2の耐久性に問題が生じる場合がある。よって、鉛プラグ入り積層ゴム型免震支承10においては、弾性体2の中空部の内周面から鉛プラグ1の側面に対して適度な圧力が、かかる状態で鉛プラグ1が配置されているようにすることが好ましい。   In the laminated rubber type seismic isolation bearing 10 with the lead plug having such an overall configuration, it is necessary that the lead plug 1 disposed in the hollow portion of the elastic body 2 is constrained to the elastic body 2 without a gap. It is. However, on the other hand, when the elastic body 2 is restrained in such a manner that the lead plug 1 is excessively pressed, a problem may arise in the durability of the elastic body 2. Therefore, in the laminated rubber type seismic isolation bearing 10 with the lead plug, the lead plug 1 is arranged in a state where an appropriate pressure is applied from the inner peripheral surface of the hollow portion of the elastic body 2 to the side surface of the lead plug 1. It is preferable to do so.

鉛プラグ1は、弾塑性素材として、純度99.99%以上の鉛で形成されている。又、鉛プラグ1の形状は、円環状体及び円柱状体が好ましいが、他の形状のもの、例えば楕円若しくは方形体及び楕円若しくは方形体のものであってもよい。又、鉛プラグ1は、弾性体2に対して一つでもよいが、これに代えて、一つの弾性体2に複数の中空部を形成し、この複数の中空部にそれぞれ鉛プラグ1を配置して鉛プラグ入り積層ゴム型免震支承10を構成してもよい。又、鉛プラグ1の高さは、300mm〜600mm程度であることが一般的であるが、要求される免震性能や構造物の設置スペースに応じて、任意の高さとすることができる。又、鉛プラグ1は、断面の直径も、弾性体2のサイズとの兼ね合いも含め、要求される免震性能や構造物の設置スペースに応じて、任意の寸法とすることができる。   The lead plug 1 is made of lead having a purity of 99.99% or more as an elastic-plastic material. The lead plug 1 is preferably an annular body or a cylindrical body, but may have other shapes such as an ellipse or a rectangular body and an ellipse or a rectangular body. In addition, one lead plug 1 may be provided for the elastic body 2, but instead, a plurality of hollow portions are formed in one elastic body 2, and the lead plugs 1 are disposed in the plurality of hollow portions, respectively. And you may comprise the laminated rubber type seismic isolation bearing 10 containing a lead plug. The height of the lead plug 1 is generally about 300 mm to 600 mm, but can be set to any height depending on the required seismic isolation performance and the installation space of the structure. Further, the lead plug 1 can have any dimensions including the cross-sectional diameter and the balance with the size of the elastic body 2 according to the required seismic isolation performance and the installation space of the structure.

更に、図3に示すように、鉛プラグ1は、その側面の少なくとも一部、又は略全部に、凹凸面111が形成されていることが好ましい。鉛プラグ1の側面に凹凸面111を形成することによって、後に詳細を説明する潤滑剤を塗布し易く、尚且つ、潤滑剤が重力により下方に流れてしまうのを防止して、被膜部11の安定性と定着性を向上させることができる。種々の免震装置の中でも、特に鉛プラグ入り積層ゴム型免震支承は、微細振動による金属疲労を発生し易い鉛面が外部に露出せず、弾性体への収納される態様での使用となるため、潤滑剤の塗布後弾性体への挿入時に、被膜部の安定性が悪いと製造安定性が著しく低下してしまう。よって鉛プラグ入り積層ゴム型免震支承においては、製造段階から被膜部の高い安定性が要求される。本発明の鉛プラグ入り積層ゴム型免震支承10においては、鉛プラグ1の側面に凹凸面111を形成して、この凹凸面111状に潤滑剤を塗布することによって、そのような被膜部の安定性に対する要求に応えることができる。   Furthermore, as shown in FIG. 3, the lead plug 1 preferably has a concavo-convex surface 111 formed on at least a part or substantially the entire side surface thereof. By forming the uneven surface 111 on the side surface of the lead plug 1, it is easy to apply a lubricant, which will be described in detail later, and the lubricant is prevented from flowing downward due to gravity. Stability and fixability can be improved. Among the various seismic isolation devices, the laminated rubber type seismic isolation bearing with lead plugs is particularly suitable for use in a mode in which the lead surface, which is prone to metal fatigue due to micro vibrations, is not exposed to the outside and is stored in an elastic body. For this reason, when the lubricant is inserted into the elastic body after the application of the lubricant, if the stability of the coating portion is poor, the production stability is significantly lowered. Therefore, in the laminated rubber type seismic isolation bearing with lead plug, high stability of the coating is required from the manufacturing stage. In the laminated rubber type seismic isolation bearing 10 with a lead plug according to the present invention, an uneven surface 111 is formed on the side surface of the lead plug 1, and a lubricant is applied to the uneven surface 111 to thereby form such a coating portion. It can meet the demand for stability.

又、鉛プラグ1の側面に凹凸面111を形成することによって、鉛プラグ1の表面の単位面積当りの被膜部11の表面積、或いは、同単位面積当り潤滑剤の塗布量の増加により、鉛プラグ入り積層ゴム型免震支承10の耐久性や信頼性を更に向上させることができる。   Further, by forming the uneven surface 111 on the side surface of the lead plug 1, the surface area of the coating portion 11 per unit area on the surface of the lead plug 1 or the increase in the amount of lubricant applied per unit area can lead to the lead plug 1. The durability and reliability of the laminated laminated rubber type seismic isolation bearing 10 can be further improved.

弾性体2は、弾性材料からなる複数の弾性材料層と、剛性材料からなる剛性材料層とが交互に積層されてなる円柱又は角柱形状の弾性体である。   The elastic body 2 is a cylindrical or prismatic elastic body in which a plurality of elastic material layers made of an elastic material and a rigid material layer made of a rigid material are alternately laminated.

弾性材料層の素材としては、天然ゴム、シリコンゴム、高減衰ゴム、ウレタンゴム又はクロロプレンゴム等を挙げることができるが、好ましくは天然ゴムである。弾性材料層の各層の厚みとしては、無負荷状態において1mm〜30mm程度のものが好ましいが、これに限定されない。   Examples of the material of the elastic material layer include natural rubber, silicon rubber, high damping rubber, urethane rubber, chloroprene rubber, and the like, and natural rubber is preferable. The thickness of each layer of the elastic material layer is preferably about 1 mm to 30 mm in an unloaded state, but is not limited thereto.

剛性材料層の素材としては、鋼板、炭素繊維、ガラス繊維若しくはアラミド繊維等の繊維補強合成樹脂板又は繊維補強硬質ゴム板等を挙げることができ、その厚みは、各厚肉剛性板には10mm〜50mm程度、それ以外の各層には1mm〜6mm程度のものが好ましいが、これに限定されず、更にその枚数においても特に限定されない。又、下部フランジ3及び上部フランジ4についても、上記の鋼版等、剛性材料からなる板状の部材を適宜選択して用いることができる。   Examples of the material of the rigid material layer may include a fiber reinforced synthetic resin plate such as a steel plate, carbon fiber, glass fiber, or aramid fiber, or a fiber reinforced hard rubber plate, and the thickness thereof is 10 mm for each thick rigid plate. About 50 mm, and each other layer is preferably about 1 mm to 6 mm, but is not limited thereto, and the number of layers is not particularly limited. Also, for the lower flange 3 and the upper flange 4, a plate-like member made of a rigid material such as the above steel plate can be appropriately selected and used.

本発明の鉛プラグ入り積層ゴム型免震支承10は、更に、鉛プラグ1の側面の少なくとも一部、好ましくは略全部に、被膜部11が形成されている。被膜部11の具体的一例として、鉛プラグ1の側面の表面において、ワセリンが160μmの厚さで塗布されて形成されているものを挙げることができる。この場合、ワセリンは、健栄製薬製の白色ワセリン他、ワセリンと称される薬品であれば任意のものを用いることができる。尚、鉛プラグ1の一部に凹凸面111が形成されている場合には、特に被膜部11は、凹凸面111上を含む部分に少なくとも形成される。被膜部11は、ワセリンを38℃から60℃に温めてから、鉛プラグ1の側面に塗布され形成される。   The laminated rubber type seismic isolation bearing 10 with lead plug of the present invention further has a coating 11 formed on at least a part, preferably substantially all, of the side surface of the lead plug 1. As a specific example of the coating part 11, what is formed by apply | coating petrolatum with the thickness of 160 micrometers in the surface of the side surface of the lead plug 1 can be mentioned. In this case, as petrolatum, any white petrolatum manufactured by Kenei Pharmaceutical Co., Ltd. can be used as long as it is a chemical called petrolatum. When the uneven surface 111 is formed on a part of the lead plug 1, the coating portion 11 is particularly formed at least in a portion including the uneven surface 111. The coating portion 11 is formed by applying petrolatum to the side surface of the lead plug 1 after warming petrolatum from 38 ° C. to 60 ° C.

又、本発明の鉛プラグ入り積層ゴム型免震支承10の被膜部11の他の具体的一例として、鉛プラグ1の側面の表面において、被膜部11が鉱物油を基油とするグリースを塗布することで形成されているものをより好ましい具体例として挙げることができる。この場合、被膜部11は、グリース(例えば、リチウム複合石鹸グリース)が80g/mの厚さで塗布されて形成されているものすることが好ましい。この実施形態において、グリースは、リチウム複合石鹸基グリースを用いているが、鉱物油を基油とするグリースであれば、カルシウム石鹸基グリース、アルミニウムコンプレックス石鹸基グリース、リチウムコンプレックス石鹸基グリース等の任意のグリースを用いることができる。又、グリースは、JIS K2220において分類されるちょう度番号が00号から4号に含まれるものを用いることができる。 Further, as another specific example of the coating part 11 of the laminated rubber type seismic isolation bearing 10 with the lead plug of the present invention, the coating part 11 is coated with grease based on mineral oil on the side surface of the lead plug 1. What is formed by doing can be mentioned as a more preferable specific example. In this case, the coating portion 11 is preferably formed by applying grease (for example, lithium composite soap grease) at a thickness of 80 g / m 2 . In this embodiment, the lithium composite soap base grease is used as the grease. However, any grease such as calcium soap base grease, aluminum complex soap base grease, lithium complex soap base grease may be used as long as the grease is based on mineral oil. The grease can be used. As the grease, greases whose consistency numbers classified in JIS K2220 are included in No. 00 to No. 4 can be used.

上記の各潤滑剤は、刷毛やローラにより、鉛プラグ1の表面に塗布して形成する。又、グリース等を希釈し、スプレー等により、鉛プラグ1の側面に噴霧して形成してもよい。   Each of the lubricants described above is formed by applying to the surface of the lead plug 1 with a brush or a roller. Alternatively, the grease or the like may be diluted and sprayed on the side surface of the lead plug 1 by spraying or the like.

このように、鉛プラグ入り積層ゴム型免震支承10は、被膜部11を備えることによって、変形することで振動エネルギーを吸収する鉛プラグ1に、微少振幅の振動に起因する亀裂や破断が発生することを防止できる。   As described above, the laminated rubber type seismic isolation bearing 10 with the lead plug is provided with the coating portion 11, so that the lead plug 1 that absorbs the vibration energy by being deformed is cracked or broken due to the vibration of the minute amplitude. Can be prevented.

グリース等による被膜部形成によって鉛からなる部材の金属疲労を抑制可能であることは、本発明者らによって、既に確認されており、その結果については、非特許文献1、2により既に開示されている通りである。但し、配置場所に合わせたサイズの縮小が比較的容易な免震装置である鉛プラグ入り積層ゴム型免震支承へこれを応用することは、当業者にも看過されてきた全く新しい免震構造の構成である。即ち、本願発明の鉛プラグ入り積層ゴム型免震支承10を、上述の通りの比較的、鉛直方向への圧縮応力の低い場所へも、その耐久性を保持したまま配置可能とすることによって、耐久性や信頼性、更には経済性にも極めて優れた免震構造の形成が可能となることについては、当業者といえども想到困難な本発明独自の有利な効果である。   It has already been confirmed by the present inventors that metal fatigue of a member made of lead can be suppressed by forming a coating portion with grease or the like, and the result has already been disclosed in Non-Patent Documents 1 and 2. That's right. However, application of this to a laminated rubber type seismic isolation bearing with lead plugs, which is a seismic isolation device that is relatively easy to reduce in size according to the location, is a completely new seismic isolation structure that has been overlooked by those skilled in the art. It is the composition. That is, by allowing the laminated rubber type seismic isolation bearing 10 with lead plug of the present invention to be placed in a relatively low vertical compressive stress as described above while maintaining its durability, The fact that it is possible to form a seismic isolation structure that is extremely excellent in durability, reliability, and economic efficiency is an advantageous effect unique to the present invention that is difficult even for those skilled in the art.

更に、鉛プラグ1が弾性体2に拘束される構成に鑑み、被膜部11の形成時の作業性や形成された被膜部11の安定性を高めるために、鉛プラグ1の側面に凹凸面111を設けることにより、上記効果は更に顕著且つ確実に発現するものとなる。   Furthermore, in view of the configuration in which the lead plug 1 is restrained by the elastic body 2, an uneven surface 111 is formed on the side surface of the lead plug 1 in order to improve the workability when forming the coating portion 11 and the stability of the formed coating portion 11. By providing the above, the above-described effect is more remarkably and surely expressed.

1 鉛プラグ
11 被膜部
111 凹凸面
2 弾性体
3 下部フランジ
4 上部フランジ
10 鉛プラグ入り積層ゴム型免震支承
DESCRIPTION OF SYMBOLS 1 Lead plug 11 Coating part 111 Uneven surface 2 Elastic body 3 Lower flange 4 Upper flange 10 Laminated rubber type seismic isolation bearing with lead plug

Claims (7)

複数の弾性材料層と剛性材料層とが交互に積層されてなる弾性体と、
柱状の鉛プラグと、を備え、
前記鉛プラグは、前記弾性体の内部に鉛直方向に形成された筒状の中空部内に配置されていて、
前記鉛プラグの側面の少なくとも一部には、潤滑剤が塗布されてなる被膜部が形成されている鉛プラグ入り積層ゴム型免震支承。
An elastic body in which a plurality of elastic material layers and rigid material layers are alternately laminated;
A columnar lead plug; and
The lead plug is disposed in a cylindrical hollow portion formed in the vertical direction inside the elastic body,
A laminated rubber type seismic isolation bearing with a lead plug in which a coating portion formed by applying a lubricant is formed on at least a part of a side surface of the lead plug.
前記鉛プラグの側面の少なくとも一部には、凹凸面が形成されており、少なくとも該凹凸面上に前記被膜部が形成されている請求項1に記載の鉛プラグ入り積層ゴム型免震支承。   The laminated rubber type seismic isolation bearing with lead plug according to claim 1, wherein an uneven surface is formed on at least a part of a side surface of the lead plug, and the coating portion is formed on at least the uneven surface. 前記潤滑剤が、グリース又はワセリンである請求項1又は2に記載の鉛プラグ入り積層ゴム型免震支承。   The laminated rubber type seismic isolation bearing with a lead plug according to claim 1 or 2, wherein the lubricant is grease or petroleum jelly. 前記グリースが、鉱物油を基油とするグリースである請求項3に記載の鉛プラグ入り積層ゴム型免震支承。   The laminated rubber type seismic isolation bearing with a lead plug according to claim 3, wherein the grease is a grease based on mineral oil. 前記グリースが、ちょう度番号が00号から4号に含まれる請求項4に記載の鉛プラグ入り積層ゴム型免震支承。   The laminated rubber type seismic isolation bearing with lead plug according to claim 4, wherein the grease has a consistency number of No. 00 to No. 4. 請求項1から5のいずれかに記載の鉛プラグ入り積層ゴム型免震支承を含んでなる免震構造であって、
前記鉛プラグ入り積層ゴム型免震支承は、該鉛プラグ入り積層ゴム型免震支承に働く鉛直方向への圧縮応力が5MPa以上10MPa未満となる位置に配置されている免震構造。
A base-isolated structure comprising the laminated rubber type base-isolated bearing with a lead plug according to any one of claims 1 to 5,
The lead-plug laminated rubber type seismic isolation bearing is a seismic isolation structure arranged at a position where the compressive stress in the vertical direction acting on the lead plug-containing laminated rubber type seismic isolation bearing is 5 MPa or more and less than 10 MPa.
請求項1から5のいずれかに記載の鉛プラグ入り積層ゴム型免震支承を含む免震構造であって、
前記鉛プラグ入り積層ゴム型免震支承は、該鉛プラグ入り積層ゴム型免震支承に働く鉛直方向への圧縮応力が5MPa未満となる位置に配置されている免震構造。
A base-isolated structure including the laminated rubber type base-isolated bearing with a lead plug according to any one of claims 1 to 5,
The lead-plug laminated rubber type seismic isolation bearing is a seismic isolation structure arranged at a position where the compressive stress in the vertical direction acting on the lead plug-containing laminated rubber type seismic isolation bearing is less than 5 MPa.
JP2014003345A 2014-01-10 2014-01-10 Lead-plug incorporated laminate rubber type base insulation bearing Pending JP2015132303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003345A JP2015132303A (en) 2014-01-10 2014-01-10 Lead-plug incorporated laminate rubber type base insulation bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003345A JP2015132303A (en) 2014-01-10 2014-01-10 Lead-plug incorporated laminate rubber type base insulation bearing

Publications (1)

Publication Number Publication Date
JP2015132303A true JP2015132303A (en) 2015-07-23

Family

ID=53899667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003345A Pending JP2015132303A (en) 2014-01-10 2014-01-10 Lead-plug incorporated laminate rubber type base insulation bearing

Country Status (1)

Country Link
JP (1) JP2015132303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108914A (en) * 2017-12-15 2019-07-04 住友金属鉱山シポレックス株式会社 Seismic isolator, and, method for repairing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105440A (en) * 1995-08-04 1997-04-22 Oiles Ind Co Ltd Base isolation device
JP2005273707A (en) * 2004-03-23 2005-10-06 Meiji Univ Laminated base isolation device and metal plug used for the same
JP2006170233A (en) * 2004-12-13 2006-06-29 Showa Electric Wire & Cable Co Ltd Base isolator and base isolation structure
JP2006242240A (en) * 2005-03-02 2006-09-14 Sumitomo Metal Mining Co Ltd Energy absorbing device
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body
JP2014001844A (en) * 2012-02-21 2014-01-09 Sumitomo Kinzoku Kozan Siporex Kk Seismic isolation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105440A (en) * 1995-08-04 1997-04-22 Oiles Ind Co Ltd Base isolation device
JP2005273707A (en) * 2004-03-23 2005-10-06 Meiji Univ Laminated base isolation device and metal plug used for the same
JP2006170233A (en) * 2004-12-13 2006-06-29 Showa Electric Wire & Cable Co Ltd Base isolator and base isolation structure
JP2006242240A (en) * 2005-03-02 2006-09-14 Sumitomo Metal Mining Co Ltd Energy absorbing device
JP2014001844A (en) * 2012-02-21 2014-01-09 Sumitomo Kinzoku Kozan Siporex Kk Seismic isolation device
JP2013217483A (en) * 2012-04-12 2013-10-24 Swcc Showa Device Technology Co Ltd Laminated rubber bearing body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019108914A (en) * 2017-12-15 2019-07-04 住友金属鉱山シポレックス株式会社 Seismic isolator, and, method for repairing the same

Similar Documents

Publication Publication Date Title
US11339849B2 (en) Three-dimensional isolator with adaptive stiffness property
CN203741993U (en) Friction pendulum type seismic isolation support provided with anti-drawing devices
TWI506211B (en) Slippage structure, bearing apparatus, and seismically isolated structure
Di Sarno et al. Innovative strategies for seismic retrofitting of steel and composite structures
CN203808244U (en) Laminated type metal rubber shock-isolation bearing
JP2015507106A (en) Types of bearings that protect structures from earthquakes and other similar disasters
Colombo et al. Experimental investigation on the seismic isolation for a legged wine storage tank
KR101815644B1 (en) x shape damping device
CN204626691U (en) Subtract shock insulation aseismatic bearing
Panchal et al. Seismic behaviour of isolated fluid storage tanks: A-state-of-the-art review
CN109681577A (en) A kind of novel torsional damper device
CN104164835A (en) High-damping vibration attenuation rubber support for bridge
CN102146704B (en) Building shock isolation device
US20140318043A1 (en) Class of Bearings to Protect Structures from Earthquake and Other Similar Hazards
CN102251472A (en) Multi-dimensional shock absorption/isolation lead rubber bearing
JP2010190409A (en) Seismic isolation device and building
JP6432271B2 (en) Seismic isolation support device
JP2015132303A (en) Lead-plug incorporated laminate rubber type base insulation bearing
Wang et al. Recent progress in Taiwan on seismic isolation, energy dissipation, and active vibration control
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP5967615B2 (en) Seismic isolation device
JP6895737B2 (en) Installation structure of building oil damper
CN105507443B (en) A kind of civil engineering damping device and shock-dampening method
CN205369576U (en) Civil engineering damping device
JP2016056875A (en) Seismic base isolation structure with vibration control function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003